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Abstract
Nearly 2200 genomes encoding some 6 million proteins have now been sequenced. Around 40%
of these proteins are of unknown function even when function is loosely and minimally defined as
“belonging to a superfamily”. In addition to in silico methods, the swelling stream of high-
throughput experimental data can give valuable clues for linking these “unknowns” with precise
biological roles. The goal is to develop integrative data-mining platforms that allow the scientific
community at large to access and utilize this rich source of experimental knowledge. To this end,
we review recent advances in generating whole-genome experimental datasets, where this data can
be accessed, and how it can be used to drive prediction of gene function.

What is “function” in the post-genomic era?
With the avalanche of genome sequence data and automated transfer of annotations between
those genomes, the definition of function has become increasingly vague. Traditionally, for
most biochemists or geneticists, the definition of gene function has been very strict: the
corresponding protein has an experimentally defined role with both a molecular and a
biological dimension. For an enzyme, for instance, the molecular dimension is fulfilled by
discovering the reaction it catalyzes. The biological dimension is fulfilled when the pathway
in which the enzyme participates is discovered. Until the molecular role and biological
process are both fully understood, the function remains “unknown”.

Traditionally, gene function discovery and/or verification have largely been achieved in this
manner, one gene at a time by bench scientists. As of 2008, 59.3% of the genes found in the
Escherichia coli genome are affiliated with some type of experimental data [3]. E. coli,
however, is the exception rather than the rule, because experimentally characterizing the
millions of genes sequenced is so far an impossible task. As a consequence, the vast
majority of annotations are bioinformatic-derived predictions. A few of these annotations
are based on a combination of bioinformatic evidence, such as metabolic reconstruction,
clustering, co-occurrence, or the presence of candidate transcription factor binding sites [4];
but, in most cases, annotations are based solely on sequence similarity to a gene, most likely
also annotated in the same way. In addition, it is often difficult to find the experimentally
validated progenitor gene and how the annotation was originally acquired [5].

Unfortunately, current bioinformatic-based approaches cannot predict a function for one-
third of sequenced genes; moreover, for some gene families at least 60% of the gene
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predictions are wrong [6]. This difficulty will inevitably become more apparent as newly
sequenced genomes emerge containing genes of an ever-increasing phylogenetic distance
from those experimentally characterized. Attempts are being made continually to address the
need for reliable and accurate gene annotations, such as developing Gold Standard datasets
of experimentally verified annotations by the COMputational BRidge to EXperiments
(COMBREX: www.combrex.org); nevertheless, the functional annotation dilemma is one of
the largest challenges we face in the post-genomic era and threatens to undermine efforts to
extract knowledge from genome sequencing efforts.

In order to improve gene annotations, systematic functional verification efforts must be
undertaken in combination with the development of better bioinformatic annotation tools.
Discovery and verification of gene function have far-reaching impacts as we try to
understand every aspect of the cell and discover new ways in which nature provides
solutions to emerging issues in our society, including drug discovery and biofuel production.
In this review, we focus on recent efforts to directly address gene function discovery in
microorganisms through genome-wide high-throughput (HTP) techniques and the benefits
and caveats to using these data for gene function prediction and verification (Figure 1). As a
general definition, genome-wide experiments include at least 85% of the predicted genes in
a given genome [7]. Structural proteomics efforts to link gene with function have been
recently reviewed [8] and, as such, will not be discussed here. Instead of an exhaustive
review on each type of genome-wide HTP study, we emphasize the aspects of these
approaches that can be mined by experimentalists to gain insight into gene function.

Genome-wide phenotype screens
Initial insight into gene function often comes from the discovery of a growth phenotype as a
consequence of gene deletion from the chromosome (Figure 1a). Common phenotypic
screens look at the effect of the gene deletion on nutritional requirements or on sensitivity or
resistance to a chemical agent. In the past ten years, we have seen an influx of experiments
aimed at scaling-up phenotype screens and new versions of traditional designs. Screens can
involve one gene deletion and thousands of growth conditions [9] or, conversely, thousands
of mutants and one or more growth conditions. Whole-genome gain-of-function phenotypic
screens as a result of overexpression of a gene in trans can also lead to functional insight
[10].

A logical step after obtaining whole-genome sequences is to create strain collections that
contain single gene deletions or disruptions (due to transposon insertion) of all or most
predicted open reading frames. The first of these studies was in Mycoplasma genitalium
shortly after the genome was sequenced [11]. The initial information gained from this effort
is an estimate of the essential gene repertoire of that organism under the growth conditions
used. By the very definition of “essentiality”, deletion or disruption of essential genes is not
feasible.

Once available, experiments characterizing the collection of mutants can be implemented
systematically. These genome-wide projects have gained interest rapidly owing to increased
feasibility and robustness (Table 1). The time between finishing a genome sequence,
building a mutant strain collection, and screening the collection with an array of growth
conditions has progressively decreased as new technologies become available and the costs
associated with them diminish. This year, a system to knock-down and -up all genes in E.
coli in one week, and at $1 USD per gene, has been described [12].

Phenotype screens have advanced from community-based efforts to delete and analyze the
function of all uncharacterized genes in a single genome [13] to pooled experiments of
barcoded mutant collections that are analyzed with deep sequencing technologies [14].
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Screens are not limited to defects in cell proliferation and can be easily applied to myriad
experimental designs, such as measuring amino acid levels [15], ATP synthesis [16] or
protein localization via HTP microscopy [17].

Model organisms, such as Saccharomyces cerevisiae and E. coli, are leaders in the number
of genome-wide phenotype screens owing to the availability of trusted and complete mutant
collections. The Saccharomyces Genome Database (SGD; Table 2) maintains an updated list
of genome-wide analysis papers, which currently includes 353 journal articles under the
heading “large-scale phenotype analysis”. Since 2006, over 20 genome-wide screens have
been published that employ the Keio E. coli mutant collection (Keio collection page,
EcoTopics: http://www.ecogene.org/topic.php?topic_id=125). In addition to S. cerevisiae
and E. coli, genome-wide phenotype screens are feasible for any organism in which gene
disruptions can be easily constructed. In recent years, gene knock-out libraries and
subsequent genome-wide screens have been performed in a wide range of bacteria (Table
1a). Importantly, to our knowledge, genome-wide mutant collections and phenotype screens
are not yet available for any archaeon a – notable deficiency.

Automation of phenotype screens
The ability to automate phenotypic screens has greatly accelerated the field in recent years.
In 2001, Biolog Inc. introduced the Phenotype Microarray (PM), which can be used to
compare the growth of a mutant and its isogenic parent in nearly 2,000 growth conditions
for roughly $1,200 per strain (reviewed in [18]). Growth is assayed by measuring cellular
respiration, which reduces a tetrazolium dye, giving a color change [19]. PM is often a
convenient assay to check the validity of systems-level metabolic reconstructions, which has
identified discrepancies in annotations and has enabled the discovery of metabolic pathways
not represented by current annotations. For instance, using PM to assay substrate utilization
by Bacillus subtilis has increased the number of known reactions by 75 [20]. A gap-filling
process is used to predict the reactions that can reconcile discrepancies between a metabolic
model and PM data. Then predictions can be computationally generated to identify protein
candidates responsible for those reactions. Strains carrying deletions in those candidates are
then tested for the expected growth defect. For E. coli K-12 MG1655, this approach has led
to the functional assignment of eight genes [21].

Quantitative fitness profiling of pooled mutants
Fitness profiling, where DNA microarrays or deep sequencing is used to detect mutants in
pooled experiments, is a solution to any limitation associated with screening individual
mutant strains. If a gene bestows a fitness advantage under a defined growth condition, then
its loss will lead to a growth deficit that can be assayed by quantitatively measuring its
relative abundance in a population. The yeast deletion collection contains barcodes specific
to each allele [22]; therefore, deletion strains can be pooled into a single culture and the
abundance of each mutant can be assayed with a DNA microarray before and after an
experiment (Figure 2a). Systematic barcodes have also been developed for use in bacteria
[21]. These unique tags can then be detected by microarray, similar to the yeast barcode
method [19]. In addition to DNA microarrays, deep-sequencing has also been used recently
to detect relative abundance of mutants [23]. In this case, the PCR-amplified sequence
flanking a transposon or selection cassette can be used for strain detection [24,25]. As the
cost of sequencing decreases, these techniques become increasingly affordable, approaching
a few thousand dollars per experiments. As with classical phenotype screens, fitness changes
owing to gene loss or over-expression can be assayed. Recently, genome-wide quantitative
fitness profiling has been applied to looking at ethanol tolerance [26] and antibiotic
susceptibility [27,28] in E. coli.
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The pooling approach has especially been useful for analyzing pathogen–host interactions,
where mutant abundance is assayed before and after infection [29–33]. Infecting a host with
a pooled library of mutants is more feasible than infecting thousands of hosts with single
mutants. Mutants that are required for replication and survival in the host will be
underrepresented in the output pool. Since those mutants are of the greatest interest, this
approach is referred to as a negative selection screen. Some 27% of Francisella novicida
[29] and 53% of Salmonella enterica serovar typhimurium [33] genes identified in negative
selection screens were of previously unknown function.

The number of genome-wide mutant collections pales in comparison to the number of
genome sequences available, and these mutant collections do not cover all uncharacterized
gene families. Also, although helpful, a phenotype alone does not necessarily indicate gene
function, because gene deletions can lead to pleiotropic phenotypes that are difficult to
interpret. For example, the pleiotropic phenotypes of mutants in the universal sua5/yrdC
family could be to the result of a defect in tRNA modification – a function that phenotypic
screens had failed to detect [34]. Another drawback in using knock-out libraries to discover
gene function is frequent redundancies in gene function. A single gene deletion might not
cause an observable phenotype because a second gene can composite for its loss. Metabolic
reconstructions can be helpful in pinpointing these cases [35], and genetic interaction studies
can help reconcile discrepancies.

Genome-wide genetic interactions
As genetic-interaction experiments are traditionally performed in yeast, it is no surprise that
automation of strain construction was first applied to S. cerevisiae with the development of
the SGA (Synthetic Genetic Array) analysis [36]. In these experiments, automation enables
array-based HTP genetic interaction assays to be performed by systematically combining
gene deletions in the same background. Recently, genome-scale genetic interaction screens
have also been performed for E. coli [37,38]; the initial use of the eSGA (E. coli Synthetic
Genetic Array) revealed novel genes in iron-sulfur ([Fe-S]) cluster biosynthesis [37], and the
initial use of GIANT-coli (Genetic Interaction Analysis Technology) identified proteins of
unknown function that might be involved in outer membrane stabilization [38].

Proteomic analyses
To supplement or replace phenotype screens of mutant collections, several groups have
focused on HTP screens of enzyme activity (Figure 1b; Box 1). One such genome-wide
approach is Activity-Based Protein Profiling (ABPP). ABPP is the application of small
molecule probes that are designed to target active sites and label specific classes of proteins
[39]. The probe is usually designed so that the labelled protein can be visualized or purified.
When combined with mass spectrometry, these proteins can then be identified. The
bottleneck in ABPP is the production and testing of probes and ensuring specificity of the
probe. β-Lactam probes have been used to identify enzymes involved in the resistance to β-
lactam antibiotics of methicillin-resistant Staphylococcus aureus, several of which were
previously of unknown function [40].

Box 1

Experimental tools that can be scaled to run genome-wide screens

Techniques are available to provide information on a large set of genes in a single
experiment. The information collected includes measurement of mutant fitness,
identification of synthetic lethal gene pairs, co-expression, and protein-protein
interactions. By providing more experimental clues, other methods that will prove useful
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in solving the gene annotation problem are HTP-enzyme assays and metabolite profiling.
Currently, scalability of these two techniques remains a major limitation.

Metabolic profiling

• Phenotypes. A novel phenotype screen that is now possible because of advances
in metabolite extraction and mass spectrometry involves comparing metabolite
profiles of a mutant strain and its parent strain [61,62]. Although not yet used to
screen entire knock-out libraries, metabolite profiling of these libraries might
allow detection of otherwise-undetectable perturbations of cellular processes.

• Metabolite–protein interactions. Instead of tagging a small molecule and
identifying the protein that is co-purified (as in ABPP), methods are being
developed to tag proteins and then determine the identity of the small molecules
that are co-purified [63]. Currently, sensitivity is a limitation, and detection
methods are limited to a subset of molecules.

• Enzyme activity. Another technique that relies on detection of metabolites is the
recently described derivation of metabolic profiling where a protein of unknown
function is purified and incubated with a mix of cofactors and metabolites [64].
The substrates and/or products of the enzyme can be deduced from determining
the metabolites present after incubation. This technique has directly led to the
characterization of three previously hypothetical genes in E. coli [64,65].

HTP enzyme assays

HTP in vitro screens can be used to probe the activity of purified proteins. This is
especially useful for probing the function of genes that are either not associated with a
detectable phenotype or are essential. Functional proteomics efforts have focused on
developing robust general enzyme assays that connect an unknown protein with a
functional sub-class, such as “hydrolase” [66]. In most cases, enzyme assays are limited
by the need to analyze purified enzymes and are therefore mainly applied one protein at a
time. Exhaustive genome-wide screens might become feasible with ongoing efforts to
optimize production of active proteins [67] as well as development of a greater variety of
robust enzyme assays.

Microarray technology is also used for functional proteomics studies and has enabled
several assays to be scaled up to the genome-wide level (Figure 2b). Functional protein
microarrays combined with expression libraries are used to assay enzyme activity, substrate
binding, or protein-protein interactions in a HTP genome-wide manner. For example,
proteome chips have been used to identify glycoproteins in yeast [41]; DNA damage
recognition proteins in E. coli [42]; and proteins from Streptococcus pyogenes and
Steptococcus agalactiae that could bind to three human protein ligands [43].

Experimental association studies
Experimental association studies are defined as experiments aimed at detecting functional
links between proteins, which can be inferred from the co-expression of genes or the
detection of physical interactions between proteins (Figure 1; Figure 2). The assumption is
that proteins that are co-expressed or interact with one another belong to the same pathways
or have similar functions in the cell.

Co-expression
Although genome-wide phenotype or enzyme activity screens are gaining popularity, the use
of oligonucleotide microarrays to survey mRNA abundance in the cell in a genome-wide

Blaby-Haas and de Crécy-Lagard Page 5

Trends Biotechnol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



manner has become routine (Figure 2A). Consequently, deposition of expression microarray
datasets has increased exponentially over the past decade [44]. Owing to the length of time
that these techniques have been available, the use and integration of these data are far more
advanced than for other types of HTP experimental data.

Recently, transcriptomics studies have benefited from new technologies and approaches,
such as HTP sequencing (e.g. RNA-seq) and meta-analysis. RNA-seq involves cDNA
synthesis and subsequent sequencing to determine presence and abundance of transcripts
(recently reviewed in [45]). Meta-analysis of gene expression includes two approaches. The
first is co-expression meta-analysis, which is the analysis of co-expressed genes across
species [44]. Confidence that two genes are involved in the same pathway or process is
gained by observing that gene A and gene B are co-expressed in species 1, and the homologs
of gene A and B are co-expressed in species 2. The second approach is expression meta-
analysis, which is the analysis of the expression profiles for a gene family across species
[44]. Confidence is gained when the members of a gene family are induced under similar
conditions in several species. Analysis of the transcriptional response to hydrogen peroxide
in various organisms has identified 18 families of unknown function that were induced in at
least two organisms [46]. This type of analysis thereby strengthens the conclusion that these
protein families are involved in the cellular response to hydrogen peroxide.

Co-phenotype analysis
Insight into gene function can also come from cluster analysis of phenotypes (Figure 1c).
Hierarchical clustering has been traditionally used to analyze gene expression data, but it
can also be applied to quantitative phenotype data. Instead of clustering expression values
for a set of genes, phenotype profiles for a set of gene deletion strains are used. This
approach has been applied to phenotype data from 51 growth conditions in S. cerevisiae
[47]. From these phenotype-association data, it was determined that not only do genes with
related function cluster together, but also this analysis can be employed as a tool to uncover
the function of unknown genes from the known genes that are co-clustered. The authors
found that the uncharacterized S. cerevisiae gene YGR122W clusters with genes in the
RIM101 pathway, which is involved in sporulation regulation. It was verified that YGR122W
is involved in sporulation and part of the RIM101 pathway. Phenotype clustering has also
been recently used to enrich the phenotype analysis of Pseudomonas aeruginosa [48] and E.
coli [27]. Efforts are being made to widen this type of analysis to the cluster analysis of
gene-family phenotypes across species [49].

Protein interactions
Identifying interactions between characterized and uncharacterized proteins is another
approach to inferring functional relatedness (Figure 1d). Several experimental approaches
are available to analyze protein-protein interactions. Genome-wide protein-protein
interactions were first detected using yeast two-hybrid assays [50], and subsequent studies
have employed protein microarrays as discussed above and tag-dependent pull-downs
coupled with protein sequencing to identify complexes [51]. Recently, large-scale protein-
protein interaction data have been collected for several microorganisms (Table 1b).

There’s information out there: how to access it?
There is a wealth of genome-wide HTP data published and the volume will certainly
increase with time as these HTP approaches become easier and cheaper. However, at this
stage, potentially useful information on gene function is buried in spreadsheets and the
supplemental information sections of published reports. Sifting by hand through these
resources to extract data on a gene family of interest takes time and is made more difficult

Blaby-Haas and de Crécy-Lagard Page 6

Trends Biotechnol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



by inconsistent nomenclature for the same gene or gene product and by the need to assess
the reliability of collated HTP data. Several efforts have therefore been made by the various
“-omic” communities to standardize reporting of data [52,53]. Here, we provide a brief
review of publicly accessible databases that integrate HTP data from microbes and then
present case studies that illustrate the use of mining genome-wide HTP data to drive gene
function prediction and verification.

There are three main types of databases that provide gene- or protein-linked HTP-derived
experimental data: single “-omic”, organism-centric and multi-organism/multiple “-omics”.
The term “-omic” refers to various post-genomic fields, including transcriptomics (mRNA
abundance), proteomics (protein abundance and enzyme activity), interactomics (e.g.
protein-protein interactions) and phenomics (phenotypes). Databases containing
metabolomic (small molecule abundance) data are not discussed here because no real HTP
data analyzing mutants in a genome-scale manner are yet available (Box 1).

Single -omic databases make an effort to provide a comprehensive collection of raw datasets
for a single type of data, such as gene expression or protein-protein interactions, from
various resources (Table 2). In some cases, such as with GEO (Gene Expression Omnibus),
which now provides protein array data in addition to gene expression [54], these databases
rely on manual deposition of raw data by experimentalists.

Organism-centric databases seek to provide a comprehensive collection of experimental and
computational data concerning the genes/proteins for a particular genome (Table 2). Many
of these databases rely on manual curation and vary greatly in how current and exhaustive
they are. Gathering information for a gene family, which can be useful if function is
conserved among the members requires extracting the gene names for all homologs, and
then using these to search available organism-centric databases. This is a tedious and time-
consuming process, even if it is sometimes the only way to gather the maximum amount of
data on a specific gene family. Multi-organism and “multi-omics” databases have been
developed to start addressing this issue and they are extremely useful in making associations
that lead to gene function discoveries (Table 2) [55]. However, none really provide an
exhaustive list of HTP data for an entire family; either the database is not up to date with
current publications or not all accessible datasets are included.

Mining HTP data to predict function
In general, there is no “magic bullet” to link gene with function. If viewed alone, most post-
genomic data for a single gene are meaningless. Clues from a range of post-genomic
techniques, both experimental and computational, must be combined to derive or enhance
confidence in a hypothesis. Surprisingly, owing to the number and quality of post-genomic
databases, mining omics data to discover gene function is far more advanced for eukaryotes
than for prokaryotes [56].

However, as more HTP data and better databases become available for prokaryotes, we will
surely see more success stories of integrative HTP data mining in microbes, in addition to
those described here. Using evidence from microarray data, sequence similarity, gene
association, and 3D structure analysis the role of the previously hypothetical E. coli genes
yeiC and yeiN in pseudouridine catabolism was predicted and verified [57]. Another
example is the use of sequence similarity and observations from published phenotype,
expression and protein-protein interaction studies, to predict and validate a role of the the E.
coli gene ygfZ in [Fe-S] cluster biosynthesis [58]. More sophisticated approaches to the
integration of various datasets for gene function prediction have included applying a
statistical method to synthetic lethality data, expression data, mRNA decay rates, and
sequence similarity to find genes involved in spindle migration of yeast [59] .
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Concluding remarks and future perspectives
With the advent of tools, such as more sophisticated cloning technologies and gene
knockout collections, we have seen the influx of HTP techniques that focus on bridging the
gap between gene and function. Resources for the functional annotation of genes are being
produced and as these approaches become cheaper and easier to perform, data generation
will no longer be the limiting factor; instead, access to these datasets and interpretation of
that information will become a challenge (Box 2). Currently, the steps required to mine
genome-wide data are not trivial and can be daunting [60]. Efforts are needed to ensure that
this stream of information is not overlooked and that it becomes another routine tool in
linking gene with function.

Box 2

Outstanding data challenges

• Data are generated at an ever-increasing rate, but potential clues for gene
function prediction are often lost in the supplementary materials of published
reports. To find an exhaustive set of published data on a particular gene, one
must dig through databases and individual reports.

• The major advantage of HTP genome-wide approaches is also their major
downfall: these techniques generate a large volume of data, but interpretation of
the data and follow-through to validate the predicted functional links between
proteins is generally lacking. Mainly, these data are utilized only by the
experimentalists who generated it. As similarity searches have become a routine
first step towards linking gene and function, the community has an absolute
need for tools and databases to truly optimize the usage of experimentally
derived genome-wide datasets.

The results of HTP experimental analyses have to be easily minable by
experimentalists who can use their expert knowledge to raise functional
annotation to the level of precision needed to be biologically relevant. Some
results from a HTP experiment may have a greater meaning to experts; these
connections between observation and gene function could elude the original
investigators. To easily mine this data, it will be necessary to have access to
exhaustive and searchable databases that: (i)provide access to multiple data
types; (ii) integrate datasets for gene families from all available organisms; (iii)
are searchable through similarity searches not only accession numbers; (iv)
provide co-expression and co-phenotype analyses; and (v) provide confidence
scores for associations.

• As of yet, no single HTP method has come remotely close to unravelling the
function of all uncharacterized genes in a single genome. Integration of datasets
could enhance the knowledge in these individual datasets. However, integration
might be a much greater challenge than producing the data, as highlighted in
several recent reviews [1,2].
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Figure 1.
Post-genomic experiments can give insight into gene function. Owing to genome-wide HTP
studies, an ever-increasing number of genes are associated from experimentally derived
information, such as (a,c) mutant phenotypes, (b) enzymatic activity, (c) gene expression,
and (d) protein-protein interactions (PPI). These experiments can provide different and
complementary “clues” about the function of a gene or protein; however, these clues are
often reliant on accurate annotation of associated genes (see Caveats ). In a worst case
scenario, the gene is found to associate with misannotated genes, which can lead to
erroneous predictions and misdirected experiments.
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Figure 2.
Microarray technology has enabled HTP studies that can be aimed at the detection of
genome-wide interactions. Simultaneous detection of thousands of knock-out strains, gene
transcripts, or protein interactions can be performed. Two main types of microarray chips
are shown: (a) DNA and (b) protein. (a) DNA oligonucleotides fixed to the chip can
hybridize with labelled DNA generated after growth of cells under specific conditions. (b)
Proteins fixed to the chip can interact with a labelled molecule (e.g. metabolite, protein,
lipid). Targets of protein kinases can also be detected by kinase-directed 33P-labelling and
subsequent radioactivity detection.
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Table 1

Genome-wide studies

(a) Bacterial knock-out collections and initial genome-wide phenotype screens

Organism Screen mutants for: Refs.

Acinetobacter baylyi ADP1 Carbon source utilization and colony size [68]

Francisella novicida Host colonization [69,70]

Francisella tularensis Host colonization [71]

Mesorhizobium loti Nodulation deficiency [72]

Pseudomonas aeruginosa PA14 Abiotic surface attachment [73]

Salmonella enteric serovar Typhi Defects in growth under standard growth conditions and presence/absence of ox bile [74]

Streptococcus pneumoniae Fitness under standard growth conditions [23]

Vibrio cholerae Motility [75]

(b) Genome-wide PPI studies in microbes

Organism Strategy Refs.

Escherichia coli His-tagged bait/prey pull-down [51]

Campylobacter jejuni HTP yeast two-hybrid (Y2H) screens [76]

Mezorizobium loti HTP Y2H screens [77]

Saccharomyces cerevisiae Tandem affinity purification [78]

Synechocystis sp. PCC6803 HTP Y2H screens [79]

Treponema pallidum HTP Y2H screens [80]
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Table 2

Publicly accessible databases that disseminate information from microbial HTP experiments

Single “-omic”

Dataset type Database Website

Gene expression

GEO http://www.ncbi.nlm.nih.gov/geo/

Arrayexpress http://www.ebi.ac.uk/arrayexpress

Stanford Microarray http://genome-www5.stanford.edu

Database (SMD) Comprehensive Systems-
Biology Database (CSB.DB)

http://csbdb.mpimp-golm.mpg.de/

Enzyme activity

Structural Proteomics in Torontoa http://www.utoronto.ca/AlEdwardsLab/eg_list_of_enzymes.html

PPI

Biological General Repository for Interaction
Datasets (BioGRID)b

http://thebiogrid.org/

IntAct http://www.ebi.ac.uk/intact/main.xhtml

Agile Protein Interaction DataAnalyzer
(APID)c

http://bioinfow.dep.usal.es/apid/index.htm

Molecular INTeraction(MINT) http://mint.bio.uniroma2.it/mint/Welcome.do

DNA-binding

Universal PBM Resource for Oligonucleotide
Binding Evaluation (UniPROBE)

http://the_brain.bwh.harvard.edu/uniprobe/

Gene essentiality

Database of Essential Genes (DEG) http://www.essentialgene.org/

Organism-centric that integrate HTP data

Organism Database Website

S. cerevisiae SGD http://www.yeastgenome.org/

E. coli eNet http://ecoli.med.utoronto.ca/

EchoBase http://www.york.ac.uk/res/thomas/

EcoliHubd http://ecolihub.org/

Ecoliwiki http://ecoliwiki.net/colipedia/index.php/Welcome_to_EcoliWiki

E. coli Interaction Database (EcID) http://ecid.bioinfo.cnio.es/

Ecogene http://www.ecogene.org/

Bacillus subtilis B. subtilis Open Reading Frames (BSORF) http://bacillus.genome.jp/

Cyanobacteria CyanoBase http://genome.kazusa.or.jp/cyanobase

Plasmodium falciparum PlasmoDraft http://www.lirmm.fr/~dufayard/plasmo_draft_beta/

Neisseria meningitidis NeMeSys http://www.genoscope.cns.fr/agc/microscope/expdata/nemesys.php
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Single “-omic”

Dataset type Database Website

Multi-organism or integration of datasets

Database Website

Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING)

http://dag.embl-heidelberg.de/newstring_cgi/show_input_page.pl

PAThosystems Resource Integration Center
(PATRIC)

http://wwww.patricbrc.org/portal/portal/patric/Home

iProClass http://pir.georgetown.edu/iproclass/

The SEED http://theseed.uchicago.edu/FIG/

a
Not a database, but does list results of HTP-enzyme screens.

b
Also contains data from genetic interaction datasets

c
PPI datasets from BIND (Biomolecular INteraction Network Database), BioGRID, DIP (Depository of Interacting Protiens), HPRD (Human

Protein Resource Database), IntAct and MINT are included.

d
Searches 13 different web resources.
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