1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

N, NIH Public Access

Rrens®

G

3}

Author Manuscript

Published in final edited form as:
Epidemniology. 2011 January ; 22(1): 42-52. doi:10.1097/EDE.0b013€3181f74493.

Unmeasured Confounding for General Outcomes, Treatments,
and Confounders:

Bias Formulas for Sensitivity Analysis

Tyler J. VanderWeele®P and Onyebuchi A. Arah¢:d

aDepartment of Epidemiology, Harvard University, Cambridge, MA "Department of Biostatistics,
Harvard University, Cambridge, MA ¢Department of Epidemiology, School of Public Health,
University of California, Los Angeles (UCLA), Los Angeles, CA 9Department of Public Health,
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Abstract

Uncontrolled confounding in observational studies gives rise to biased effect estimates. Sensitivity
analysis techniques can be useful in assessing the magnitude of these biases. In this paper, we use
the potential outcomes framework to derive a general class of sensitivity-analysis formulas for
outcomes, treatments, and measured and unmeasured confounding variables that may be
categorical or continuous. We give results for additive, risk-ratio and odds-ratio scales. We show
that these results encompass a number of more specific sensitivity-analysis methods in the
statistics and epidemiology literature. The applicability, usefulness, and limits of the bias-
adjustment formulas are discussed. We illustrate the sensitivity-analysis techniques that follow
from our results by applying them to 3 different studies. The result bias formulas are particularly
simple and easy to use in settings in which the unmeasured confounding variable is binary with
constant effect on the outcome across treatment and covariate levels, and with a constant
prevalence difference across covariate levels when comparing 2 treatment levels.

Unmeasured confounders in observational studies result in biased effect estimates. Several
sensitivity-analysis and bias-modeling techniques have now been developed to handle
uncontrolled confounding.1=22 Although the literature is large and it would be difficult to
provide a comprehensive review, a number of the existing techniques are restricted to simple
or very particular settings. There is also a literature on bounds for causal effects or “partial
identification”23=27 that makes fewer assumptions than sensitivity-analysis techniques, but
that thereby effectively considers extreme scenarios which in some settings give bounds
including the null irrespective of the data.

In this paper, we extend the bias-modeling and sensitivity-analysis literature on uncontrolled
confounding. Using the potential outcomes framework, we derive a general class of
formulas for sensitivity analysis of uncontrolled confounding with outcomes, treatments,
and measured and unmeasured confounders that may be categorical (2 or more categories)
or continuous. The formulas generalize many previous results in the literature and give rise
to very flexible sensitivity-analysis techniques that can be used in a wide range of
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applications. We also describe a particularly easy-to-use sensitivity-analysis technique that
can be used under some simplifying assumptions that follows from our results and is
summarized in the discussion section.

Notation, Definitions, and Assumptions

We will use the potential outcomes or counterfactual framework.28=30 Let treatment A
denote the treatment received by a particular individual. Let Y be the observed post-
treatment outcome of that individual. Let Y, denote the potential outcome Y for an individual
if the treatment A, perhaps contrary to fact, had been set to value a. Note that we assume that
the potential outcome Y, for an individual does not depend on the treatments received by
other individuals. This assumption is sometimes referred to as SUTVA, the stable unit
treatment value assumption3C or as a no-interference assumption.3! Furthermore, we require
the consistency assumption that Ya =Y, ie, that the value of Y that would have been
observed if A had been set to what it in fact was is equal to the value of Y which was actually
observed. Therefore, the only potential outcome for an individual that we observe is the
potential outcome Y a, the value of Y that would have been observed if A were set to what it
in fact was. We will use the notation S| ITIV to denote that a variable S is independent of
another variable T conditional on a third variable V. To simplify notation further, we will use
E(SIt) to denote E(SIT = t) and P(slt) to denote P(S =sIT =1t).

Let X denote observed categorical or continuous covariates. Let U denote an unmeasured
categorical or continuous confounding variable or variables. Suppose that Y is dichotomous,
ordinal, or continuous and that A is categorical, ordinal, or continuous. For causal contrasts,
we compare expected potential outcomes (ie, counterfactual outcomes) for any 2 treatment
levels, a; and agp, of A where ag is taken as the reference.

The average causal effect in the total population and among those receiving treatment A = a;
or A = ag are given respectively by E(Ya;) — E(Yaq), E(Yaglas — E(Yaglas),and E(Yalag) —
E(Yaglag). Suppose that the effect of A on Y is unconfounded given (U, X), where again U is
unmeasured; ie, in counterfactual notation we assume that Y, [AIX,U. We then have that the
true causal effects are given by adjusting for both X and U:

E(Y,) - E(Yao):zxzu {E(Y|ay, x, u) — E(Y|ag, x, )} Pu|x)P(x)

E(Y, la)) - E(Y"Olal):ZxZu {E(Yl|ay, x,u) — E(Yl|ag, x, u)} P(ul|x, a;)P(x|a;)

E(Ya,lao) - E(Y"Ola()):zxzu {E(Y|ay, x,u) — E(Yl|ag, x, u)} P(u|x, ap)P(x|ag)

If adjustment is made for X but not U, we would obtain the following expressions for the
average outcome differences adjusted for X when the target population is the total group, or
those exposed to a; or ag, respectively:

> AE(Ylay, x) = E(Ylag, %)} P(x)
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2. \E(lar, x) = E(Ylag. ) Plxlar)

Zx {E(Y]ay, x) — E(Y]ag, x)} P(x|ag)

The bias due to not controlling for the unmeasured confounder U is thus given by the
difference between the observed average outcome differences, adjusted for X, and the true
causal effect. Let da,, da;, and d,,, denote the relevant bias when the target population is the
total group, or those exposed to a; or ag, respectively:

da.= )" {E(Ylay, x) = E(Ylao, )} P(x) = {E(Ya,) = E(Ya,)}
daﬁzx {E(Ylay, x) — E(Y|ag, x)} P(xlay) — {E(Ya,la1) — E(Yg,la1)}
day= , \E(Ylar, x) = E(Ylao, 1)} P(xlao) = {E(Ya, ldo) = E(Yaglao)}

In the next section, we derive formulas for these biases that can be used in sensitivity
analysis.

General Bias Formulas for Sensitivity Analysis for Average Treatment

Effects

Because we do not have data on U, we cannot obtain unbiased estimates of causal effects.
We can only estimate the average outcome differences, adjusted for the observed covariates
X. We can proceed, however, by using sensitivity analysis. The following theorem is a
generalization of previous work.1:8:21 Complete proofs of all results are given in the
Appendix and eAppendix (http:/links.lww.com/EDE/A429). The result gives formulas for
the bias dg,, da;, and d, in terms of the relationship between the unmeasured confounder(s)
U and the outcome Y as well as the relationship between U and treatment group A.

Theorem 1. If Y4 IAIX, U, and if u’ is any chosen reference value for the unmeasured
confounder U then

da+zzxzu {E(Y|ay, x,u) — E(Y|ay, x, u")} {P(ulay, x) — P(u|x)} P(x)
- sz {E(Ylao, x, 1) = E(Ylao, x, )} {P(ulag, x) — P(ulx)} P(x)

dal:ZYZu {E(Y|ag, x, u) — E(Y|ag, x, u")} {P(ulay, x) — P(ulag, x)} P(x|a;)
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d"“:ZxZu {E(Ylay, x,u) — E(Y|ay, x, ")} {P(ulay, x) — P(ulag, x)} P(x]ag).

To use these bias formulas in sensitivity analysis for the overall causal effect E(Yq,) —
E(Yag), one would need to specify (i) the relation between U and Y, among those with
treatment level A = a; and A = ag, within each stratum of X, ie, {E(Ylay, X, u) — E(Ylay, x, u
N} and {E(Ylag, X, u) — E(Ylag, X, u’)}, and (ii) how the distribution of the unmeasured
confounder U among those with treatment level A = a; and A = ag compares with the overall
distribution of U, within each stratum of X, ie, {P(ula, x) — P(ulx)} and {P(ulag, X) —
P(ulx)}. One could then use the observed data to estimate outcome differences adjusted for
Xonly, Z,{E(Ylaz, x) — E(Ylag, X)}P(x), one could use the sensitivity-analysis specification
concerning (i) and (ii) to estimate the bias d,, and then one could produce an estimate of
E(Ya;) — E(Yag) by subtracting the bias d,, from the estimate adjusted for X only. As can be
seen for the bias formulas for do; and dj), if one wishes to estimate the causal effect only
among those with A = a; or A = ag then fewer specifications need to be made in the
sensitivity analysis.

The result applies to mean differences in binary, ordinal or continuous outcomes for
categorical or continuous treatments, with categorical or continuous measured and
unmeasured confounding variables. We note that if one or both of X and U are continuous
rather than categorical, the sums in Theorem 1 can be replaced with appropriate integrals.
Theorem 1 is quite general, and in the Appendix we discuss how it encompasses a number
of more specific sensitivity-analysis techniques in the literature.1:6:8:11.21 Unlike many of
the existing techniques, the current approach does not assume that the unmeasured
confounders are independent of the measured confounders (see the section in the Appendix
on the relation to the external adjustment literature for more detail). The Appendix also
discusses other parameterizations for sensitivity analysis (see the section on the relationship
to Rosenbaum and Rubin6). We discuss standard errors and confidence limits for these bias-
adjusted estimates below.

Note that, although the result in Theorem 1 provides a very general approach to sensitivity
analysis, it requires that a great deal of information be specified; namely, on (i) the
relationship between the unmeasured variable U and the outcome Y across strata of
treatment and the measured covariates and also (ii) for each stratum of the measured
covariates, how the distribution of the unmeasured confounder U among those with various
treatment levels compares with the overall distribution of U. Thus for each stratum of the
measured covariates one would have to specify 4 pieces of information (ie, (i) and (ii) for
the 2 different treatment levels); if there are many strata of the measured covariates, this will
not be particularly feasible in practice. Below we show that under some simplifying
assumption, the formulas in Theorem 1 reduce to expressions that are easier to use in
practice and that require the specification of fewer sensitivity-analysis parameters.

There is, in general, a tension between generality and complexity. A general approach
makes fewer assumptions but requires one to specify a large number of sensitivity
parameters; a simpler approach as described below is easier to use and requires the
specification of fewer parameters, but it makes stronger simplifying assumptions.

Depending on the strength of assumptions a researcher is willing to make concerning the
unmeasured confounders, more or less complex approaches are possible in the application of
Theorem 1. In the applications section below, we illustrate both a particularly simple
sensitivity analysis and another which makes more use of the generality of the bias formulas
in Theorem 1. We now turn to a discussion of the sensitivity-analysis approach that results
under simplifying assumptions.
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If one makes the simplifying assumption that the relationship between U and Y, ie, E(Yla, x,
u) — E(Yla, x, u’), does not vary between strata of A then the expression for d, simplifies to

dg+:zxzu {E(Y|a, x,u) — E(Y|a, x, ')} {P(ulay, x) — P(ulag, x)} P(x).

If, in addition, the relationship between U and A, namely {P(ulay, x) — P(ulag, x)}, also does
not vary between strata of X, then this expression further simplifies to: X, {E(Yla, X, u) —
E(Yla, x, U)H{P(ulay, x) — P(ulag, X)}. If U is binary, it further reduces to {E(Yla, x, U = 1)
—E(Yla, x, U=0)H{P(U = 1llas, x) — P(U = 1lag, X)}. Thus a straightforward sensitivity-
analysis technique under simplifying assumptions would consist of hypothesizing a binary
confounding variable U with a constant prevalence difference, 8 = {P(U = 1laj, X) — P(U =
1llag, X)}, comparing treatment levels a; and ag over strata of X, and with E(Yla, x, U =1) —
E(Yla, x, U = 0) = y constant over strata of A and X; the magnitude of the bias comparing the
true causal effect E(Ya;) — E(Ya) with the estimate adjusted only for X but not U, %
{E(Ylaz, X) — E(Ylag, X))P(x), is then simply the product &y, ie,

d,. =06y.

This simple formula has been obtained previously1:32 but under much stronger assumptions
(see Appendix for further discussion). Unlike many other results in the sensitivity-analysis
literature, this simple sensitivity analysis (following from Theorem 1) does not presuppose
that any particular method, model, or functional form assumption was used to obtain the
initial estimate adjusted only for X and not U. Its generality is illustrated in the application
section below.

Note that the relationship between U and A, ie, E(Yla, x, u) — E(Yla, x, u’), may or may not
allow for an interpretation as the causal effect of U on Y. If the effect of U on Y is
unconfounded given X, then E(Yla, x, u) — E(Yla, x, u’) may allow for an interpretation as a
causal effect of U on Y—namely, as the direct effect of U on Y controlling for A (see the
eAppendix [http://links.lww.com/EDE/A429] for the precise conditions for such an
interpretation). However, the assumption that the effect of A on Y is unconfounded given (U,
X) does not necessarily imply that the effect of U on Y is unconfounded given X. We note,
nevertheless, that the expression E(Yla, x, u) — E(Yla, X, u’) does not need to have a causal
interpretation to use the bias formulas in Theorem 1 for sensitivity analysis and external
adjustment. Causal diagrams can clarify when an expression such as E(Yla, x, u) — E(Yla, x,
u’) can be interpreted causally.33 Further discussion of these issues is given in the
eAppendix (http://links.lww.com/EDE/A429).

We note also that bias formulas analogous to those in Theorem 1 also hold for conditional
causal effects. The conditional causal effect with the entire population, or treatment level a;
or ag taken as the standard, are given by {E(Yq,1x) — E(Yag!X)}, {E(Yasla1, X) — E(Yaglaz,X)},
and {E(Yalag, X) — E (Yaglap, X)}, respectively. If we let da, (x), da; (X), and dg, (X) denote
the difference between the true effects and the estimator E(Y(02223)ay, x)— E(Ylag, x), then
bias formulas for d;, (X), @a1 (x), and da (x) are just like those given in Theorem 1 except
the summation of x and the final term in each expression P(x), P(xla;), or P(xlag) would be
removed.

We now consider standard errors and confidence intervals for bias-adjusted estimates of the
causal effect. First, consider the simple sensitivity-analysis technique with binary U
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discussed above. Once the sensitivity parameters, corresponding to the relationships
between U and A [ie, 8 = {P(U = 1lay, x) — P(U = llag, x)}]] and between U and Y [ie, y =
{E(Yla, x, U =1) — E(Yla, x, U = 0)}]] are fixed, the standard error of the bias-corrected
estimator, Zy{E(Ylay, X) — E(Ylag, X)}P(x) — 8y, is precisely the same as that of the original
estimator. This feature is shared by the results of Lin et alll discussed in the eAppendix, but
not by certain other sensitivity-analysis methods.12: 17

Because the standard errors of the original and bias-adjusted estimates are the same, the bias
formulas can be applied not only to the estimate itself but also to both limits of a confidence
interval or the original estimate. This useful feature of identical standard errors thus gives
rise to a very straightforward method for obtaining confidence intervals for the bias-
corrected estimate. These remarks also hold for the bias-corrected estimators of the
conditional causal effects discussed above. However, the remarks do not apply to the most
general results in Theorem 1 if the sensitivity parameters {E(Ylay, X, u) — E(Ylay, X, u)},
{E(Ylag, x, u) — E(Ylag, x, u")}, or {P(ulay, x) — P(ulx)} vary with x; this is because the bias
formula for example d, would depend on the distribution of X, which would have to be
estimated from the data. When {E(Ylay, x, u) — E(Ylag,x, u)}, {E(Ylag, X, u) — E(Ylag, X, u
N}, or {P(ulay, x) — P(ulx)} vary with x, one possible approach would be to obtain
bootstrapped samples of the data and to apply the bias formulas to each bootstrapped sample
and use the, eg, 2.5th and 97.5th percentiles of the bias-corrected estimates as a 95%
confidence interval for the bias-corrected estimate of the original data.?2

Other Measures of Effect

For binary Y, other measures of effect such as the risk ratio or odds ratio may be of interest.
The conditional causal risk ratio in the total population or among those receiving treatment
ay or ag are defined respectively by E(Ya,IX)/E(Yag IX), E(Yay 1a1,X)/E(Yag la1, X), and E(Ya,
lag, X)/E(Yaq lap, X). The conditional causal odds ratios in the total population or among
those receiving treatment a; or ag can be defined similarly, eg, the conditional causal odds
ratio in the total population is defined by:

E (Ya,|x) /{1 - E (Y, |x)}
E (Yao|x) /{1 = E (Ya [0)}

We can define bias expressions X% (x), d5 (x) and d5F (x) corresponding to the ratios
between the risk ratios conditional on X and the true conditional causal risk ratios
respectively in the total population or among those receiving treatment a; or ag:

E (Y|ay, x) /E (Y|ag, x)
— E(Ya %) /E (Ya, %)

JRR (x¥) = E (Yl|ay, x) /E (Y|ag, x)
“ E (Yo lay, x) /E (Yaolay, x)

Epidemiology. Author manuscript; available in PMC 2012 January 1.
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IR () = E (Ylay, x) /E (Ylao, x) _
@ E (Yq,lao, x) | E (Yg,lao, x)

We can define the conditional odds-ratio bias term analogously. For the bias terms for the
conditional causal risk ratio, we then have the following result, again as with Theorem 1,
expressing the biases in terms of the relationship between the unmeasured confounder(s) U
and the outcome Y and the relationship between U and treatment group A.

Theorem 2. If Y, LIAIX, U, and if u’ is any chosen reference value for the unmeasured
confounder U then

Z E(Yla;.x.u) P (“|(ll, ,’C) Z” E(Ylag,x,u P (“|UO, ,\')

dBR () = “E(Y|ay.xu’) E(Ylag.x.u")
- E(Yla.x.u) F E(Ylag.x.u) .
Z“ E(Y]G[.XJI‘)P (“|’X) Zu E(Ylamx.u’)P (”|»\)

E(Y|ag,x.u) )
Zu E(Ylll: X )P(Ulal ,X)

E(Y|ap,xu)
>u E(Y|a<§) o )P(ulao. X)

dflR(,\‘)

E(Yla;.x.u)
S Fel Pulay, x)

Ylay.x.u)
ZHE(Y|(,1 a )P(“|HO’ \’)

day ()=

ap

If the outcome is rare in all strata of a, X, and u, then the bias formulas given in Theorem 2
will also hold approximately for bias formulas for the conditional causal odds ratio. Exact
bias formulas for odds ratios are also given in the eAppendix
(http://links.lww.com/EDE/A429) but are somewhat more cumbersome to use. In some
cases, we may be interested in marginal or “standardized” causal risk ratios and odds ratios.
The marginal or “standardized” causal risk ratio in the total population or among those
receiving treatment a; or ag are defined, respectively, by E(Ya,)/E(Yag), E(Yay1a1)/E(Yaglag),

and E(Ya, ag)/E(Yaylap). We can then define the bias expressions da~, da, and dg for the
marginal causal risk ratios by the ratio between the marginalized risk ratios adjusted for X
only and the true causal risk ratios:

dRR= 2xE(Y|ay, x)P(x)/ 2 E(Y]ag, x)P(x)
E(Y[I])/E(Ya(])

2xE(Ylay, x)P(xlay)/ 3 E(Y|ag, x)P(x|ay)
E(Ya,la1)/E(Yaplay)

diR(x)=

Epidemiology. Author manuscript; available in PMC 2012 January 1.
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dRR ()= 2xE(Ylay, x)P(xlag)/ X E(¥|ag, x)P(x]ao)
“ E(Ya,lao)/ E(Yaglao)

The marginal or “standardized” causal odds ratio, along with bias term for these marginal
causal odds ratios, can be defined similarly. Although the formulas and their derivations are
somewhat more complicated, bias results for the marginal causal risk ratio can also be
obtained and are given in the following theorem.

Theorem 3. If Y,LIAIX, U, and if u’ is any chosen reference value for the unmeasured
confounder U then, and if X' is any chosen reference value for X, we then have the following:

E(Yla, .x) (Ylao,x)
Z‘ E(Yla; x’' )P( ¥) 2‘ E(Ylag.x' )P( X)

1 EQlarx) 1 E(Hlao.x)
2 Epain P() Zaro(0) ™ Fasn PO

diR=

RR .\ E(Ylag.x) .
([RR:Z""(I ('X)E(Ylau X )P(,’(|[ll)

E(Ylap.x)
Z"E(Yla(? ‘,)P(X|(ll)

E(Yla;.x)
RR: ZYE(YVII g )P(x|(10)

ao E(Yla; .
X di8 () ! et P(xlag)

where,

E(Y|ay ,xu)
2Zu E((Yllall b (Wlay, x)

E(Yl|a,. X.u) ‘
Zu E(Ylal,x.u’)P(ul'\)

ri(x)=

E(Y|ag,x,u)
2 E((Y|IHOO xu’)P (ulag, x)

E(Y|ag. X.u) A
Z“ E(Ylao,,\'.u’)P(“l'\)

ro(x)=

and where, dX%

Theorem 2.

(x)and d, (s) are the bias formulas for the conditional risk ratios given in

Note that in applying Theorem 3, the expressions of the form E(Yla, x, u)/E(Yla, X, u’) and
P(ula, x) would be specified in a sensitivity analysis; the expressions of the form E(Yla, x)/
E(Yla, x) can be estimated from the data. If the outcome is rare in all strata of a, x, and u,
then the bias formulas given in Theorem 3 will also hold approximately for bias formulas for
the marginal causal odds ratios. As discussed in the eAppendix, these results for the
conditional and marginal causal risk ratios and causal odds ratios generalize those for the
risk ratios and odds ratios in the external adjustment literature.”:9:21
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We close this section by noting that in the simple sensitivity-analysis setting, in which it is

assumed that there is a binary unmeasured confounding variable U such that the relationship
E(Yl|a, x, U=1)

between U and Y, ie, E(y|q, x, U=0): IS the same for treatment levels a; or ag and takes value

y, then3:4:

1+ (y -1 P(U=llay, x)

R
(lf( (Y) - 1+ (,lv _ I)P(U:”(IQ,.\')

If the outcome is rare, this simple formula will also hold for (If,’f(x). As with the linear scale,
the bias formulas can be applied immediately to the estimate and both limits of a confidence
interval in the case of conditional causal risk ratios and odds ratios; however, a bootstrap
approach would be necessary for the marginal causal risk ratio or odds ratio.

Applications of Bias Formulas

We illustrate the application of Theorem 1, using 3 examples. The first example highlights
the interpretative ease of using a linear scale for sensitivity-analysis parameters (as opposed
to, for example, an odds ratio scale); the second and third examples illustrate the generality
and flexibility of the sensitivity-analysis technique described above. In the first example, we
consider an analysis of the data presented by Rosenbaum and Rubin®; in the Appendix we
compare and contrast the sensitivity-analysis technique described in this paper to that
described in their work. Whereas Rosenbaum and Rubin give the sensitivity-analysis
parameters on an odds-ratio scale, the sensitivity-analysis technique described above allows
us to specify sensitivity-analysis parameters on a linear scale, which are often easier to
interpret.

Rosenbaum and Rubin consider a study comparing coronary artery bypass surgery (A = 1) to
medical therapy (A = 0) in the treatment of coronary artery disease. Their outcome, Y, is
dichotomous—symptomatic relief after 6 months. Data are available on 74 covariates (X)
and they use a propensity-score approach3# to form 5 propensity-score subclasses. The
overall adjusted relief rates are 0.67 for surgery and 0.36 for medical therapy, yielding an
estimate of the causal effect of 0.31 (95% confidence interval 0.169 to 0.451). In this
section, we will apply the formula for d,,. in Theorem 1 under simplifying assumptions to
assess the sensitivity of the estimate of the causal effect to unmeasured confounding. Using
the simple sensitivity-analysis technique described above, we see that, if there were a binary
unmeasured confounding variable U with a 0.6 higher prevalence among those receiving
surgery as compared with medical therapy (in all propensity-score strata), and if the
outcome difference comparing those with U = 1 and U = 0 were 5.17 for both treatment
groups in all propensity-score strata, then we would obtain a bias term of d,, = (0.517)(0.6)
= 0.31. Thus such an unmeasured confounding variable would reduce the estimate of the
causal effect to 0 (95% CI = —0.141 to 0.141). If, on the other hand, the difference in the
prevalence of the unmeasured confounding variable among those receiving surgery as
compared with medical therapy were only 0.3 in all propensity score strata, then we would
obtain a bias term of d,, = (0.517)(0.3) = 0.155 and our estimate of the causal effect would
still be 0.31-0.155 = 0.155 (95% CI = 0.014 to 0.296). Admittedly, it seems unlikely that an
unmeasured confounding variable could have an effect on the outcome sufficiently large
(even after control for 74 covariates) to invalidate the qualitative conclusion of surgery
providing higher proportion of relief at 6 months than medical therapy. Further evidence for
the conclusion that surgery resulted in greater symptomatic relief than medical therapy is
provided by the fact that a 30 percentage point difference in the prevalence of the
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unmeasured confounder would be inadequate to explain away the estimated effect, even if
the unmeasured confounder had an effect of the same magnitude, 0.517.

In our second example, we will consider a study by Reinisch et al3® that examined the effect
of in utero exposure to phenobarbital on intelligence in men. Subjects were selected from the
largest hospital in Copenhagen. The exposure group consisted of those who had been
exposed in utero to phenobarbital (A = 1) and the control group of those who had not (A =
0). Propensity-score matching and regression techniques38 were used to adjust for
background characteristics in making intelligence comparisons using the Danish Military
Board Intelligence Test (Y) taken by the exposed and unexposed men when they had reached
their early 20s. The background characteristics (X) for which adjustment was made included
family socioeconomic status, breadwinner's education, sibling position, whether the
pregnancy was wanted, whether the mother attempted an abortion, maternal marital status,
predisposing risk score indicating conditions were less than optimal for conception, mother's
age, father's age, gestational length, birth weight, birth length, number of cigarettes per day
in the third trimester, maternal weight gain divided by height cubed, and the maternal
complaint score.

Subjects exposed to phenobarbital were found to have significantly lower scores on the
Danish Military Board Intelligence Test than they would have had they not been exposed.
Specifically, under the assumption that the effect of exposure is unconfounded given X,
Reinisch et al obtained an estimate of E(Y1IA = 1) of 39.58 and an estimate of E(YglA = 1) of
44.35 to obtain an estimate of the effect of the exposure on the exposed of E(Y{lA =1) —
E(YolA =1) = —4.77) (95% Cl = —7.96 to —1.58). Reinisch et al suggest that parental
intelligence, which was not measured in the study, may partially confound the analysis.
Reinisch et al reason informally, without a quantitative analysis, to argue that it is unlikely
that parental intelligence, rather than drug effects, are responsible for the observed
intelligence deficits. Using Theorem 1 above, if we hypothesize an unmeasured confounding
variable U of, say, the average of maternal and paternal intelligence measured by the Danish
Military Board Intelligence Test, and we assume that if unexposed, for all x, a one-point
increase in U would on average result in a 0.3 point increase in Y so that E(Ylag,x, u) —
E(Ylag,x, u’) = (0.3)(u — u), then it follows from Theorem 1 that d5; = (03){E(UIA=1) —
E(UIA = 0)}. It would thus require a difference in parental intelligence of E(UIA = 1) —
E(UIA =0) = — 4.77/(0.3) = —15.9 between the parents of the exposed and unexposed on the
Danish Military Board Intelligence Test to completely eliminate the estimated deficit.
Reinisch et al note that the standard deviation for a national sample of subjects taking the
Danish Military Board Intelligence Test was 11.38. A 1.3 standard deviation difference in
parental intelligence between the exposed and unexposed, although not entirely implausible,
seems unlikely.

Note that the sensitivity-analysis technique of Rosenbaum and Rubin® is not applicable to
the study of Reinisch et al because the outcome is continuous, not binary; similarly, the prior
external-adjustment literaturel:8:21 is not applicable because the outcome is continuous. The
sensitivity-analysis techniques of Imbens14 and Lin et al,11 described in the Appendix, apply
to continuous outcomes but presuppose a regression model, whereas Reinisch et al3®
obtained results from a matched propensity-score analysis rather than simply through an
outcome-regression model. Furthermore, the sensitivity-analysis technique of Lin et al!
presupposes no interaction between the treatment and the covariates, whereas the analysis of
Reinisch et al does not assume the absence of such interactions, and, in fact Reinisch et al
report evidence of such interactions. Importantly, a sensitivity analysis using the results in
Theorem 1 above is not dependent on any particular model or method for obtaining
estimates of the prima facie estimate of the causal effect adjusted only for x; sensitivity
analysis using Theorem 1 is applicable irrespective of how the initial adjusted estimates are
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obtained. Furthermore, a sensitivity analysis using the results in Theorem 1 does not
presuppose any particular functional form or the absence of interactions.

Our third example illustrates the flexibility of our approach by applying it to a setting in
which inverse-probability-of-treatment weighting37 is used to estimate causal effects. This
application shows how the bias formulas in Theorem 1 can be employed in greater
generality. We use data from the National Center for Health Statistics (NCHS) Birth
Certificate Files for year 2000 to consider the effect of adequate prenatal care on
birthweight. Prenatal care was classified as adequate versus inadequate, as defined by a
modification of the Adequacy of Prenatal Care index.38:39 Baseline covariates in the NCHS
data include maternal age, race, place of birth, place of residence, education, marital status,
plurality, gravidity, prior preterm birth, prior birth greater than 4000 g, alcohol consumption,
and tobacco use. Socioeconomic status might serve as an unmeasured confounding variable
for the relationship between prenatal care and birth weight. Although education may serve
as a proxy for socioeconomic status, there are likely aspects of socioeconomic status that
education does not capture. The relationships between socioeconomic status and
birthweight, and between socioeconomic status and adequate prenatal care, may vary by age.
For example, the relationship between socioeconomic status and adequate prenatal care may
be weaker for those age 19 years or under at the time of childbirth than for those at older
ages, due to State Children's Health Insurance Programs (SCHIP). On the other hand, the
birthweight of infants of younger mothers may be more sensitive to adverse socioeconomic
circumstances. Inverse probability of treatment weighting37 was used to obtain estimates of
the effect of prenatal care on birthweight, stratified by age (<19 vs. >19 years), controlling
by weighting for the aforementioned confounding variables. The estimated effect for
younger mothers was 82.4 g (95% CI = 78.2 to 86.7) and for older mothers was 78.3 g (95%
Cl =76.3 to 80.3); 12.2% of the mothers were age 19 years or under, and thus the overall
estimate of the effect is 78.8 g (95% CI = 76.4 to 81.2). Let U denote adverse versus
adequate socioeconomic status. Suppose we hypothesize that the average effect of adverse
socioeconomic status for younger mothers is 120 g and the average effect for older mothers
is 80 g whereas the difference in the likelihood of adverse socioeconomic status, comparing
those with adequate versus inadequate prenatal care, was only 20% for young mothers (due
to SCHIP); however, for older mothers, comparing those receiving adequate versus
inadequate prenatal care, the difference was 50%. Employing the bias formula in Theorem
1, we would have a corrected estimate of effect of 40.8 g (95% CI = 38.3 to 43.2). Other
values for the sensitivity-analysis parameters could similarly be considered. For example, if
the effect sizes for the unmeasured confounder were doubled to 240 and 160 g for younger
and older mothers, respectively, this would reverse the sign of the point estimate of the
effect. Here, in contrast to the first 2 examples, the values of the sensitivity-analysis
parameters needed to completely explain away the effect are perhaps not as implausible.

In this third example, we have allowed the effect of the sensitivity-analysis parameters to
vary over one covariate (age), and we thus obtain an approach between the complexity of
the simple technique described above and the fully general formula given in Theorem 1. Of
course it would also be possible to allow the sensitivity parameter to vary across other
measured covariates; however, as noted in the discussion following Theorem 1, the more
general the approach, the more sensitivity-analysis parameters need to be specified.

In the eAppendix (http://links.lww.com/EDE/A429), to yet further demonstrate the
flexibility of our approach, we apply it to a recent study*? employing a doubly robust
estimator for treatment effects, 41744
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Discussion

In this paper, we have derived bias formulas for sensitivity analysis for causal effects. These
formulas have allowed for binary, ordinal, or continuous outcomes; categorical or
continuous treatment; and categorical or continuous measured and unmeasured confounding
variables. We have obtained results for additive, risk-ratio and odds-ratio scales. We have
shown that these bias formulas generalize many of the existing sensitivity-analysis results in
the bias-modeling literature, and can be used in a broad range of settings; the results do not
presuppose a particular functional form relating the outcome and the observed covariates
and treatment. Furthermore, the results can be used to perform a very simple form of
sensitivity analysis. The sensitivity-analysis approach that we have taken fixes the
sensitivity parameters and considers how the conclusions would be affected; an alternative
Bayesian approach gives a distribution of parameter values and incorporates the uncertainty
of this distribution into the confidence intervals for the corrected estimate.15:16:19

As noted above, a researcher can hypothesize a binary unmeasured confounding variable U
with constant effect y on the outcome across treatment and covariate levels and with a
constant prevalence difference, J, comparing treatment levels a; and ag across strata of the
covariates. Under these simplifying assumptions, the bias comparing the estimated outcome
difference (adjusted only for measured covariates X) and the true causal effect (adjusted for
both X and U) is then given simply by dy. We have shown that this simple technique is in
fact applicable irrespective of the particular method by which the initial adjusted estimates
of the causal effects were obtained, and furthermore does not assume the absence of
interactions between treatment and covariates. Although, in many contexts, more
sophisticated sensitivity-analysis techniques may be desirable, this simple approach leaves
researchers without excuse for not performing, at the very least, a simple sensitivity
analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Theorem 1

We give the proof for d,+. The proofs for d;; and dyg are given in the eAppendix
(http:/Nlinks.lww.com/EDE/A429).

dai= {Z‘.EW lar, )P() = > E(Ylag, YP(x)} = {E(Yar) = E(Ya0)}
ZZXZ“E (Ylay, x,u)P(ulay, x)P(x)
- ZXZ“E (Ylao, x, u)P(ulag, x)P(x)
~ 33 E(aylx wP@lnP(x)
£33 Eaolr. )Pul)P()
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by iterated expectations

:Z rZ:”E(YIaLx, w)P(ulay, x)P(x)
— Z rZ:”E(Ylao, x, u)P(ulag, x)P(x)
- Z XAZME(Y(A lay, x, )P (u|x)P(x)
+Z_r ZHE (Yalao, x, u)P(u|x)P(x)

by unconfoundedness conditional on (U,X)
:ZxZuE(YI“J’ x, u) {P(ulay, x) — P(u|x)} P(x)—ZXZuE(Ymo, x, 1) {P(ulag, x) — P(u|x)} P(x)
by consistency

:Z.\‘Zu {E(Ylal, x,u) — E(Y|ay, x, u’)} {P(u|ay, x) — P(u|x)} P(x)
= 2.2 AE®ao, x.0) = E(¥lao, x,1)} {P(ulao, x) = P(ulx)} P(¥)

since E(Ylaq, x, u") and E(Ylay, X, U’) are constants.

Proof of Theorems 2 and 3
See eAppendix (http://links.lww.com/EDE/A429) for details.

Relation to Other Sensitivity Analysis Techniques

Relation to the Sensitivity Analysis of Rosenbaum and Rubin (1983)

In the sensitivity analysis proposed by Rosenbaum and Rubin,® they consider a binary
outcome Y, binary treatment A, covariate(s) X (in their application, X indicates propensity
score strata), and hypothesize a binary unmeasured confounder U such that Y| |AIX, U. The
researcher specifies sensitivity parameters

me=P(U=1x)

ol P(A=0|U=1, X=x) P(A=0|U=0,X=x)
¥=l08 1 - P(A=0|U=1,X=x)" 1 — P(A=0|U=1, X=x)

P(Y=0[U=1,A=t, X=x) P(Y=0|U=0,A=t, X=x) )

6Xr:log
S\T=P(y=0[U=1,A=1, X=x)' 1= P(Y=0[U=0, A=1, X=x)
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For specified values of xy, ay, and dy;, maximum likelihood estimates of the causal effect can
then be obtained; sensitivity analysis proceeds by specifying different values of the
parameters ry,ay, and dy;. In their application (described above), zy,ay, and dy; are assumed
to be constant over x. As noted above, assuming no unmeasured confounding the estimate of
the causal effect is 0.31. Rosenbaum and Rubin® consider values for z (the overall
prevalence of U) of 0.1, 0.5, and 0.9. They first consider « = 2 and values di=g and di= 1

1
either 5 or 2; under this set of scenarios, the smallest causal effect estimate, an estimate of
0.28, is obtained when the prevalence of U is 0.5 and when U doubles the odds of surgery («
= 2) and also doubles the odds of improvement (di=g = 2 and di= 1 = 2). They then consider a

= 3 and values di=g and ;= 1 either : or 3; under this set of scenarios, the smallest causal
effect estimate, an estimate of 0.25, is obtained when the prevalence of U is 0.5 and when U
triples the odds of surgery (« = 3) and also triples the odds of improvement (di=g = 3 and
ot= 1 = 3). They conclude that for an unobserved confounder to explain the outcome
difference comparing medical and surgical patients, it would have to more than triple the
odds of surgery and of improvement. Admittedly, this seems unlikely. We saw above,
however, that when the sensitivity analysis is conducted on a risk-difference scale rather
than an odds-ratio scale, although the degree of uncontrolled confounding that would be
needed to explain away the estimate of the causal effect is still unlikely, the numbers are
perhaps slightly less inconceivable.

The bias formula for d,,. in Theorem 1 can also be used in a reasonably straightforward way
to replicate the odds-ratio sensitivity analysis of Rosenbaum and Rubin.® Let ag = 0 and o =
land letu=1andu’=0. For specified values of the sensitivity-analysis parameters ry,ay,
and Jy; in the approach proposed by Rosenbaum and Rubin we will show how to obtain the
quantities needed for the application of the formula for d,_. in Theorem 1, namely, (i)
{E(Ylay, x, u) — E(Ylay, x, u)} and {E(Ylag, X, u} — E(Ylag, x, u)} and (ii) {P(ulas, xX) —
P(ulx)} and {P(u/ag, X) — P(u Ix)}. Given ay and my, we can use the equations

P(ag|x, u) P(ap|x, u’) )

\':1 7
* Og(l — Plagln, 1)) 1= Plaolx, )

P(ag|x)=P(ap|x, u)P(u|x)+P(ap|x, i )P (ul [x)

to solve for P(aglx, u) and P(aglx, u’); note that P(ulx) = zy and P(u'Ix) = 1 — . It then
follows from Bayes' rule that

P(ulag, x)= Plaok)

A similar procedure can be used to obtain P(u | a;, x) and thus also P(ulx). Furthermore, to
obtain {E(Ylay,x, u) — E(Ylag,x, u)} and {E(Ylag,x, u) — E(Ylog, X, u’)}, we can use the
equations
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1 - E(Y|ag, x,u) ,1 — E(Ylag, x, 11/)
E(Y|ag, x,u) E(Y|ag, x,u’)

oy0=log (

E(Y, Ulag, x)=E(¥|ao, x, u)P(ulag, x)+E(Y|ao, x, u )Pt |ag, x)

to solve for E(Ylag,x,u) and E(Ylag, x, u); note that P(ulag, X) and P(u'lag, x) have already
been obtained. A similar procedure can be used to obtain E(Ylay,x, u) and E(YI ag, X, u’). We
can then proceed by using the bias formula for dg .

Although the bias formula for d,, in Theorem 1 can be used to replicate the odds-ratio
sensitivity analysis of Rosenbaum and Rubin,8 the formula in Theorem 1 is considerably
more general since, as we have seen in the applications above, it can be applied to binary or
continuous outcomes and to binary, categorical, or continuous confounding variables and
treatment variables. The result of Rosenbaum and Rubin was restricted to binary outcomes.

Relation to Sensitivity Analysis of Lin et al (1998)

Lin et al'! considered settings including binary and continuous outcomes Y, binary treatment
A, and binary and continuous unmeasured confounding variable U. They compared the 2
regression models

E(Y|a, u, x)=g(a/+,8a+yu+(7” x)
and
E(Y|a,x)=g(a"+B a+0"x).

for linear, log-linear, and logistic links g and derived algebraic formulas to relate S and g*
under 2 possible alternative assumptions. Their first assumption was that U and X were
conditionally independent given A. Their second possible assumption was that the mean of
U conditional on A and X was additive in A and X, ie, ua x: = E(UI A =a, X =X) = u, + q(X).
Hernan and Robins*® showed that the first assumption concerning the independence of U
and X conditional on A could not be satisfied if both U and X were causes of A, and thus that
the results of Lin et al'! concerning the conditional independence assumption could not be
employed in those contexts in which the formulas would be most useful, ie, when both U
and X contained confounding variables. VanderWeele20 showed that the second assumption
of Lin et al concerning additivity held for an entire family of distributions even if both U and
X were causes of A. Under this second assumption of additivity, Lin et al*! showed that
when the conditional distribution of U given X and A is normal with mean z,, x = u, and g(x)
then the regression coefficients g and g* were related by

B=B"—y(u1 - 1o)

for linear and log-linear links and that this relationship held approximately for a logistic link.
Lin et alll also noted that this relationship would hold for linear link (but not log-linear or
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logistic) if U were binary (rather than normally distributed) with a conditional mean gz, x =
tq and g(x).

The results for a linear link follow immediately from the bias formula for d, (x) by
replacing expressions of the form E(YI a, u, x) with the linear combination of regression
coefficients and by using E(Ula, x) = 5 + g(x). See also Cox and McCullagh.32
Furthermore, from the bias formula for d, it also follows that to obtain g = f* — y(u1 — po),
the unmeasured confounding variable U does not need to be binary nor to be conditionally
normally distribution; all that is needed to obtain f = f* — y(u1 — 1), or more generally to
obtain § = f* — y(ua; — uag), is that the conditional mean of U given X and A is given by ua
= ug + q(x). Not only do all of these results for linear regression follow immediately from
Theorem 1, but the bias formula for d,, (x) can in fact be used to relax the additivity
assumption. Without making an assumption about additivity, it follows immediately from
the bias formula for d,, that  and g* are related by

pB=p" - ”yfxfu {dP(u| ay, x) — dP(ulag, x)}dP(x).

The bias formulas in Theorem 1 are yet more general than this in that, as we saw in the
applications above, unlike the results of Lin et al*! and Imbens,14 Theorem 1 does not
presuppose a regression context; furthermore it does not assume that there are no
interactions between A, U, and X, and does not presuppose any particular functional form.

Relation to Prior External Adjustment Results

As noted above, the bias formulas in Theorem 1 are a generalization of prior bias formulas
in the external adjustment literature.1:8:21 This prior external adjustment literature generally
considered the setting of a dichotomous treatment, a dichotomous outcome, and a
categorical unmeasured covariate. If in Theorem 1, X =@, Y is dichotomous and U is
categorical, the formulas given above reduce to the results for the risk difference in
Kitagawal and Arah et al.2! The bias formula results given here thus generalize these prior
external adjustment results in 2 ways. First, our results apply not only to dichotomous
outcomes but also to continuous outcomes. Second, our results allow for control of some set
of measured covariates X. Whereas prior risk difference results compared the average
outcome difference unadjusted for X, E(Ylay) — E(Ylag), to the causal effect E(Yq;) — E(Yay),
our results compare the average outcome difference adjusted for X, Z,{E(Ylay, x) — E(Yla,
X)}P(x), to the causal effect E(Ya;) — E(Yay). Most of the prior external adjustment literature
effectively presupposed that the analysis was within strata of, or conditional on, X (or that
there were no measured covariates to control for). To combine results over strata of X, Lee
and Wang?® and Flanders and Khoury? for instance propose an assumption of homogeneity
of effects across of X; Greenland®16 and Arah et al?! discuss Bayesian and Monte Carlo
method approaches; using risk ratios, Flanders and Khoury? also derive an external
adjustment formula in cases with both a measured and an unmeasured covariate.
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