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Abstract
Clinical, epidemiological, neuroimaging and postmortem data all suggest schizophrenia is a
neurodevelopmental disorder, and that synaptic disturbances might play a critical role in
developing the disease. In 1982 Feinberg proposed that the schizophrenia might arise as a result of
abnormal synaptic pruning. His hypothesis has survived 40 years of accumulated data, and we
review the critical findings related to synaptic dysfunction of schizophrenia. While it is clear that
synaptic disturbances are integral and important for understanding the pathophysiology of
schizophrenia, it has also become obvious that synaptic disturbances cannot be studied and
understood as an independent disease hallmark, but only as a part of a complex network of
homeostatic events. Development, glial-neural interaction, changes in energy homeostasis, diverse
genetic predisposition, neuroimmune processes and environmental influences all can tip the
delicate homeostatic balance of the synaptic morphology and connectivity in a uniquely individual
fashion, thus contributing to the emergence of the various symptoms of this devastating disorder.
Finally, we argue that based on a predominant change in gene expression pattern we can broadly
sub-stratify schizophrenia into “synaptic” “oligodendroglial”, “metabolic” and “inflammatory”
subclasses.

Keywords
schizophrenia; synapse; pruning; postmortem; gene expression

Schizophrenia is a devastating mental disorder with a complex etiology that arises as an
interaction between genetic and environmental factors (Carpenter and Buchanan, 1994;
Lewis and Levitt, 2002; Marenco and Weinberger, 2000). Clinical, epidemiological,
neuroimaging and postmortem data all suggest schizophrenia is a neurodevelopmental
disorder, and that normal brain development and function is impaired long before the onset
of the first full-blown clinical symptoms.
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In 1979 Huttenlocher quantified the density of synaptic profiles in layer III of the frontal
gyrus in 21 brains ranging from newborn to 90 years in age (Huttenlocher, 1979), and came
to conclusion that the synaptic density in the neonatal brain was already comparable to those
seen in adulthood. Furthermore, he reported that in infanthood there was a sharp increase in
the number of synapses to about 150% of that seen in adulthood, followed by a progressive
decline in synaptic density between the ages of 2-16. Based on findings of progressive
postnatal “synaptic pruning” and the clinical presentation of the disease, in 1982 Feinberg
(Feinberg, 1982; Keshavan et al., 1994) formulated a radically new theory on the cause of
schizophrenia, proposing that that the disease presentation might arise from abnormal
synaptic pruning in the affected individuals. While Feinberg hypothesized that altered
cortical pruning is critical for developing the disease, he was uncommitted about the precise
mechanism by which the pathophysiology might occur, stating that “... as a result of some
abnormality in this process, too many, too few, or the wrong synapses are eliminated.
Regrettably, we have no basis to choose among these abnormalities”. The initial Feinberg
hypothesis was further expanded by Hoffman and Dobscha (Hoffman and Dobscha, 1989),
who proposed that hyperpruning of collateral axons in the prefrontal cortex (PFC) leads to
the clinical manifestation of schizophrenia, and by Jernigan and colleagues (Jernigan et al.,
1991), who proposed that defective pruning of certain brain structures underlies
schizophrenia. Almost 30 years later, these initial hypotheses are still very intriguing and are
supported by multiple lines of indirect evidence.

Pruning in the central nervous system
After the initial Huttenlocher reports (Huttenlocher, 1979; Huttenlocher et al., 1982;
Huttenlocher and de Courten, 1987), synaptic pruning in the CNS attracted a considerable
research interest. It has been established that synaptic pruning is 1) present in virtually all
brain regions, including the prefrontal, visual, motor and associative cortices, hippocampus
and cerebellum (Bourgeois and Rakic, 1993; Eckenhoff and Rakic, 1991; Innocenti, 1995;
Rakic et al., 1994; Takacs and Hamori, 1994); 2) proceeds coarsely from caudal to frontal
regions (Rakic et al., 1994), 3) is present in more than one mammalian species (human,
monkey, cat, rat) (Bourgeois and Rakic, 1993; Eckenhoff and Rakic, 1991; Innocenti, 1995;
Rakic et al., 1994; Takacs and Hamori, 1994), although with a different time-course, and 4)
represents an experience-dependent process (Roe et al., 1990; Stryker and Harris, 1986).
Importantly, these changes could not be explained by enlargement of brain volume over
development (Rakic et al., 1994).

Structural brain changes in schizophrenia
Defining neuropathology of schizophrenia has been challenging, with findings that often did
not reproduce across various cohorts. However, most of the studies to date suggest that the
disease is characterized by: 1) a mild enlargement of ventricles, 2) decreased cortical
thickness; 3) altered neuronal density and decreased neuron size in limbic, temporal, and
frontal regions; 4) abnormal dendritic spine densities in the cortex; 5) altered cortical
cytoarchitecture, perhaps related to abnormal neuronal migration, differentiation, and/or cell
pruning; and 6) molecular changes that encompass altered expression of genes related to
synaptic function, energy metabolism, immune system activation, and oligodendrocyte
transcripts (reviewed by (Harrison, 1999; Harrison and Weinberger, 2005; Hof and Schmitz,
2009; Iritani, 2007; Mirnics et al., 2006)). However, it is important to point out that most of
the postmortem studies to date did not uncover progressive neurodegenerative disease
lesions or ongoing astrocytosis that would indicate post-maturational neural injury (Arnold
and Trojanowski, 1996). At least theoretically, all these changes can be directly related to
altered synaptic pruning in schizophrenia, arising from a complex interplay of genetic
predisposition and adverse environmental influences (Horvath and Mirnics, 2009).
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In 1976, Johnstone and colleagues, using computerized tomography (CT) noted a significant
ventricular enlargement in a group of chronic schizophrenics (Johnstone et al., 1976). These
data were later replicated in both the lateral and 3rd ventricles by multiple groups of
investigators with a prevalence rates ranging from 18-40% (Maser and Keith, 1983; Okasha
and Madkour, 1982; Weinberger et al., 1979). Furthermore, based on a comprehensive meta-
analysis study of 39 datasets Van Horn and McManus concluded that “that there is a
difference in ventricle:brain ratio between schizophrenics and controls which would seem to
be an indisputable characteristic of schizophrenia” (Van Horn and McManus, 1992).
However, the findings also suggested that the changes were too small to be of practical
significance for establishing a patient diagnosis. Follow-up studies also suggested that
ventricular enlargement might be correlated with disease symptoms, where patients with
ventricular enlargement showed predominantly negative symptoms and impaired
functioning, while patients without ventricular enlargement tended to have a preponderance
of positive symptoms and a normal sensorium (Andreasen et al., 1982). Furthermore,
ventricular enlargement is present in unmedicated, first-break patients, suggesting that the
findings are not a result of disease progression or medication effects (Niemann et al., 2000;
Vita et al., 2006). The ventricular enlargement is accompanied by an overall loss of brain
tissue averaging ~3% (Lawrie and Abukmeil, 1998), albeit the degree of ventricular
enlargement and the decrease in the brain volume do not appear to be correlated. Magnetic
resonance imaging (MRI) studies suggest that the temporal lobes and medial temporal
structures are the most affected (Nelson et al., 1998), and that gray matter reduction is more
prominent than the decrease in white matter volume. Furthermore, more recent data suggest
that genetic vulnerability factors and disease-associated gene alleles (e.g. RGS4 and NRG1)
contribute to structural alterations in the brain of patients with schizophrenia (Mata et al.,
2009; Prasad et al., 2009). All these structural changes can arise as a result of various factors
and cellular deficits, however, in the absence of marked neuronal loss in schizophrenia, the
findings are consistent with the idea that reduction in dendrites and synapses might be an
important contributor to the cortical volume reduction (McGlashan and Hoffman, 2000).

Synapse-related neuroanatomical and molecular changes
To date, multiple studies have examined cellular and synaptic morphology in postmortem
tissue of subjects with schizophrenia. Golgi-impregnation studies revealed a region- and
disease-specific decrease in dendritic spine density in dorsolateral prefrontal cortex layer 3
pyramidal cells in subjects with schizophrenia (Glantz and Lewis, 2000). Importantly, these
synapse-related changes do not appear to be a result of chronic antipsychotic medication: 1)
monkeys receiving chronic antipsychotic medication do not show reduced expression of
synaptic markers, 2) schizophrenic subjects not receiving antipsychotic medications at the
time of death show synaptic alterations, and 3) antipsychotic medication treated subjects
with diagnoses other than schizophrenia show no apparent synapse-related pathology.
Furthermore, ultrastructural studies suggest that striatal spines in schizophrenics are reduced
in size by ~30% when compared to the control population, raising the possibility that this
change might be directly related to aberrant synaptic conductance and/or efficacy in the
subcortical gray matter (Roberts et al., 1996). Kung and colleagues (Kung et al., 1998) also
pointed out that the density and/or proportion of symmetric synaptic profiles was primarily
affected in the caudate nucleus (and not the putamen) arguing for an imbalance in inhibitory
synaptic transmission between these two structures. In addition, the density of perforated
synaptic profiles, cortical afferents thought to be involved in synaptic turnover and
cognition, was lower in the striatum of the schizophrenic subjects compared to the control
groups. Finally, the same study found that density of axodendritic synaptic profiles,
particularly of the asymmetric type, was decreased in the caudate, but not the putamen.
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While Golgi-studies and cellular density measurements suggest that the reduced synaptic
marker expressions are a result of structural deficits related to the neuropil, these studies
cannot exclude the possibility that many of the observed deficits are of functional nature.
The anatomical substrate might be preserved (e.g. presynaptic terminal), and the studies
reporting deficient presynaptic mRNA/protein levels (revealed by bulk tissue assessment
methods or immunohistochemistry) often cannot distinguish between the “reduced
expression in a synaptic terminal” and “reduced number of synaptic terminals” scenarios.
Regardless, it is obvious that both mechanisms (reduced number of synapses or synapses
expressing sub-threshold levels of presynaptic genes) are likely to have a significant impact
on brain function. While the causality of the schizophrenia-related presynaptic deficits is
somewhat open to interpretation, the research data suggest that multiple key transcripts and
proteins of the presynaptic secretory machinery are reduced in schizophrenia. For example,
quantitative western blot analysis of human postmortem hippocampus from the brains of
schizophrenics and age-matched controls revealed reduced levels of synapsin I in the
diseased subjects (Browning et al., 1993). Similarly, synaptophysin immunostaining
revealed a reduction in protein levels in prefrontal, but not visual cortex of diseased subjects
(Glantz and Lewis, 1997). Furthermore, prefrontal reduction of synaptophysin and SNAP-25
has been also reported on a different cohort of subjects, suggesting that ‘hypofrontality’ of
schizophrenia arises from abnormalities of synaptic number or structural integrity in
prefrontal cortex (Karson et al., 1999). Synaptophysin immunoreactivity was also
significantly reduced in both the inner and outer molecular layers of the dentate gyrus, but
not in the hilus (Chambers et al., 2005), arguing that the synaptophysin defect affects
multiple cortical regions in the schizophrenic brain. Lower phosphorylated Syntaxin 1
(pSTX1) levels has been also reported in the prefrontal cortex of schizophrenia, and reduced
pSTX1 levels were associated with reduced binding of STX1 to SNAP-25 and MUNC18
and decreased SNARE complex formation (Castillo et al.). In addition, data-driven gene
expression profiling methods also identified a robust, subjects-specific reduction in
presynaptic secretory machinery transcripts in the prefrontal cortex (synapsin II, N-
ethylmaleimide sensitive factor, synaptotagmin, synaptojanin and synaptobrevin), which
could not be attributed to chronic neuroleptic treatment (Mirnics et al., 2000; Mirnics et al.,
2001a). Furthermore, in a recent study of genomic convergence analysis of cerebellar
cortices shotgun cDNA sequencing identified twenty three genes with altered expression and
involvement in presynaptic vesicular transport (Mudge et al., 2008).

The vast majority of the published studies suggest that schizophrenia is characterized by
reduced expression of presynaptic transcripts/proteins, however, there have been also a few
cohort-specific reports suggesting that presynaptic gene expression might actually increase
in some brain regions (Gabriel et al., 1997; Sokolov et al., 2000).

The disease process of schizophrenia is also likely to affect postsynaptic elements.
Postsynaptic receptor expression changes have been reported in the monoamine,
glutamatergic and GABAergic systems, yet these are more suggestive of functional deficits,
and not anatomical deficits of postsynaptic structures. Perhaps most interestingly, several
studies suggest that postsynaptic density proteins (e.g. PSD93, PSD95, neurofilament-light
and SAP102) are also affected by the disease process (Hahn et al., 2006; Kristiansen et al., ;
Meador-Woodruff et al., 2003; Ohnuma et al., 2000). However, the reduced expression of
these binding partners of NMDA receptor subunits and mediators of synaptic plasticity has
been less consistently replicated across various studies.

Which synapses are affected in schizophrenia?
Theoretically, any brain disease process can affect inhibitory or excitatory synapses, or both
simultaneously. Furthermore, the functional outcome would also depend on the exact cell
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type affected and the brain region where the alteration would occur. In schizophrenia,
synapse-related deficits appear to be widespread, affecting multiple cortical and subcortical
regions, involving both glutamatergic projection neurons and multiple classes of GABA-
ergic inhibitory neurons (Hashimoto et al., 2008a; Hashimoto et al., 2008b; Lewis et al.,
2005; Lewis and Hashimoto, 2007). However, it appears that the disease process has a
differential effect on projection neurons and interneurons: synaptic deficits in projection
neurons appear to be both microanatomical and functional, while synaptic deficits in the
interneurons are likely to be predominantly functional. Prefrontal cortical projection neurons
in schizophrenia show both reduced size (Pierri et al., 2003; Rajkowska et al., 1998; Sweet
et al., 2003) and decreased dendritic spine density (Glantz and Lewis, 2000; Hill et al.,
2006). In a study of Golgi-impregnated pyramidal neurons of the dorsolateral prefrontal
cortex Glantz and colleagues (Glantz and Lewis, 2000) found that deep layer III projection
neurons had a dendritic spine decrease of ~20%. In this study, dendritic spine alterations
were not observed in superficial cortical layers, other cortical areas, or psychiatry control
group treated with antipsychotic medication. On the other hand, perhaps the most intriguing
functional synaptic abnormality in schizophrenia is observed in the cortical parvalbumin-
containing interneuron subclass, the chandelier cells. Chandelier cells, via their
characteristic axon terminals (cartridges) provide potent axon initial segment inhibition to
the cortical projection neurons. In the prefrontal cortex of subjects with schizophrenia,
GAT1 immunoreactivity appears to be preferentially reduced in the chandelier cell
cartridges in a treatment-independent fashion (Lewis). However, at the present it is believed
that reduced GAT1 immunoreactivity is part of molecular reorganization at the axon initial
segment, and not a result of chandelier cartridge pruning (Pierri et al., 1999). Still, at the
current time we have to consider the possibility that interneuron dendritic trees or axon
terminals also undergo structural remodeling as part of the diseases process.

The relationship of synaptic changes to other molecular deficits
In addition to altered expression of multiple single-genes, the molecular pathophysiology of
schizophrenia encompasses synaptic, oligodendroglial, mitochondrial and immune system
disturbances (Mirnics et al., 2006). The exact relationship between these disturbances is
poorly understood, but it is very likely that the deficits are intertwined, perhaps even
causally related (Mirnics et al., 2001a). For example, synaptic activity requires energy, and
reduction in neuropil might lead to reduced energy requirements (Middleton et al., 2002). As
a result, adaptation takes place, and the transcripts/proteins of the energy metabolism
pathway are downregulated. However, the opposite might also hold true: if a neuronal
metabolism is impaired, the affected cells might not be able to support an extensive
arborization. Similarly, in an attempt to compensate for inefficient presynaptic release
during development, postsynaptic changes may follow, including (but not limited to) down-
regulation of regulator of G-protein signaling 4 (RGS4) (Mirnics et al., 2001b). Such a
reduction will give rise to increased duration of signaling through a number of different G-
protein coupled receptors, attempting to compensate for reduced input from the presynaptic
structures. Unfortunately, such adaptational events may not be effective, and they can even
have a further detrimental effect on the function of the postsynaptic cell, resulting in further
desynchronization and accelerated pruning (Mirnics et al., 2001a).

Developmental time course of synaptic deficits in schizophrenia
Unfortunately, human postmortem studies offer very limited insight into the time course by
which the synaptic alterations develop in schizophrenia. As synapse development and
pruning are dynamic processes following a complex trajectory, genetic-environmental
influences can alter synapse development through a wide time window that encompasses
prenatal development to the onset of the disease (Lewis and Levitt, 2002). Importantly, the
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clinical symptoms of the disease might develop many years after the adverse genetic or
environmental influences. Within this context, there are two possible mechanisms by which
this can occur: less synapse production or overpruning. If synapse developmental trajectory
is suppressed at the time of insult, fewer synapses are generated, but the reduced number of
synapses is still sufficient to maintain almost normal function during the “pre-pruning”
period. However, in late adolescence/early adulthood, when normal developmental pruning
occurs, the number of synapses fall below a “psychosis threshold”, arising to symptoms of
the disease. Alternatively, one can envision that synapse generation during development is
unimpaired, but the pruning mechanisms are accelerated, perhaps due to eliminating and
increased number of inefficiently functioning synapses. Thus, the synapse loss due to
overpruning would also result in reaching “psychosis threshold”, once again leading to the
clinical manifestations of the disease.

Synaptic schizophrenia?
Schizophrenia is a heterogeneous disorder that encompasses different phenotypic
manifestations of the disease. Genetic, gene expression and animal model studies
unequivocally suggest that the molecular pathophysiology of the disease is complex,
perhaps even unique to each patient. While synaptic alterations can be clearly demonstrated
in the brain of some subjects with schizophrenia, they are not present in each and every one
of the studied postmortem brains. Based on gene expression data in the literature, we argue
that schizophrenia can be broadly subclassified at a molecular level as “synaptic” (Mirnics et
al., 2001a), “oligodendroglial” (Hakak et al., 2001), “metabolic” (Middleton et al., 2002) or
“inflammatory” (Arion et al., 2007). From these categories, it appears that “synaptic” and
“oligodendroglial” gene expression phenotypes are the most distinct, non-overlapping, and
are not found within the same brains. Yet, this classification doesn't imply homogeneity
within the molecular sub-phenotype. Subjects in the “synaptic schizophrenia” subclass could
be affected by any number or combination of the genetic or environmental insults and that
pattern likely varies between individuals. Simply put, different subjects with schizophrenia
within this sub-class have different, subject-specific synaptic deficits, but they all converge
at a functional level to affect synaptic transmission between neurons.

In summary, anatomical and functional synaptic disturbances are most likely a strong
contributing factor to the development, pathology and possibly symptomatology of
schizophrenia. However, the synaptic disturbances might be unique to each patient. The
genetic predisposition to the disease will be different, it might affect different cell types
(interneurons and projection neurons) or different cellular compartments (axonal
arborization and dendritic tree). Importantly, synaptic disturbances in schizophrenia cannot
be studied and understood as an independent disease hallmark, but only as a part of a
complex network of events. Development, glial-neural interaction, changes in energy
homeostasis, diverse genetic predisposition, neuroimmune processes and environmental
influences all can tip the delicate homeostatic balance of the synaptic morphology and
connectivity in a uniquely individual fashion, thus contributing to the emergence of the
various symptoms of this devastating disorder.
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