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Summary
We discuss inference for data with repeated measurements at multiple levels. The motivating
example is data with blood counts from cancer patients undergoing multiple cycles of
chemotherapy, with days nested within cycles. Some inference questions relate to repeated
measurements over days within cycle, while other questions are concerned with the dependence
across cycles. When the desired inference relates to both levels of repetition, it becomes important
to reflect the data structure in the model. We develop a semiparametric Bayesian modeling
approach, restricting attention to two levels of repeated measurements. For the top-level
longitudinal sampling model we use random effects to introduce the desired dependence across
repeated measurements. We use a nonparametric prior for the random effects distribution.
Inference about dependence across second-level repetition is implemented by the clustering
implied in the nonparametric random effects model. Practical use of the model requires that the
posterior distribution on the latent random effects be reasonably precise.
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1. Introduction
We consider semiparametric Bayesian inference for data with repeated measurements at
multiple levels. The motivating data are blood count measurements for chemotherapy
patients over multiple courses of chemotherapy. In earlier papers (Müller and Rosner, 1997;
Müller, Quintana, and Rosner, 2004), we considered inference for the first course of
chemotherapy only. Naturally, such data do not allow inference about changes between
cycles. In clinical practice, however, cancer patients receive chemotherapy over multiple
courses or cycles of predetermined duration. These courses of therapy typically consist of a
period during which the patient receives active drug therapy, followed by a no-drug period
to allow the patient to recover for the next round of chemotherapy. Often some aspect of the
treatment protocol is intended to mitigate deterioration of the patient’s performance across
repeated treatment cycles. Inference related to such aspects of the treatment involves a
comparison across cycles, which requires modeling of the entire data set, including data
from later cycles. In this extended data set, repeated measurements occur at two levels. Each
patient receives multiple cycles of chemotherapy, and within each cycle, measurements are
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recorded over time. Another typical example of this data structure is drug concentration
measurements over repeated dosing studies of pharmacokinetics.

A standard parametric approach would base inference on conjugate distributions for the
sampling model, hierarchical priors, and random effects distributions. Bayesian inference for
such multilevel hierarchical models is reviewed, among many others, in Goldstein, Browne,
and Rasbash (2002), who also discuss software for commonly used parametric models.
Browne et al. (2002) compare Bayesian and likelihood-based methods. Heagerty and Zeger
(2000) discuss likelihood-based inference for marginal multilevel models. Marginal models
regress the marginal means of the outcome on covariates, rather than conditional means
given random effects. A recent comprehensive treatment of multilevel models appears in
Goldstein (2003).

The proposed semiparametric Bayesian inference replaces traditional normal random effects
distributions with non-parametric Bayesian models. Nonparametric Bayesian random effects
distributions in mixed-effects models were first introduced in Bush and MacEachern (1996).
Mukhopadhyay and Gelfand (1997) construct a semiparametric Bayesian version of
generalized linear models. Applications to longitudinal data models are developed in
Kleinman and Ibrahim (1998a), Müller and Rosner (1997), and Walker and Wakefield
(1998), among many others. Ishwaran and Takahara (2002) extensively discuss Monte Carlo
algorithms for similar semi-parametric longitudinal data models. In particular, they propose
clever variations of a sequential importance sampling method known as the Chinese
restaurant process. Kleinman and Ibrahim (1998b) extend the approach in Kleinman and
Ibrahim (1998a) to allow binary outcomes, using generalized linear models for the top-level
likelihood. In each of these papers, the authors use variations of Dirichlet process (DP)
models to define flexible nonparametric models for an unknown random effects distribution.
The DP was introduced as a prior probability model for random probability measures in
Ferguson (1973) and Antoniak (1974). See these papers for basic properties of the DP
model. A recent review of semi-parametric Bayesian inference based on DP models appears
in Müller and Quintana (2004). Related non-Bayesian semiparametric approaches for
longitudinal data are discussed, among others, in Lin and Carroll (2001a) and (2001b).
These approaches use generalized estimating equations to implement estimation in
semiparametric longitudinal data models.

The main novelty in the proposed model is the construction of a nonparametric model for a
high-dimensional random effects distribution for multilevel repeated measurement data. The
proposed approach avoids parameterization of the high-dimensional dependence structure.
We achieve this by using a mixture of nonparametric models for lower-dimensional
subvectors. In the application the lower-dimensional subvector is the cycle-specific random
effects vector θij for cycle j and patient i, nested within a higher-dimensional patient-specific
random effects vector θi = (θij, j = 1, …, ni). The mixture model allows us to learn about
dependence without having to define a specific parametric structure in a way that is
analogous to modeling a multivariate distribution as a mixture of independent kernels. Even
if the kernels are independent, the mixture allows us to model essentially arbitrary
dependence.

The rest of this article is organized as follows. In Section 2, we introduce the proposed
sampling model. In Section 3, we focus on the next level of the hierarchy by proposing
suitable models to represent and allow learning about dependence at the second level of the
hierarchy. Section 4 discusses implementation of posterior simulation in the proposed
model. Section 5 reports inference for the application that motivated this discussion. A final
discussion section concludes the article.
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2. First-Level Repeated Measurement Model
In our semiparametric Bayesian model representing repeated measurements at different
levels of a hierarchy, the model hierarchy follows the structure of the data. The key elements
of the proposed approach are as follows. We consider two nested levels of measurement
units, with each level giving rise to a repeated measurement structure. Assume data yijk are
recorded at times k, k = 1,…, nij, for units j, j = 1, …, ni, nested within higher-level units i, i
= 1, …, n. We will refer to the experimental units i as “subjects” and to experimental units j
as “cycles” to simplify the following discussion and remind us of the motivating application.
Figure 1 shows the overall structure.

We start by modeling dependence of the repeated measurements within a cycle, yij = (yijk, k
= 1, …, nij ). We assume p(yij |θij, η) to be a nonlinear regression parameterized by cycle-
specific random effects θij. Here and throughout the following discussion, η are
hyperparameters common across subjects i and cycles j. Figure 2 shows typical examples of
continuous outcomes yijk, measured over multiple cycles, with repeated measurements
within each cycle.

We define dependence within each cycle by assuming that observations arise according to
some underlying mean function plus independent residuals:

(1)

Here f is a nonlinear regression with parameters θij, and eijk are assumed to be independent
and identically distributed (i.i.d.) N(0, σ2) normal errors. Marginalizing with respect to θij,
model (1) defines a dependent probability model for yij This use of random effects to
introduce dependence in models for repeated measurement data is common practice. The
choice of f(·;θ) is problem specific. In the implementation reported later, we use a piecewise
linear-linear-logistic function. In the absence of more specific information, we suggest the
use of generic smoothing functions, such as spline functions (Denison et al., 2002).

3. Second-Level Repeated Measurement Model
3.1 A Semiparametric Random Effects Model

We introduce a dependent random effects distribution on θi = (θi1, …, θini ) to induce
dependence across cycles. We will proceed with the most general approach, leaving the
nature of the dependence unconstrained. We achieve this by considering a nonparametric
prior for the joint distribution p(θi1,…, θini).

We first introduce a parametric model, constructed to be comparable to the nonparametric
model, to clarify structure, and for later reference. Let η = (m, B, S, σ2) denote a set of
hyperparameters. We use i, j, and k to index patients i = 1,…, n, cycles j = 1, …, ni, and
observations k = 1, …, nij.

(2)

We assume independence across cycles at all levels. This implies that also posterior
inference on θij and posterior predictive inference is independent across cycles. We could
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modify (2) to include a dependent prior p(μ1, μ2, … | η) to allow for dependence. However,
even for moderate dimension of θij this is not practical. Instead, we proceed with a
semiparametric extension that implements learning about dependence through essentially a
mixture of independent models as in (2).

We generalize the random effects distribution for θi = (θi1, …, θini ) to a mixture of normal
models. Let N(x; m, S) indicate a normal distributed random variable x with moments (m, S).
We assume

(3)

with a nonparametric prior on the mixing measure G for the latent normal means μi = (μi1,
…, μini ). As usual in mixture models, posterior inference proceeds with an equivalent
hierarchical model:

(4)

Substituting a common value μi = μ0 across all patients i, that is, a point mass G(μ) = I(μ =
μ0), shows the correspondence with the parametric model. In Section 3.2 we will introduce a
prior for a discrete random measure G. Denote with  the point masses of G. Implicit in the
model for G will be an independent N(m, B) prior for the subvectors  corresponding to
cycles, with independence across h and j. In other words, we generalize (2) by a mixture of
independent models. The mixture allows learning about dependence in much the same way
as a kernel density estimate with independent bivariate kernels can be used to estimate a
dependent bivariate distribution.

3.2 The Random Probability Measure G
The probability model for G is the main mechanism for learning about dependence across
cycles. We use a DP prior. We write DP(M, G☆) for a DP model with base measure G☆ and
total mass parameter M. We complete model (1) and (4) with

(5)

See, for example, MacEachern and Müller (2000) for a review of DP mixture models as in
(4).

Besides technical convenience and computational simplicity, the main reason for our choice
is the nature of the predictive inference that is implied by the DP model. Assume patients i =
1,…, n have been observed. The prior predictive p(θ n+1 |θ 1, …, θn) for patient n + 1 is of
the following type. With some probability, θn+1 is similar to one of the previously recorded
patients. And with the remaining probability, θn+1 is generated from a baseline distribution
G☆ defined below. The notion of “similarity” is formalized by assuming a positive prior
probability for a tie of the latent variables μi. Let k = n denote the number of unique values
among μ1, …, μn and denote such values by . Let mh, h = 1, …, k, denote the
number of latent variables μi equal to , and let wh = mh /(M + n) and wk+1 = M/(M + n).
The DP prior on G implies
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(6)

The predictive distribution for μn+1 is a mixture of the empirical distribution of the already
observed values and the base measure G☆. The predictive rule (6) is attractive in many
applications. For example, consider the application to the multi-cycle hematologic counts.
The model implies that with some probability the response for the new patient replicates one
of the previous patient responses (up to residual variation), and with the remaining
probability the response is generated from an underlying base measure G☆.

4. Posterior Inference
4.1 Base Measure, Kernel, and Regression

For the base measure G☆ we use the same factorization as in (3),

(7)

The advantage of this choice of base measure is that hyper-parameters η that define G☆ only
need to be defined for the random vector μij instead of the higher-dimensional vector μi.
Using a base measure with conditional independence across cycles, any inference about
dependence across cycles for a future patient arises from the data-driven clustering of the
imputed μi vectors. Clustering over locations allows modeling dependence in much the same
way as a mixture of bivariate standard normals kernel can approximate any bivariate
distribution, with arbitrary variance-covariance matrix, in a bivariate kernel density estimate.

As usual in DP mixture models, posterior inference proceeds in the marginal model (6), after
analytically integrating out the random measure G. Choosing a conjugate base measure G☆

and kernel p(θij | μij, η), such as the conjugate normal kernel and base measure used in (4)
and (7), further facilitates posterior simulation. See Section 4.2 for details.

A minor modification of the model allows us to include cycle-specific covariates. Let xij
denote a vector of covariates for cycle j of patient i. This could, for example, include dose of
a treatment in cycle j. A straightforward way to include a regression on xij is to extend the
probability model on θij to a probability model on θ̃ij ≡ (xij, θij ). The implied conditional
distribution p(θij | xij ) formalizes the desired density estimation for as a function of x. This
approach is used, for example, in Mallet et al. (1988) and Müller and Rosner (1997).

4.2 Posterior MCMC
Posterior simulation in the proposed model is straightforward by Markov chain Monte Carlo
simulation (MCMC). See, for example, MacEachern and Müller (2000), Neal (2000), or Jain
and Neal (2004) for an explanation of MCMC posterior simulation for DP mixture models.

We briefly explain the main steps in each iteration of the MCMC. An important feature of
the model is the conditional independence of the θij across cycles j given μi and η. This
allows us to consider one cycle at a time when updating θij in the Gibbs sampler. Updating
θij, conditional on currently imputed values for μi, reduces to the problem of posterior
simulation in a parametric, nonlinear regression with sampling model (1) and prior (4). See
the discussion in Section 5.1 for a specific example.
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Next, consider updating μi conditional on currently imputed values for θi, hyperparameters
η, and {μℓ;ℓ ≠ i}. We use notation similar to (6), with an additional superindex− indicating
the exclusion of the ith element, as follows. First, reorder the indices of , such that μi is
equal to the last of the unique values, that is, . Let { } denote the set of
unique values among {μℓ, ℓ ≠ i}, and let . From this we can find the
complete conditional posterior distribution for μi. Let Q0 = ∫ p (yi |θ ) dG☆ (θ) and q0 ∝ p(yi
|θ)G☆ (θ).

h = 1, …, k−. Exploiting the conjugate nature of the base measure G☆ and the kernel p(θij |
μij, η), we can simplify one step further. We can analytically marginalize with respect to μi,
conditional only on the configuration of ties among the μi. Define indicators si, i = 1, …, n,
with si = h if  and let  denote the set of indices with common value

. Also let s− = (sℓ; ℓ ≠i and y− = (yℓ; ℓ ≠ i) Then we can replace sampling p(μi | …) by
sampling from

with . This step critically improves mixing of the
Markov chain simulation (MacEachern, 1994).

As usual in DP mixture models, we include a transition probability to update , conditional
on currently imputed values of all other parameters. As before, { } are the unique
values among {μi, i = 1, …, n}. Let  denote the subvector of  corresponding to the jth
cycle. For resampling , we condition on s (now again without excluding μi) and find

.

5. Modeling Multiple Cycle Hematologic Data
5.1 Data and Model

Modeling patient profiles (e.g., blood counts, drug concentrations, etc.) over multiple
treatment cycles requires a hierarchical extension of a basic one-cycle model. Models (1),
(4), (5), and (7) provide such a generalization. Several important inference questions can
only be addressed in the context of a joint probability model across multiple cycles. For
example, in a typical chemotherapy regimen, some aspects of the proposed treatment are
aimed at mitigating deterioration of the patient’s overall performance over the course of the
treatment. Immunotherapy, growth factors, or other treatments might be considered to
ensure reconstitution of blood cell counts after each chemotherapy cycle.

We analyze data from a phase I clinical trial with cancer patients carried out by the Cancer
and Leukemia Group B (CALGB), a cooperative group of university hospitals funded by the
U.S. National Cancer Institute to conduct studies relating to cancer therapy. The trial,
CALGB 8881, was conducted to determine the highest dose of the anti-cancer agent
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cyclophosphamide (CTX) one can safely deliver every 2 weeks in an outpatient setting
(Lichtman et al., 1993). The drug is known to cause a drop in white blood cell counts
(WBC). Therefore, patients also received GM-CSF, a colony stimulating factor given to spur
regrowth of blood cells (i.e., for hematologic support). The protocol required fairly
extensive monitoring of patient blood counts during treatment cycles. The number of
measurements per cycle varied between 4 and 18, with an average of 13. The investigators
treated cohorts of patients at different doses of the agents. Six patients each were treated at
the following combinations (CTX, GM-CSF) of CTX (in g/m2) and GM-CSF (in μg/kg):
(1.5, 10), (3.0, 2.5), (3.0, 5.0), (3.0, 10.0), and (6.0, 5.0). Cohorts of 12 and 10 patients,
respectively, were treated at dose combinations of (4.5, 5.0) and (4.5, 10.0). Hematologic
toxicity was the primary endpoint.

In Müller and Rosner (1997) and Müller et al. (2004), we reported analyses restricted to data
from the first treatment cycle. However, the study data include responses over several cycles
for many patients, allowing us to address questions related to changes over cycles. We use
the model proposed in Sections 2 and 3 to analyze the full data. The data are WBC in
thousands, on a logarithmic scale, yijk = log(WBC/1000), recorded for patient i, cycle j, on
day tijk. The times tijk are known, and reported as days within cycle. We use a nonlinear
regression to set up p(yij | θij, η). For each patient and cycle, the response yij = (yij1, …,
yijnij ) follows a typical “bath tub” pattern, starting with an initial baseline, followed by a
sudden drop in WBC at the beginning of chemotherapy, and eventually a slow S-shaped
recovery. In Müller and Rosner (1997) we studied inference for one cycle alone, using a
nonlinear regression (1) in the form of a piecewise linear and logistic curve. The mean
function f(t; ) is parameterized by a vector of random effects = (z1, z2, z3, τ1, τ2, β1):

(8)

where r = (τ2 – t)/( τ2 – τ1) and g(θ, t) = z2 + z3/[1 + exp{2.0 – β1(t – τ2)}]. The intercept in
the logistic regression was fixed at 2.0 after finding in a preliminary data analysis that a
variable intercept did not significantly improve the fit. This conclusion is based on
comparing the posterior fitted curves E(f(·; θij ) | data) with the observed responses. We did
not carry out a formal test of fit.

We use model (8) and assume θij ~ N(μij, S), independently across patients i and cycles j.
Dependence across cycles is introduced by the nonparametric prior μi ~ G.

We introduce two modifications to the general model to make it suitable for the application.
First, we allow a different residual variance for each cycle, that is, we use eijk ~ N (0, σij) for
the nonlinear regression in (1). Second, we add a constraint to the kernel in (3). Let (τ 1ij,
τ 2ij) denote the two elements of θij corresponding to the change points τ 1 and τ2 in (8). We
use p(θij | μi, η) ∝ N (μij, S)I(τ1ij < τ2ij).

Finally, we include a regression on covariates xij. We use the bivariate covariate of the
treatment doses of CTX and GM-CSF in cycle j, patient i. Both doses are centered and
scaled to zero mean and standard deviation 1.0 using the empirical mean and standard
deviation across the n = 52 patients. Conditioning on xij, the mixture of normals for θ̃ij = (xij,
θij ) implies a locally weighted mixture of linear regressions. Compare with Section 4.1.
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5.2 Hyperpriors
We complete the model with prior specifications for the hyper-parameters η. For the residual

variance  we assume , parameterized such that , with
a = 10 and b = 0.01. Let diag(x) denote a diagonal matrix with diagonal elements x. For the
covariance matrix of the normal kernel in (3), we use S−1 ~ W(q, R−1/q) with q = 25 degrees
of freedom and R = diag(0.01, 0.01, 0.1, 0.1, 0.1, 0.01, 1, 1). The elements of θij are
arranged such that the first two elements correspond to the covariate xij and the third through
eighth elements correspond to the parameters in the nonlinear regression (8), z1, z2, z3, τ1, τ2,
and β1. The base measure G☆ of the DP prior is assumed multivariate normal G☆ (μij) = N
(m, B) with a conjugate normal and inverse Wishart hyperprior on the moments. That is, m ~
N(d, D) and B−1 ~ W(c, C−1/c) with c = 25 and C = diag(1, 1, 1, 1, 1, .1, 1, 1), D = I8, and
the hyperprior mean is fixed as the average of single patient maximum likelihood estimates
(MLE). Let θ ̂il denote the MLE for patient i. We use d = 1/n Σθ ̂i1. Finally, the total mass
parameter is assumed M ~ Gamma(5, 1).

5.3 Posterior MCMC Simulation
We implemented posterior MCMC simulation to carry out inference in models (1), (4), (5),

and (7), using the described prior and hyperprior choices. The parameters , S, B, m are
updated by draws from their complete conditional posterior distributions. All are standard
probability models that allow efficient random variate generation. Updating the latent
variables μi, i = 1, …, n and the total mass parameter M proceeds as described in
MacEachern and Müller (2000). Finally, consider updating θi. Conditional on μi, inference
in the model is unchanged from the single-cycle model. Updating the random effects
parameters θij in a posterior MCMC simulation reduces to a nonlinear regression defined by
the sampling model (8) and the normal prior θij ~ N(μij, S). In particular, for the coefficients
in θij corresponding to the random effects parameters z1, z2, and z3, the complete conditional
posterior is available in closed form as the posterior in a normal linear regression model. We
use a Metropolis–Hastings random walk proposal to update the elements of θij
corresponding to τ 1 and τ 2. If the proposed values violate the order constraint τ 1 < τ 2, we
evaluate the prior probability as zero and reject the proposal.

As starting values for θij, we used maximum likelihood estimates based on yij, substituting
average values when too few responses were available for a given cycle. We then ran
200,000 iterations of the described MCMC, discarding the first 100,000 as initial transient,
and saving imputed values after every 50th iteration.

We considered imputed values of the six-dimensional random effects vectors θij for all
cycles for the four patients shown in Figure 2 to verify convergence. We used BOA (Smith,
2005) to evaluate convergence diagnostics, and chose the diagnostic proposed in Geweke
(1992), using default parameters in BOA. We evaluated the convergence diagnostics for a
total number of 60 tracked parameters. The summary of the 60 diagnostics is (min, first
quartile, mean, third quart, max) = (−1.94, −0.75, 0.01, 0.60, 1.92).

5.4 Results
Posterior inference is summarized in Figures 3 through 5. Let 3 H(θi) = p(θi | μi, η) dG(μi)
denote the nonparametric mixture model for the random effects distribution. Also, we use Y
to denote all observed data. Note that the posterior expectation E(H | Y) is identical to the
posterior predictive p(θn+1 | Y) for a new subject: p(θn+1 | Y ) = ∫ p(θn+1 | H, Y ) dp(H | Y ) =
∫ H(θn+1) dp(H | Y ). The high-dimensional nature of θij makes it impractical to show the
estimated random effects distribution itself. Instead, we show the implied WBC profile as a
relevant summary. Figure 3 shows posterior predictive WBC counts for a future patient,
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arranged by dose xij and cycle j. Each panel shows posterior predictive inference for a
different dose of CTX and GM-CSF, assuming a constant dose across all cycles. Within
each panel, three curves show posterior predictive mean responses for cycles j = 1 through j
= 3. Each curve shows E(yn+1,jk | Y ), plotted against tn+1,jk. Together, the three curves
summarize what was learned about the change of θij across cycles. Note how the curve for
the third cycle (j = 3) deteriorates by failing to achieve the recovery to baseline WBC.
Comparing the predicted WBC pro-files for high versus low dose of GM-CSF for the same
level of CTX confirms that the growth factor worked as intended by the clinicians. The
added GM-CSF improves the recovery to baseline for later cycles.

Figure 4a summarizes an important feature of G. Let p14 denote the probability of WBC
above a critical threshold of 1000 on day 14, that is, p14 = p(Y n+1,jk > log 1000 | Y ) for
tn+1,jk = 14 (we modeled log WBC). The figure plots p14 against cycle, arranged by
treatment level xn+1 (assuming constant treatment level across all cycles and denoting the
common value by xn+1). For each cycle j and treatment level the lines show the marginal
posterior predictive probability of a WBC beyond 1000 by day 14. At low to moderate
levels of the chemotherapy agent CTX, treatment with high level of the growth factor
stimulating GM-CSF stops the otherwise expected deterioration across cycles. Even for high
CTX, the additional treatment with GM-CSF still mitigates the decline over cycles. Figure
4b plots the posterior predictive minimum WBC (in log 1000) by cycle within doses of the
two drugs. Short vertical line segments in both panels indicate pointwise posterior predictive
standard deviations. The large posterior predictive uncertainties realistically reflect the range
of observed responses in the data. Compare with Figure 5b. The numerical uncertainty of the
Monte Carlo average is negligible.

Figure 5a, and 5b shows another summary of the estimated random effects model H( i ),
across cycles, for fixed doses, CTX = 3 g/m2 and GM-CSF = 5 μg/kg. We select two
clinically relevant summaries, the nadir WBC (fnadir) and the number of days that WBC is
below a critical thresh-old of 1000 (Tlo ), to visualize the high-dimensional distributions.
Both summaries are evaluated for each cycle. For each summary statistic, we show the joint
distribution for cycles 1 and 2. The bivariate distributions are shown by plotting 500 random
draws. One can recognize distinct clusters in the joint distribution. Figure 5c shows results
for the parametric model (2). All hyperparameters were chosen identical as for the
semiparametric model. The parametric model shrinks the random effects to the mean of the
estimated unimodal random effects distribution. The shown summaries are highly nonlinear
functions of the parameters, making it difficult to interpret the shrinkage beyond the fact that
the estimated random effects distribution under the parametric model is unimodal and is
significantly more peaked. We carried out similar comparisons (not shown) for Figures 2
and 3. The fit-ted profiles shown in Figure 2 remain almost unchanged under the parametric
model. The predictive inference shown in Figure 3, however, changes substantially. The
change in Figure 5c relative to Figure 5b shows summaries.

Finally, we carried out sensitivity analyses to investigate the robustness of the reported
results with respect to changes in the prior assumptions. Results are summarized in Table 1.
The columns of Table 1 report the probability of WBC count above a critical threshold in
cycle 3, labeled P(y14 > 0), the change in this probability from cycle 2 to 3 (ΔP), and
predicted nadir count (FNADIR) in the third cycle, arranged by three different doses of GM-
CSF, fixing CTX at 4.5 g/m2. Reported summaries in Table 1 are with respect to the
posterior predictive distribution for a future patient. The three horizontal blocks of the table
report changes in the three main layers of the hierarchical model. The first three rows report

inference for different choices of the prior expectation  for the residual variances in
(1). The next three lines report inference under different choices of the hyperprior on S.
Recall from Section 5.2 that we use a Wishart hyperprior S−1 ~ W(q, R−1/q). The rows
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labeled r = 0.5 and r = 2.0 rescale the hyperparameter R by 0.5 and 2.0, respectively. The
final set of four lines reports inference for different choices of the total mass parameter M,
using fixed values of M = 1, 5, and 10. The row marked with 5* reports inference under the
Gamma(5, 1) hyperprior with E(M) = 5 reported in Section 5.2. The rows marked with

, M = 5*, and r = 1.0 are identical These are the choices reported in Section 5.2.
Under this wide range of reasonable hyperprior parameters, we find the reported features of
the posterior inference to be reasonably robust.

6. Conclusion
We have introduced semiparametric Bayesian inference for multilevel repeated
measurement data. The nonparametric nature of the model is the random effects distribution
for the first-level random effects and the probability model for the joint distribution of
random effects across second-level repetitions.

The main limitation of the proposed approach is the computation-intensive implementation.
Important directions of extensions for the proposed model are to different data formats, for
example, repeated binary data, and to a more structured model for the dependence across
cycles. In the proposed model, dependence across cycles is essentially learned by clustering
of the imputed random effects vectors for the observed patients. The approach works well
for continuous responses with a nonlinear regression model (1), assuming the residual
variance is small enough to leave little posterior uncertainty for the θij. The model is not
appropriate for less informative data, for example, binary data. Finally, the main reasons for
choosing the DP prior were computational ease and the nature of the predictive rule (6).
Both apply for a wider class of models known as species sampling models (Pitman,
1996;Ishwaran and James, 2003). Such models could be substituted for the DP model, with
only minimal changes in the implementation.
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Figure 1.
Model structure. Circles indicate random variables. Arrows indicate conditional dependence.
The dashed box and the solid lines (without arrows) show how μi is partitioned into
subvectors. The sampling model p(yijk |θij ), the random effects model p(θij, j = 1, …, ni |
G), and the nonparametric prior p(G |η) are defined in (1), (3), and (5), respectively.
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Figure 2.
Repeated measurements over time (DAY) and cycles. Each panel shows data for one patient.
Within each panel, the curves labeled 1, 2, and 3 show profiles for the first, second, and
third cycle of chemotherapy (only two cycles are recorded for patients 15 and 17). The
curves show posterior estimated fitted profiles. The observed data are indicated by “1,” “2,”
or “3” for cycles 1, 2, and 3, respectively.
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Figure 3.
Prediction for future patients treated at different levels of CTX and GM-CSF. For each
patient we show the predicted response over the first three cycles as solid, dashed, and
dotted lines, respectively. CTX levels are 1.5, 3.0, and 4.5 g/m2 (labeled as 1, 3, and 4 in the
figure). GM-CSF doses are 2.5, 5, and 10 μg/kg (labeled as 3, 5, and 10). Inference is
conditional on a baseline of 2.0. Posterior predictive standard deviations are approximately
0.6.

Müller et al. Page 14

Biometrics. Author manuscript; available in PMC 2011 April 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Clinically relevant summaries of the inference across cycles: probability of WBC > 1000 on
day 14 (left panel) and estimated nadir WBC count (right panel). The left panel shows the
posterior probability of WBC above 1000 on day 14, plotted by treatment and cycle. The
right panel shows the minimum WBC (in log 1000) plotted by treatment and cycle. Reported
CTX doses are in g/m2 and GM-CSF doses are in μg/kg. The vertical error bars show plus/
minus 1/2 pointwise posterior predictive standard deviation. We added a small horizontal
offset to each line to avoid overlap.
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Figure 5.
Estimated H(θ). We show the bivariate marginals for cycles 1 and 2 for two relevant
summaries of, for doses CTX = 3 g/m2 and GM-CSF = 5 μg/kg. (a) shows the estimated
distribution of Tlo, the number of days that WBC is below 1000, for the first two cycles. (b)
shows the same for the minimum WBC (in log 1000). (c) shows the same inference as (b)
for the parametric model. The distributions are represented by scatterplots of 500 simulated
draws. For the integer valued variable Tlo we added additional noise to the draws to
visualize multiple draws at the same integer pairs. For comparison, the 45 degree line is
shown (dashed line).
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