
Gene Expression Profiling Predicts the Development of Oral
Cancer

Pierre Saintigny1,*, Li Zhang2,*, You-Hong Fan1, Adel K. El-Naggar3, Vali
Papadimitrakopoulou1, Lei Feng4, J. Jack Lee4, Edward S. Kim1, Waun Ki Hong1, and Li
Mao1,5

1 Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D.
Anderson Cancer Center, Houston, TX 77030, USA 2 Department of Bioinformatics and
Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
77030, USA 3 Department of Pathology, The University of Texas M.D. Anderson Cancer Center,
Houston, TX 77030, USA 4 Department of Biostatistics, The University of Texas M.D. Anderson
Cancer Center, Houston, TX 77030, USA 5 University of Maryland Dental School, Baltimore,
Maryland

Abstract
Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although
certain risk factors such as smoking status and histology are known, our ability to predict oral
cancer risk remains poor. The study objective was to determine the value of gene expression
profiling in predicting oral cancer development. Gene expression profile was measured in 86 of
162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of
oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years
and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were
associated with oral cancer-free survival and used to develope multivariate predictive models for
oral cancer prediction. We developed a 29-transcript predictive model which showed marked
improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using
previously known clinico-pathological risk factors. Based on the gene expression profile data, we
also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-
value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed
proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral
cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate
head and neck cancer from normal mucosa. Our results show that gene expression profiles may
improve the prediction of oral cancer risk in OPL patients and the significant genes identified may
serve as potential targets for oral cancer chemoprevention.
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Introduction
Head and neck squamous cell carcinoma (HNSCC) is second only to lung cancer as the most
common smoking-related cancer worldwide. Oral squamous cell carcinoma (OSCC) is the
most common anatomic site of HNSCC counting for approximately 50% of all HNSCC.
Despite the tremendous effort to reduce tobacco use, HNSCC remains one of the leading
causes of smoking-attributable mortality in the world—about 438,000 each year (1). Even
for HNSCC diagnosed at early stages, surgery (current standard care) is a debilitating,
substantially morbid procedure that severely impairs quality of life for many patients. In
light of its continuing burden and evasion of substantial control, HNSCC requires new
approaches including diagnose the disease before the cancerous stage and preventing
development of invasive cancers.

Leukoplakia and erythroplakia are the most commonly diagnosed oral premalignant lesions
(OPLs) with a 17%–24% rate of malignant transformation over a period of up to 30 years
(2,3). OPLs are associated with hyperkeratosis, dysplasia, or in situ carcinoma, but the value
of OPL histology as a marker of the risk of OSCC is poor. Recently, we reported that loss of
heterozygosity (LOH) profile (4), polysomy (5), p53 (5), over expression of podoplanin (6),
p63 (7), and EGFR, as well as increased EGFR gene copy number (8) are associated with
increased risk of OSCC.

To systematically study the genes associated with risk of OSCC, we used gene expression
profiling on a large cohort of samples of OPL patients. Gene expression profiles or
signatures are groups of genes that are differentially expressed among tumors or diseased
lesions, reflecting differences in biologic features of the tissues. Gene expression profiles
have been used to develop prognostic models of cancer outcome and to identify markers for
diagnosis and classification of cancers (9–11). However, to assess the value of expression
profiles in predicting cancer risk, samples must be collected before cancer diagnosis in a
prospective setting, which takes years with high cost and is therefore difficult to do in
practice. We took advantage of a collection of 162 OPL samples that were obtained before
cancer development in a chemoprevention clinical trial, which included long-term oral
cancer incidence as a pre-specified secondary endpoint. During the follow up time of the
trial (median:7.5 years), 39 of the patients developed cancer. We hypothesized that gene
expression profiles in OPLs marked the risk of OSCC development. We measured the gene
expression profiles of a subset of the patient samples and searched for their association with
oral cancer free survival (OCFS) time. In this report, we demonstrate that gene expression
profile can significantly improve the prediction of OSCC development over clinical and
histological variables in OPL patients and the significant genes may be promising targets for
cancer prevention.

Methods
Patients and specimens

From 1992 to 2001, 162 randomized and eligible patients were enrolled in a randomized
chemoprevention trial at The University of Texas M. D. Anderson Cancer Center
(MDACC). The patients had been diagnosed with OPL and randomly assigned to
intervention with 13-cis-retinoic acid (13cRA) versus retinyl palmitate (RP) with or without
β-carotene (BC). A total of 153 frozen samples were available at baseline or 3 months after
enrollment but before any event (defined as the diagnosis of OSCC). Among 39 samples
from patients who developed OSCC, 4 were excluded because of poor RNA quality. Among
114 samples from patients who did not develop OSCC, 8 were excluded because of poor
RNA quality. Finally, all the samples from patients who developed oral cancer (N=35) were
selected for gene expression profiling, as well as 51 samples (ad hoc choice) from patients
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who did not develop OSCC, randomly selected among 106 patients. The events were over-
sampled relative to the non-events in order to optimize statistical power for finding the
significant transcripts. Because the events are rare, we included all of them, as permitted by
the quality of the samples. The median follow-up of the 51 patients who did not develop oral
cancer was 6.08 years. Clinical-pathologic parameters were obtained from the clinical trial
database. The follow-up data were obtained from a combination of chart review and a
telephone interview. More detailed clinical information has been previously described in
Papadimitrakopoulou et al (12). The study was approved by the institutional review board,
and written informed consent was obtained from all patients.

Sample preparation, amplification, labeling and microarray hybridization
All steps leading to generation of raw microarray data were processed at the University of
Texas M.D. Anderson Cancer Center Genomics Core Facility. Human Gene 1.ST platform
was used to generate gene expression profiling. Gene expression profiling was obtained
from the whole biopsy, including both the epithelial cells and the underlying stroma. A
detailled method is provided in Supplementary Material 1.

Statistical methods
Data analysis was performed using the Bioconductor packages in the R language
(http://www.bioconductor.org (13)). Raw data of microarrays were processed using quantile
normalization and RMA algorithm (14). Single-variate Cox proportional hazards model
(Coxph) was used to identify transcripts associated with the development of oral cancer. To
address the multiple testing problems, false discovery rates (FDR) of genes were calculated
according to BUM model (15).

The multivariate analysis was performed using CoxBoost (16), a model for identifying
prognostic markers from microarray data. The algorithm is based on boosting, which
constructs a prognostic model by maximizing the partial log-likelihood function (logplik)
that imposes a penalty for each non-zero coefficients utilized in the model. There are two
main parameters that are relevant: penalty score and number of boosting steps. Both the
penalty score and boosting steps can be optimized using the functions provided in the
CoxBoost package under a cross-validation scheme. We tested the performance of the
CoxBoost model using computer simulated microarray data and survival data. The computer
program used in the analysis is available in Supplementary Material 2. We built the
predictive models with and without clinical covariates, which includes age, histology at
baseline (hyperplasia versus dysplasia), podoplanin and deltaNp63 expression. To evaluate
the performance of the models, we used the .632+ bootstrap method (17) and prediction
error curve estimates (16). The later provides an estimation of the type I (false positive) and
the type II (false negative) error rate, or misclassification rate across time. Missing values
for deltaNp63 (N=5) and podoplanin (N=5) were imputed using the nearest neighbor hot-
deck imputation method (function rrp.impute in rrp-package).

As an alternative to CoxBoost, we also used Diagonal Linear Discriminant Analysis
(DLDA) model method (18), which is a frequently used method for class discrimination in
microarray studies. The patients of our dataset were dichotomized into short cancer-free and
long cancer-free patients based on a follow-up cutoff of 5 years. Seventeen patients with 5
years of follow-up time had to be omitted in the analysis. We used a standard 10-fold cross
validation scheme to assess the performance of the prediction models. Specifically, 9/10 of
the samples (N=62) were used to (1) identify the most significant 50 transcripts that are
associated with OCFS time and (2) to build a DLDA model using the 50 transcripts as the
predictors. Then the model is tested in the remaining 1/10 of the samples (N=7) to test the
accuracy of the DLDA model. The process was repeated 100 times and the results are
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aggregated to compute the misclassification rate, the sensitivity and specificity, the positive
and negative predictive values. The choice of 50 genes as the number of genes to use for
prediction was ad hoc. The prediction accuracy was not sensitive to the number of
significant transcripts we chose.

The oral cancer index was computed as the average level of expression of the transcripts
associated with a hazard ratio > 1 minus the average level of expression of the transcripts
that have a hazard ratio < 1. Our hypothesis was that oral cancer index would be able to
discriminate HNSCC from normal mucosa.

Functional analyses were performed using Gene Set Enrichment Analysis (GSEA) software
v2.0.4 (19). Functional analyses were performed using Gene Set Enrichment Analysis
(GSEA) software v2.0.4. GSEA is a robust computational method that determines whether
an a priori defined set of genes shows statistically significant, concordant differences
between two biologic states (e.g., high risk v low risk). GSEA aims to interpret large-scale
expression data by identifying pathways and process. The main advantage of this method is
its flexibility in creating molecular signature database of gene sets, including ones based on
biologic pathways, chromosomal location, or expression profiles in previously generated
microarray data sets. The input data for GSEA procedure were the following: (1) a complete
table of genes ranked according to the log2 transformed Cox model hazards ratio associated
with the development of oral squamous cell carcinoma, (2) a mapping file for identifying
transcripts in HG-1.ST platform, and (3) a catalog of functional gene sets from Molecular
Signature Database (MSigDB, version 2 January 2007 release,
www.broad.mit.edu/gsea/msigdb/msigdb_index.html). A total of 1436 curated gene sets
(canonical pathway gene sets, chemical and genetic perturbations gene sets, BioCarta gene
sets, GenMAPP gene sets, and KEGG gene sets) were included in the analysis. Default
parameters were used. Inclusion gene set size was set between 15 and 500 and the
phenotype was permutated 1,000 times. Gene sets that met the FDR 0.25 criterion were
considered (Supplementary Material 3).

External datasets
Nine independent datasets were used to validate our findings, and downloaded from Gene
Expression Omnibus: GSE9844 (20), GSE6791 (21), GSE3524 (22), GSE6631 (23),
GSE13601 (24), GSE2379 (25), and GSE686 (9), which compared HNSCC and normal
mucosa, GSE10774 that studied normal keratinocyte and various HNSCC cell lines (26),
and GSE4115 that studied normal bronchial cells in smokers with suspected lung cancer
(27).

Data availability
The microarray data analyzed in this study have been deposited in the National Institutes of
Health Gene Expression Omnibus database at www.ncbi.nlm.nih.gov/geo under the
accession number GSEXXX [To be available upon acceptance of publication. Reviewers
can access the data in Supplementary Material 5]. Complete annotation of the samples is
provided (Supplementary Material 6)

Results
We performed microarray gene expression on 86 leukoplakia sample of OPL patients. Table
1 shows the clinical and pathological characteristics of the patients, along with podoplanin
and deltaNp63 protein expression measured by immunohistochemistry. These 86 patients
were selected from the 162 patients who were involved in the chemoprevention trial. This
subset contained a higher cancer incidence because we attempted to include all patients who
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eventually developed cancer but only a fraction of the cancer-free patients (see more details
in the Methods section). The enriched cancer incidence in the subset was designed to
increase the statistical power of our analysis for the given sample size.

Developping multivariate predictive models
We used the CoxBoost algorithm to develop multivariate predictive models of OCFS time
for OPL patients (16). CoxBoost was designed to develop prognostic models from
microarray data using a boosting approach. The algorithm assumes that most transcripts are
not associated with OCFS time, hence having zero coefficients in the prediction model. For
each transcripts with a non-zero coefficient in the prediction model, an explicit penalty score
was added to the fitness function, which is a partial log-likelihood function. In this way, the
over parameterization problem was controlled, which is typically encountered in search of
biomarkers from microarray data.

The results of using CoxBoost were summarized in Table 2 and Figure 1. Three models
were considered. In Model 1, only microarray expression data were used as predictors. In
Model 2, age, histology, deltaNp63 and podoplanin expression were used as mandatory
covariates along with the microarray data. In Model 3, only age, histology, deltaNp63 and
podoplanin expression were used as predictors. Table 2a showed the genes found in Model
1. The CoxBoost procedure was repeated 100 times, each time yielding a different set of
predictive marker transcripts. The column “Frequency” in Table 2a showed the frequency of
occurrences of the transcripts. Among the 29 transcripts, 21 have frequencies greater than
80%, showing the lists of marker trancripts are mostly consistent bewteen different runs of
the algorithm. Similarly, Table 2b shows the transcripts found in Model 2; 15 genes of the
23 in Table 2b have frequencies greater than 80%. There are 9 transcripts shared in Table 2a
and Table 2b.

The hazard ratio and Wald-test p-values obtained from using single-variate Cox proportional
hazard model for each of the 29 and 23 transcripts in Models 1 and 2 are also shown in
Table 2. The vast majority of the transcripts selected by the CoxBoost approach were highly
significant. Furthermore, the CoxBoost coefficient was always consistent with the hazard
ratio provided by the CPH model (positive and negative CoxBoost coefficients being
associated with a hazard ratio > 1 and < 1, respectively).

Figure 1 showed the prediction error curves of the prediction models, which were used to
evaluate the performance of the models. The prediction error was computed as squared
difference between predicted survival probability at time t and the true state (0 for being still
under risk, and 1 if an event of cancer occurred). Lower prediction errors suggest better
performance. Following Binder et al. (16), we computed the prediction error curve using
boostrap samples and aggregated into .632+ estimates. The .632+ method was invented by
Efron et al. as an improvement over conventional cross validation schemes for assessing
model performance (17). The advantage of .632+ method is that it allows the use of all
observations to train the prediction model, but nontheless results in an accurate assessment
of prediction error.

The prediction error curves in figure 1 demonstrated that the expression profiling data can
markedly improve the prediction accuracy over Model 3 that used only the presviously
known factors (i.e., age, histology, deltaNp63 and podoplanin expression). Model 1 and
Model 2 have similar performance (Model 2 is slightly better) with prediction error around
8% beyond 2 years of follow-up time. The prediction error of Model 3 started to show
higher values after year 1 in follow-up time, and the difference increased over time. For
comparison, the null model, which only used random numbers as predictors, was also shown
in the figure 1. As expected, null model has the worst performance. Model 1 and Model 2
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showed comparable performance, suggesting that the previously known factors may be
substituted by expression profiles as alternative predictors.

In Figure 2, we showed that predicted oral cancer risk according to model 2 is strongly
associated with OCFS time. The median of the oral cancer risk was used to dichotomize the
patients between low and high index groups. The K-M survival curves of the two groups and
the accompanying curves based on 50 bootstrap samples display marked differences in
survival time (log-rank p-value=1.03e-14). The strong association can also be observed if
model 1 is used instead of model 2 (Details not shown). It should be noted, however, that
because the survival data was used to identify and to optimize the model, Figure 2 merely
represents a strong association based on the training data, and such strong association may
be reduced in independent samples. It is more reasonable to use the prediction error curves
in Figure 1 for model evaluation.

Checking and testing the significant genes
Because overfitting and fragile-inference is a well-recognized concern when microarray data
is used to develop prediction models (28–30), we used various approaches to examine if our
results are robust and reproducible. A common symptom of fragile inference may be that the
results are highly dependent on the particular scheme or parameter choices taken in the
modeling process. To check if this could have happened to our analysis, we used DLDA
(Diagnal Linear Discrimination Analysis) method as an alternative approach to CoxBoost
for building the multivariate prediction models. We found the misclassification rate to be
16% (Supplementary Material 7). The sensitivity was 91% [95% Confidence Interval
(95CI): 88–93%], specificity was 76% (95CI: 72–78%), positive predictive value was 80%
(95CI: 78–82%), and negative predictive value was 89% (95CI: 85–92%). Because of the
nature of censored data, these are estimates, with some assumptions, of the accuracy of the
predictors. This result appears to be poorer than that from CoxBoost. We thought this was
understandable because we dichotomized the samples into short and long cancer-free
patients with DLDA, which led to partial loss of information from the survival data.
Nevertheless, the results from DLDA model is highly significant when compared with null
model, which assigns short survivor and long cancer-free labels randomly (i.e., randomly
permuting the labels). We estimated the p value to be <10−16 according to Fisher’s exact
test. Such results strongly suggest that the underlying gene expression profiles are predictive
of oral cancer risk.

Functional pathway analysis of the genes assocaited with OCFS time
To explore pathways that are associated with OCFS time, it is desirable to obtain a
comprehensive list of transcripts associated with OCFS time. We applied the single variate
Cox proportional hazards model to identify the significant transcripts. A p-value (Wald test)
was computed for each of the transcripts.

We found 2182 significant transcripts that have p-value < 0.01 and the false discovery rate
(FDR) was estimated to be 11%. Supplemetary Material 8 shows a histogram of the p-
values, and Supplementary Material 9 provide the complete list of the transcripts. The sharp
spike on the left indicates that there is a large group of transcripts having significant
association with OCFS time. Had no significant association existed (i.e., the null
hypothesis), the histogram were supposed to shape like a uniform distribution from 0 to 1.
We used the BUM model (15) to estimate the false discovery rate (FDR) of the significant
transcripts, which assumes that distribution of the p values of the non significant transcripts
follows a uniform distribution while the distribution of the p values of significant genes
follows a beta distribution. Among the 2182 significant transcripts, 1262 were associated
with a high risk to develop oral cancer (hazard ratio > 1), and 920 were associated with low
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risk (hazard ratio < 1). All but 3 trancripts included in the CoxBoost Model 1 and all but 1
trancripts included in the Model 2 were included in list of 2182 trancripts, with very
significant p-values (Table 2). As well, hazard ratios were always consistent with the
coefficient sign provided by the CoxBoost models (Table 2).

To identify pathways associated with oral cancer development, we performed functional
analyses using the Gene Set Enrichment Analysis (GSEA) agorithm (19), which seeked
significant associations between the hazard ratios that we calculated with the predefined
gene sets in GSEA database. The detailed results of these analyses are presented in
Supplementary Material 3. Gene sets associated with proteasome machinery, and MYC
upregulation as well as ribosomes components, the latest being mainly regulated by MYC
(31), were associated with a high risk to develop oral cancer. Similarly, genes commonly
upregulated in cancer relative to normal tissue, and genes upregulated in undifferentiated
stem cells or cancer cells were associated with a high risk to develop oral cancer. The
enrichment in the proteasome pathway is shown as an example in Supplementary Material 4.

Assessing the relationship between the significant genes and cancer
We found that the significant transcripts identified from our current study tend to be
differentially expressed between normal and cancer cells in multiple datasets. We took the
2182 significant transcripts, found them correspond to 1270 gene symbols according to
annotation provided by the manufacturer. We then extracted gene expression data that have
matched gene symbols from multiple datasets composed of HNSCC, and normal mucosa
samples, including one dataset comparing HNSCC and normal keratinocytes cell lines. We
computed the oral cancer indices as described in the method section. Figure 3 shows that
oral cancer indices were consistently lower in HNSCC compared to normal mucosa across 7
independent datasets, and lower in HNSCC cell compared to normal keratinocytes in one
cell line. All these differences were highly significant, with few overlapp between cancer
and normal samples in most of ths studies. GSE6791 (21) dataset included the information
on a Human Papillomavirus Infection (HPV) status; the difference between cancer and
normal samples was very significant in both the subgroup of HNSCC HPV+ (26 HNSCC
versus 14 normal mucosa; p-value=4e-06) and in the subgroup of HNSCC HPV- (16
HNSCC versus 14 normal mucosa; p-value=1e-13).

Similarly, we found that the gene expression profiles of the 1270 genes we identified, were
differentially expressed in normal bronchial epithelial samples from smokers with versus
without lung cancer. We used the dataset published by Spira et al. (27), who demonstrated
that gene expression profile in histologically normal large-airway epithelial cells obtained at
bronchoscopy from smokers with suspicion of lung cancer could be used as a lung cancer
biomarker. We computed the oral cancer risk indices for the 163 samples in the dataset and
found them to be significantly different between lung cancer and the rest (Figure 4A). Spira
et al. developed a biomarker score computed from 80-genes that can distinguish lung cancer
from normal lung in the dataset. Interestingly, there was a strong correlation between the
oral cancer index and the reported biomarker scores for these samples (Figure 4B).

Discussion
In this report, we demonstrate that gene expression profile can significantly improve the
prediction of OSCC development over clinical and histological variables in OPL patients.
Multiple prediction models were developed and compared using CoxBoost algorithm. We
observed a marked improvement in prediction accuracy when a gene expression profile was
used. With the gene expression profile only, we developed a 29-trancript prediction model
that had prediction error rate around 8%. Using the profile in combination with the
previously known risk factors, the model showed a similar prediction error rate as the
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expression profile alone. Because using the previously known risk factors alone had a clear
inferior performance (Figure 1) compared to Models 1 and 2, it is clear that the expression
profiles have a predictive value beyond the known risk factors. As an alternative way to
assess the misclassification rate of genomic predictors in general, we employed a simpler
approach, which used DLDA algorithm to develop prediction models and the standard 10-
fold cross validation scheme to evaluated the models. We obtained 16% misclassification
rate, which is highly statistically significant (P < 1.0E-16, compared to null hypothesis)
compared with other risk factors alone. These results suggest that the the gene expression
profile may robustly predict oral cancer development in patients with OPL.

Because no prospective cohort is currently available to validate our finding, we
acknowledge that our study only represents the first step in the development of a biomarker
that could be used in clinical practice. However, we consider it as a proof-of-principle that a
gene expression signature developed in patients with preneoplasia may improve our
prediction of cancer development over clinical and pathological factors. It also provides a
list of transcripts that could facilitate future efforts to better understand the disease and
intervene in its progress. In order to move this work into a clinical tool, the next step will be
(1)-to refine the signature and adapt it on a CLIA-certifiable platform, and (2)-to identify an
independent cohort of patients for the validation of our models. This work is ongoing and
clearly beyond the scope of this study.

It is important to note that we used tissue samples collected prior to cancer development in
this study, which is different from most gene expression based studies where cancers were
used. A number of studies have shown a value of gene expression profiles in cancer
prognosis. For example, Shedden et al performed a multi-site, blinded validation study to
assess several prognostic models based on gene expression profiles of 442 lung
adenocarcinomas (10). Several of the models being evaluated produced risk scores that
significantly correlated with outcome, and the models worked better with clinical data.
However, cancer prognosis remains to be a difficult problem because the tumors are
heterogenous, and they evolve over time. Samples collected from a particular site at a
particular time may not be able to provide adequate information to predict behavior of the
cancer. In comparison, the samples used in this study may be less complex because they
were in the early tumorigenic process.

Gene expression profiling was obtained from the whole biopsy. The absence of
microdissection to isolate the epithelial cells from the underlying stroma, did not allow us to
differentiate the respective contribution of these 2 compartments. Therefore, the genes we
identified may include genes expressed by both the epithelial cells and stromal cells. Our
objective in this work was to improve our prediction accuracy over clinical and histological
markers. We believe that capturing the information from both compartments may be
important to achieve this goal (32).

The samples used in this study were collected at baseline or at 3 months after the inclusion.
The conclusion of the trial was that the drugs used in the trial, even if they induced some
clinical responses, were ineffective in preventing oral cancer development (7,12). Therefore,
the influence of the drugs used in the trial on gene expression is likely, but is peripheral in
the context of our study, which objective was to identify genes associated with oral cancer
development. Similarly, we did not consider other factors, such as gender and ethnicity,
which may influence gene expression but were not associated with oral cancer development.

Our set of patients was enriched in patients who developed oral cancer and in never smokers
compared to the remaining patients not included in the trial. Tobacco has been established as
a significant risk factor in the development of oral leukoplakia and oral cancer. However,
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the population with leukoplakia is heterogeneous, and although never smokers as well as
women often represent a small proportion of the patients with oral leukoplakia, the risk of
oral cancer development has been reported to be higher than in smokers. With a mean
follow-up of 7.2 years, Silverman et al reported a transformation rate of oral leukoplakia of
24% in never smokers versus 16% and 12% in current and former smokers respectively (2).
Einhorn et al and Roed-Petersen et al reported an eightfold risk and five-fold risk for
patients never smoker with oral leukoplakia (33). Because the incidence of human papilloma
virus infection in oral cancer is low, as opposed to oropharyngeal cancer (34), further studies
are needed to better understand the development of oral cancer in never smokers.

It is a well recognized challenge to develop prognostic models from microarray gene
expression profile data. Subramnian and Simon identified a number of statistical issues in
the design and evluation of the prognostic models in recent studies, which casts some doubts
on the readyness of the models for practical clinical use (29). To ensure that our results are
reproducible, we documented the script used in our analysis in detail (Supplementary
Material 2). The CoxBoost algorithm fits a Cox proportional hazards model by component
wise likelihood based boosting. It is especially suited for models with a large number of
predictors and allows for mandatory covariates. Binder et al. demonstrated the utility of the
method using both simulated data and real microarray data from patients with bladder cancer
(16,35). It was shown that microarray features selected by the CoxBoost approach can
improve prediction performance over a purely clinical model. The algorithm has also been
recently used as along with three other popular methods to compare gene-based versus
pathway-based procedures for the identification of prediction models (36). Thus, we thought
CoxBoost is an appropriate tool to identify biomarkers beyond clinical variables from
microarray gene expression profiling data. The consistency between the new CoxBoost
approach and the more common Coxph model as shown in Table 2, was also reassuring.

Microarray gene expression profiling has become a mature and widely used high-throughput
technology. Eventhough it is typical that RTQ-PCR is used for validating the finding in
microarray studies, we did not think cherry-picking some of the transcripts included in
Models 1 and 2 is effective or adequate. Instead, we used 8 different datasets generated from
different microarray platforms to test wether the oral cancer index, which summarizes the
information from a comprehensive list of transcripts associated with oral cancer
development, can differentiate cancer from normal cells. Since we are able to find
significant association between the oral cancer index and cancer status, it greatly enhances
our confidence in our results. Furthermore, this list of transcripts may provide key biological
factors associated with oral cancer development.

In a recent study, Bhutani et al. demonstrated that oral epithelium could serve as a surrogate
tissue for assessing smoking-induced molecular alterations in the lungs (37). They studied
promoter methylation of p16 and FHIT genes in oral and bronchial brush specimens from
smokers enrolled in a randomized placebo-controlled chemoprevention trial. They showed
that bronchial methylation were correlated with oral tissue methylation. These results
suggest the possibility of oral tissues as a molecular mirror of lung carcinogenesis (38). On
the other hand, Spira et al studied gene expression profiles of normal bronchial samples of
smokers (27). The authors developed a multi-gene index that can distinguish smokers with
or without lung cancer from non-cancer samples with high sensitivity and specificity. They
proposed that this index may also predict lung cancer risk in smokers. Since our study also
predicts cancer risk, as we expected we found that the risk index calculated according to our
list of significant transcripts also correlated with Spira et al’s lung cancer risk index (Figure
4).

Saintigny et al. Page 9

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since many of the significant transcripts have been shown altered in cancers, it suggests that
gene expression profiles may evolve progressively towards cancer before the cells become
cancers. Consistently, we observed a significant upregulation of several gene sets associated
with the proteasome machinery using functional pathway analysis of the significant genes.
Protein synthesis and degradation is a tightly regulated process that is essential for normal
cellular homeostasis (39). Many proteasome target proteins are involved in important
processes of carcinogenesis and cancer survival, such as TP53 and CDKN1B p27 (39).
Down regulation of these genes were also significantly associated with the development of
oral cancer in our study (Supplementary Material 8).

Consistent with our previous results using deltaNp63 protein expression, tumor protein p63
(TP63) mRNA expression was also associated with a high risk to develop OSCC (hazard
ratio (HR): 4.4, Wald test P = 3.6E-4) (7). Among other very significant genes were 4 of the
5 small integrin-binding ligand N-linked glycoproteins (SIBLINGs), that are cell adhesion
modulators, were among the transcripts most significantly associated with oral cancer
development (dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), secreted
phosphoprotein 1 (SPP1), and integrin-binding sialoprotein (IBSP)). The genes encoding the
SIBLINGs are located within a cluster on chromosome 4. They deserve further studies to
define their functional role in oral cancer development (40) (Supplementary Material 8).

Our study may provide valuable information for designing cancer prevention strategies. One
may consider to use proteasome inhibitors (e.g., bortezomib) for oral cancer prevention. As
a single agent or in combination with standard therapy, its limited inhibition activity in
HNSCC and other solid tumors (41) may be related to an upregulation of both pro-apoptotic
proteins and anti-apoptotic proteins. Recent studies have shown that combining bortezomib
with cetuximab (an EGFR-directed antibody) or STAT3 inhibitors, might enhance its
efficacy (42,43). However, bortezomib toxicity and its intravenous mode of administration
preclude its evaluation in the chemoprevention setting (41). Less toxic and orally active
proteasome inhibitors are under development (44). Several natural compounds with
proteasome-inhibitory effects have also been investigated in chemoprevention (41). Green
tea consumption has produced promising effects against development of prostate cancer,
without inducing major toxicities (45). Based on the results of our study, those compounds
deserve further evaluation in preclinical models of oral carcinogenesis. Tsao et al. reported
recently the results of a Phase II randomized, placebo-controlled trial of green tea extract
(GTE) in patients with high-risk oral premalignant lesions. The OPL clinical response rate
was higher in all GTE arms (n = 28; 50%) versus placebo (n = 11; 18.2%; P = 0.09) but did
not reach statistical significance. However, the two higher-dose GTE arms [58.8% (750 and
1,000 mg/m(2)), 36.4% (500 mg/m(2)), and 18.2% (placebo); P = 0.03] had higher
responses, suggesting a dose-response effect (46).

DNMT3B trancript, which is one of the most significant risk factors in our list (HR: 7.7,
Wald test P = 4.3E-6) and part of Model 2, may deserve particular attention for its role in
epigenetic tumorigenesis. It is possible that epigenetic tumorigenesis mediated by DNMT3B
could be an early event in oral tumorigenesis. The role of DNMT3B in tumorigenesis has
been recently highlighted in various cancer (47,48). Variant forms of DNMT3B transcripts
have been described to play a major role in non-small-cell lung cancer, and may deserve
further studies in HNSCC (49). Some DNMT3B polymorphisms have been associated with
HNSCC risk in non-Hispanic whites (50). A recent study of the combination of a DNA
demethylating drug and all-trans retinoic acid has shown a reduction of oral cavity cancer
induced by the carcinogen 4-nitroquinoline 1-oxide in a mouse model (51). We compared
DNMT3B expression levels in 3 publicly available datasets and found DNMT3B was
overexpressed in HNSCC versus normal mucosa, consistent with the role of DNMT3B
overexpression in head and neck tumorigenesis (details not shown). One possible
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mechanism of regulation of DNMT3B expression involves noncoding RNAs. MicroRNA-29
family has been demonstrated to revert aberrant methylation in lung cancer by targeting
DNMT3A and DNMT3B (52). Our microarray platform also measured the precursor forms of
miRNA. Consistent with this hypothesis, hsa-miR-29b-1 was found to be the most
protective marker in our univariate Cox model analysis (HR: 0.0008, Wald test P = 0.0002).
A significant negative correlation was observed between hsa-miR-29b-1 and DNMT3B
expression (R=-0.38, P = 0.0002).

Our results showed that hsa-miR-101-1 (Table 2) was another microRNA associated with a
low risk to develop oral cancer. Hsa-miR-101 expression was also reported to be reduced in
early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the
tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (53). It has been
associated in these studieswith the upregulation of cyclooxygenase-2 (COX2), and enhancer
of zeste homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the
epigenetic silencing of target genes and regulates the survival and metastasis of cancer cells
(54,55). However, in our study, COX2 and EZH2 gene expression were not significantly
associated with OSCC development. Other genes might be regulated by this microRNA.

The micro-RNAbased strategies might therefore be considered in future chemoprevention
studies, especially for OPLs, which is easily accessible and frequently involves only one or a
few lesions.

In summary, we have demonstrated the value of gene expression profiles in predicting oral
cancer development in OPL patients, beyond previously reported clinical and pathological
biomarkers. If validated in future studies, the profiles may serve as biomarkers to classify
OPLs for oral cancer risk in routine clinical practice. Interestingly, certain transcripts in the
profiles may be important in oral tumorigenesis and should be considered as potential targets
for oral cancer prevention.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Model comparison using prediction error curves. Null model used random number data as
predictors. Model 1 used only microarray data as predcitors. Model 2 used microarray data
as well as age, histology, podoplanin and deltaNp63 expression as predictors. Model 3 used
only age, histology, podoplanin and deltaNp63 expression as predictors. The vertical lines
shows the error bars obtained from 100 runs of the procedures.
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Figure 2.
Oral cancer-free survival dicotomized by oral cancer index. The red solid curve showed the
patients with above median cancer risk index (median=−0.42) while the green solid curve
showed the patients with below median oral cancer index. The oral cancer risk indices were
computed as the hazard values according to Model 2 (age, histology at baseline, podoplanin
and deltaNp63 expression, and 23 probesets) using CoxBoost optimized parameters.
Accompanying curves are based on 50 bootstrap samples.
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Figure 3.
Oral cancer risk index in head and neck cancers. Samples under comparison are head and
neck squamous cell carcinoma (HNSCC) versus normal mucosa in both human tumors (A–
C, E–H) and head and neck cell lines (D). The oral cancer index was computed as the
average level of expression of the transcripts associated with a hazard ratio > 1 minus the
average level of expression of the transcripts that have a hazard ratio < 1. Panels A–C
compared HNSCC and normal mucosa from the oral cavity. Panels E–G compared HNSCC
and normal mucosa from various anatomic locations. Panel H compared hypopharynx
squamous cell carcinoma from normal hypopharynx mucosa. The microarray datasets were
downloaded from Gene Expression Omnibus (GEO). The GEO asscession numbers
associated with the datasets were shown at the top of each panel.
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Figure 4.
Correlation between oral cancer risk index (OCRI) (average level of expression of the
transcripts associated with a hazard ratio > 1 minus the average level of expression of the
transcripts that have a hazard ratio < 1) and Spira’s biomarker score (from GSE4115) in 163
patients with a suspicious lung lesion. (A) OCRI calculated in patients included in Spira et
al. study with or without lung cancer (p-value = 0.003); (B) Correlation between OCRI and
Spira biomarker score (r=0.69, p-value<0.0001).

Saintigny et al. Page 18

Cancer Prev Res (Phila). Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Saintigny et al. Page 19

Table 1

Characteristics of the 86 patients included in the gene expression study, and the whole population of the trial
that included 162 patients (BC: β-carotene; RP: retinyl palmitate; 13cRA: 13-cis-retinoic acid; NA: not
available)

Variable Whole population Patients included Patients not P -value

All patients 162 (100) 86 (100) 76 (100) <0.0001

No oral cancer 123 (76) 51 (59) 72 (95)

Oral cancer 39 (24) 35 (41) 4 (5)

Follow-up time of the censored observations 0.48

Median 7.47 7.11 7.71

Range(years) 0.19–15.31 0.92–15.31 0.19–12.73

Sex 0.97

Female 77 (48) 41 (48) 36 (47)

Male 85 (52) 45 (52) 40 (53)

Race 0.6

White 145 (89) 78 (91) 67 (88)

Other 17 (11) 8 (9) 9 (12)

Alcohol history 0.49

Current 93 (57) 49 (57) 44 (58)

Former 19 (12) 8 (9) 11 (14)

Never 50 (31) 29 (34) 21 (28)

Smoking history 0.009

Current 56 (35) 22 (25) 34 (45)

Former 65 (40) 35 (41) 30 (39)

Never 41 (25) 29 (34) 12 (16)

Age 0.57

Median 56 57.5 55

Range 23–90 23–90 27–81

Treatment arm 0.43

BC-RP 45 (28) 21 (24) 24 (31)

13cRA 81 (50) 47 (55) 34 (45)

RP only 36 (22) 18 (21) 18 (24)

Histology at baseline Dysplasia 0.19

Dysplasia 53 (33) 32 (37) 21 (28)

Hyperplasia 109 (67) 54 (63) 55 (72)

DeltaNp63 0.43

Low 109 (73) 57 (70) 54 (76)

High 40 (27) 24 (30) 17 (24)
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Variable Whole population Patients included Patients not P -value

Podoplanin 0.0009

Low 94 (63) 41 (51) 53 (77)

High 56 (37) 40 (49) 16 (23)
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