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Abstract

Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been
reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions
have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted
positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced
high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often
overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a
general linear model-based approach we were also able to control for age. We found that substructure was surprisingly
weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111
and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in
the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being
consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably
increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the
current debate concerning badger-culling.
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Introduction

Bovine tuberculosis (bTB) is caused by Mycobacterium bovis and

has been rising in incidence steadily in the UK herd over the last

20 years, costing taxpayers approximately 80 million pounds in

2007/08 [1]. Much research has focused on possible risk factors

for exposure, most notably badger proximity [2,3] but also farm

location, herd breakdown history and stocking practices [4,5].

Relatively little attention has yet been directed successfully towards

identifying possible genetic factors in the bovine host. This is

perhaps surprising given that there is good evidence that

susceptibility to tuberculosis has a genetic component in several

species including humans [6,7], wild boar [8,9] and cattle

[10,11,12].

Received wisdom appears to be that genotype-phenotype

associations are best found in cattle by genome-wide scans [12],

exploiting the large numbers of bovine single nucleotide

polymorphisms currently under development [13]. Since exposure

rates are likely to be highly variable and cow breeds may differ

genetically, the optimal design is thought to be based on a single

breed sampled from relatively few farms, allowing good matching

between cases and controls [12]. However, this approach is not

perfect. First, if few farms are sampled, acceptable sample sizes

would require many reactors to come from a single farm, implying

exposure rates that could be so high that even many ‘resistant’

cattle become infected, reducing the correlation between genotype

and phenotype and hence statistical power. Second, cows on

individual farms can be closely related, particularly through the

paternal line, making them non-independent observations. To

some extent farms may thereby create a further level of population

substructure. Third, variation in exposure undermines power in all

studies of infectious disease, such that large effect sizes are unlikely.

Consequently, genome-wide studies, where power is already

reduced through the need to control for large numbers of false

positives [14,15,16], may fail to find potentially significant

associations. Finally, standard, SNP-based approaches usually

focus on genetic effects that are dominant, recessive or additive

[17], forms that will be selected against by the test-and-slaughter

policy. Moreover, many immune genes exhibit heterozygote

advantage [18,19,20], a pattern that is not tested by many

popular packages.

In view of the above we chose an alternative, candidate gene

based approach, exploiting improved knowledge about genes most

likely involved in combating mycobacterial infection (see Meth-

ods), and opportunistically sampling small numbers of cattle from

each of many farms from a large catchment area. We also used
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tests of association that were either very general, or aimed

specifically at detecting heterozygote advantage. Our approach

therefore largely bypasses issues relating to false positives, untested

modes of inheritance and, though the high farm diversity, genetic

and environmental non-independence. The downside of our

approach is increased genetic and environmental heterogeneity.

Nonetheless, we are able to show strong associations to two

genomic locations, including one where a genotype consistently

gives 2–3 fold protection in each of nine different breeds.

Materials and Methods

Tissue sample collection
Tissue samples were collected opportunistically from a single

abattoir in the west of England between July 2008 and December

2008. ‘Case’ samples are from cattle that reacted positively to the

single intradermal comparative cervical tuberculin (SICCT) test

which measures the immunological response to tuberculin, an M.

bovis antigenic protein [21]. Such cattle are referred to as

‘reactors’, presumed to have been exposed to/been infected with

M. bovis and slaughtered. ‘Control’ samples comprise cattle from

the same abattoir that were not reactors, though this may have

been because they were untested. Skin samples were collected post

mortem from the distal edge of the ear using a stainless steel ear

notcher and stored in 96% ethanol. Ear tag numbers were checked

against abattoir records to confirm bTB reactor status, breed

designation and age at slaughter. Data on farms where cattle were

resident just prior to slaughter were extracted from the VetNet

RADAR database.

Marker selection
Using Gene Ontology (GO; www.geneontology.org) and a

literature review we identified a panel of eight polymorphic

microsatellites lying close to genes linked to M. tuberculosis, M. bovis

or other bacterial infections, summarized as MARKER (chromo-

some, gene): BMS495 (4, NOD1), BMS499 (17, TLR2),

BMC9006 (2, SLC11A1), BMS468 (23, TNF), BMS2753 (9,

IFNGR1), BMS2847 (8, TLR4), BMS2213 (18, NOD2) and

BOVILS84 (9, MAP3K7). Toll-like receptors (TLRs) and

nucleotide-binding oligomerization domains (NODs) are recognize

and bind to elements of a pathogen [22], and in experimental bTB

infections, TLR 2 and TLR 4 are down-regulated in cattle while in

mice NOD2 acts synergistically with TLR2 to control infection

[10,23]. The cytokine related genes, tumor necrosis factor (TNF)

and interferon-c receptor 1 (IFNGR1) function as signalers to the

immune system and are essential to elicit an appropriate response

to mycobacterial infection [24,25,26]. Solute carrier family 11 a1

(Slc11a1; also known as NRAMP1) has been implicated in

resistance to tuberculosis in humans, and possibly cattle

[27,28,29]. MAP3K7 was identified using GO. Two further

markers were also screened: INRA111 (chromosome 11) and

CP26 (chromosome 4). CP26 has been implicated in a study of

bTB in wild boar [9] while INRA111 was implicated in a study of

footrot in sheep (E. Smith, MS in review). Markers were identified

in the MARC (United States Department of Agriculture, Meat

Animal Research Center database) or STS (Sequence-Tagged

Sites) databases, using NCBI Map Viewer (www.ncbi.nlm.nih.

gov/mapview/) and version 4.0 of the Bos taurus genome.

For independent control of population substructure (see below),

we also screened 10 further microsatellite markers chosen

specifically to lie distant from known immune related genes

MARKER (chromosome, heterozygosity): BMS1787 (29, 67%),

BMS2573 (22,71%), BM4509 (13, 59%), BMS2513 (14, 62%),

BMS1720 (24, 54%), BL1043 (7, 63%), BMS1172 (4, 46%),

TGLA75 (15, 65%), MB065 (8, 76%) and BMS529 (10, 54%).

Finally, following identification of three putative associations in the

first round screen, nine further confirmatory markers were

developed in regions flanking INRA111 [TGLA327 (11, 35%),

INRA131 (11, 69%), BM7169 (11, 75%), 1at (11, 90%), 85a (11,

14%)], BMS2753 [TGLA73 (9,42%), BMS1724 (9,59%), BM7209

(9,73%)] and BMS495 [INRA072 (4, 55%)], using either MARC

or by developing new markers from microsatellites found in the

flanking sequences (1at and 85a). Primers for new markers were

designed using Primer3Plus (www.bioinformatics.nl/cgi-bin/

primer3plus/primer3plus.cgi) and all individuals were screened

at each accessory locus.

Microsatellite genotyping
Genomic DNA was prepared using phenol-chloroform extrac-

tion following Proteinase-K digestion. Microsatellites were ampli-

fied using a standard PCR protocol [30]. Cycling conditions were:

35 cycles of: 94uC for 4 m, 94uC for 45 s, 53uC, 55uC, or 57uC for

30 s and 72uC for 30 s. PCR products were resolved on

polyacrylamide gels and detected by direct incorporation of
33P-labelled nucleotides followed by autoradiography and manual

scoring. The genotyping error rate was determined by indepen-

dently regenotyping 72 randomly selected samples (,15% of the

entire dataset) and scoring by two observers (EED and JIH)

following Hoffman and Amos [30]. The resulting average error

rate was low, at 0.015 per single locus genotype.

Population structure correction
Population sub-structure can readily generate spurious geno-

type-phenotype associations when subsets of a population differ

both in exposure to disease and genetically [31,32]. We controlled

for possible substructure at three levels: reported breed, groups

identified by a Bayesian clustering algorithm, STRUCTURE

2.2.3 [33], and through continuous correction using a principal

components analysis (PCA, see below) [17]. The two latter

approaches were applied to data from our independent, presumed

neutral markers. STRUCTURE determines the likelihood that K

distinct genetic groups exist in a dataset. We specified 105 and 106

iterations for the burn-in and experimental period respectively and

conducted five independent runs for each value of K = 1–20,

specifying the correlated allele frequencies model and assuming

admixture. The most likely K was assessed both from the average

maximum likelihood across replicates.

Use of PCA is a relatively novel approach to correct for

substructure [17,34] and is applied to genetic data from an

independent set of neutral markers. The resulting PC scores place

individuals in an N-dimensional character space that closely

reflects their underlying relatedness to each other, where N is the

number of components computed, usually 10. By sequentially

normalizing both affected status (scored as 0, 1) and genotype at a

candidate locus by each component in turn, the effects of similarity

due to shared ancestry can be statistically removed. Any remaining

correlation between genotype and phenotype is then seen as

reflecting a genuine association, tested using the generalization of

the Armitage trend x2 statistic [35]. Although originally designed

for SNP-based studies, microsatellite data can be analysed by

recoding, with each allele becoming a pseudo-SNP, scored as 0, 1

and 2 for the number of copies carried by an individual.

Detecting genotype-phenotype associations
Beyond the PCA-based approach described above, we used two

further tests for genotype-phenotype associations. First, we tested

for heterozygote advantage by fitting a binomial General Linear

Model (GLM) with disease status (0, 1) as the response and single
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locus heterozygosity (scored as 0 or 1) plus ‘group’ and the

heterozygosity-group interaction terms as predictor variables.

Fitting ‘group’ ( = either breed or STRUCTURE group) controls

for variation in genotype frequencies between subsets of the total

sample. Significance of a term was determined through an

ANOVA test comparing two models, one with and one without

that term fitted. All models were fitted using R 2.10.1 [36].

Since the correlation in heterozygosity between a gene and a

nearby microsatellite is inevitably imperfect, statistical power may

be increased by testing for a general association between any

genotype and disease status [37]. The original test was based

initially on a 262 chi-squared test (case-control, high risk-low risk

genotype, where ‘high risk’ is defined as any genotype where the

individuals with this genotype include more cases than average)

with significance assessed by extensive randomization, each time

scrambling case-control status. The idea is that the initial chi-

squared value will be unusually large if a genuine genotype-

phenotype association is present. However, binary classification

tends to reduce statistical power [38]. Consequently, here we use a

modified form of the test based on a 2XN chi-squared test, where

N is the number of observed genotypes at a locus. Since singleton

genotypes are uninformative, they are combined into two

genotype classes: singleton heterozygotes and singleton homozy-

gotes. As before, significance is assessed non-parametrically by

counting the number of randomized runs that equal or exceed the

test statistic obtained using unscrambled data. Control for

population sub-structure is achieved by restricting the scrambling

to within a priori defined groups. An Excel macro for conducting

these tests, GEPHAST, is available at (http://www.zoo.cam.ac.

uk/zoostaff/meg/amos.htm).

The GEPHAST method was developed for use on categorical

data, particularly where binary classifications are possible.

However, the cow data we have include age, a variable that we

would ideally like to control due to the issue of dairy cattle living

longer and therefore having a higher chance of being exposed

than equivalent beef cattle. GEPHAST also lacks the capacity to

fit interaction terms that might be important, for example, if a

particular genotype correlates with reactor status in some breeds

but not others. As an alternative approach and for comparison we

therefore recoded the GEPHAST algorithm into R, replacing the

chi-squared tests with AIC values from a GLM as our test

statistic. Genotypes were fitted as factors and, given the number

of potential levels, we again did not interpret the model fits

directly but instead used genotype randomisation within breed/

STRUCTURE group. P-values are then expressed as the

proportion of randomisations that yielded AIC values equal to

or lower than the original value. A maximum of 100,000

randomizations were used in any one test and missing data were

excluded such that sample size remained constant across

randomisations.

Results

A total of 547 skin samples were collected during 12 visits to the

abattoir, representing 44 breeds or breed crosses ( = ‘breeds’)

collected from at least 109 farms (in four cases VetNet failed to

return data on farm origin). For most breeds the sample set tended

to be dominated by either reactors or non-reactors, but with four

breeds (Aberdeen Angus cross, Charolais cross, Limousin cross,

and Simmental cross) we obtained at least 14 reactors and at least

26 non-reactors. For study, we selected these animals along with

other less numerous breeds containing at least five reactors and

five non-reactors (total of 10 breeds comprising 160 reactors and

224 non-reactors = 384 total, see Table 1).

Bayesian cluster analysis
STRUCTURE revealed a best-fit value of K = 3, suggesting

rather weak populations substructure (Figure 1a). This view is

reinforced by inferred group membership, which seldom places an

individual with high confidence (.90%) in one of the groups. The

strongest split is between dairy and beef cattle, but even then not

all dairy cattle are placed in one group (Figure 1b) and all breeds

apart from the few Holsteins are distributed across multiple

groups. For association studies, the key issue is the extent to which

an individual’s genotype is predicted by factors that could also

predict disease exposure, such as farm and breed. To explore this

aspect directly, we used our ten neutral markers to calculate how

often cow-cow comparisons were identical for genotype/hetero-

zygosity, partitioned according to breed and farm identity. On

average, 18.2% and 62.8% of samples sharing both farm and

breed had identical genotypes and identical heterozygosity

respectively. This compares with 11.6% and 60.5% for cattle that

differ in both breed and farm, the difference for heterozygosity

being non-significant (paired t-test, mean difference = 0.023,

t = 1.86, d.f. = 9, P = 0.09). Interestingly, among cows from

different farms, being the same breed only increases the

probability of genotype identity from 11.6% to 12.8%, reinforcing

the notion that breed differences are slight.

Associations between genotype and reactor status
All results are summarized in Table 2. Testing for an impact of

straight heterozygosity while controlling for substructure by fitting

‘group’ ( = breed or STRUCTURE group) and the heterozygosity-

group interaction, reveals one strong association with INRA111

(P = 0.008, corrected for 40 tests) plus a suggestive association at

locus BMS2847 (P = 0.04, corrected for 40 tests) and three minor

associations, any or all of which may be false positives. For the

more general GEPHAST analysis, a strong association is found for

BMS2753 (P = 0.018, corrected for 30 tests) plus a borderline

significant association at INRA111 again. Applying the

GEPHAST analysis separately to each of the three groups defined

by STRUCTURE (assuming each group to be homogeneous)

reveals a striking pattern in which both INRA111 and BMS2753

yield highly significant associations in just one of the three groups

(P = 0.0002 and P = 0.0005 respectively, corrected for 30 tests).

Table 1. Numbers of samples used in this study, classified by
breed and reactor status.

Breed R NR Tot Farms

Aberdeen Angus 5 9 14 4(0)/6(1)

Aberdeen Angus x 14 29 43 5(0)/15(0)

Blonde d’Aquitaine x 21 6 27 4(0)/4(0)

Belgian Blue x 21 7 28 5(0)/7(0)

Charolais x 15 40 55 9(0)/21(0)

Hereford x 9 28 37 5(0)/13(1)

Holstein Friesian 30 8 38 11(0)/6(0)

Holstein 7 6 13 4(0)/5(0)

Limousin x 14 65 79 7(1)/28(1)

Simmental x 24 26 50 11(0)/18(0)

Total 160 224 384 42(1)/67(3)

R/NR/Tot = numbers of reactors/non-reactors/total. Farms = number of different
farms represented among the reactors/non-reactors. Numbers in brackets are
numbers of samples with missing farm information.
doi:10.1371/journal.pone.0018806.t001
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Three other loci yield weak associations that may be false positives.

Finally, when population structure is corrected continuously

through PCA, allele-specific associations are found at INRA111

and BOVILS84, neither of which remain after correction for 146

separate allele tests.

To explore three of these putative associations further, we

added further flanking markers to INRA111, BMS2753 and

BMS495, the latter included because it yielded borderline

significance in most of the tests applied to it. For heterozygosity

alone, an association with INRA111 is given further support from

loci 1at and INRA131. Of these, associations with locus 1at vary

greatly depending on what factors are fitted to control for

substructure. The reason lies with the small number [34] of

homozygotes at this locus. Most homozygotes [21] are reactors, a

significant overall excess (x2[1] = 7.8, P = 0.005). However, in one

breed, homozygote non-reactors are in excess, driving a strong

interaction term in GLMs where group = breed but reducing

significance when the breed with the converse trend is mixed with

other breeds to form a STRUCTURE group. Markers flanking

BMS2753 and BMS495 add little if any support for an association

with heterozygosity.

Since cow age may be a confounding factor influencing the

relationship between reactor status and genotype, we next

repeated the GEPHAST analysis using a program written in R

that allows use of general linear models as a test of association.

Since this also provides an interesting independent (in the sense of

algorithm plus code) comparison with the GEPHAST program,

we fitted four models (with and without age, with and without all

possible second order interaction terms) each for both group =

breed and group = STRUCTURE group. Results are summarised

in Table 3. In terms of the smallest P-values obtained, the GLM

results are in reasonable agreement with GEPHAST, ‘STRUC-

TURE group’ yielding more extreme P-values than ‘breed’ and

the top three markers being INRA111 and BMS2753 in the first

round, and BM7209 among the flanking markers. Also, as might

be expected, fitting the interaction term between group and

genotype in several instances caused a marked lowering of the P-

value, particularly for markers where in the GEPHAST analysis

one of the three STRUCTURE groups shows a strong effect not

seen in the other two. A good example is BMS2753. The impact of

age itself is quite variable. In some cases (e.g. INRA111,

group = breed), fitting age appreciably raises the P-value, perhaps

Figure 1. STRUCTURE analysis of cattle sampled in our study. Figure 1a: plot of K values against mean Ln P(D), error bars are 61 standard
error of the mean. Figure 1b: plot of individual cluster membership coefficients defined by STRUCTURE (K = 3). Breed groups are delineated by vertical
black lines and are identified above the figure (AA = Aberdeen Angus, HF = Holstein Friesian, HO = Holstein, HE = Hereford, BA = Blonde D’Aquitaine,
BB = Belgian Blue, CH = Charolais, LIM = Limousin, SM = Simmental; in all cases a terminal ‘X’ indicates a cross-breed).
doi:10.1371/journal.pone.0018806.g001
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suggesting that genotype was to some extent picking up an effect

due to a correlation between breed and age. Elsewhere, fitting age

sometimes appreciably lowers the P-value, in several cases

suggesting a hit that is not seen when age is not fitted. Examples

of this are BMS495 and NRAMP (BMC9006).

Discussion

Here we present an analysis of the relationship between

genotype and a positive reaction to the SICCT test for tuberculosis

in the British cattle herd. Using a candidate gene approach, six of

the ten markers we used gave evidence of an association between

reactor status and either genotype or heterozygosity. Adding

further markers to three putative associations yielded no, medium

and strong confirmatory evidence of an association.

A primary concern of association studies is the possibility that

population sub-structure causes spurious associations [31,32,39,40],

a problem that could be particularly acute in a study such as ours,

where diverse breeds may experience systematic differences in

disease exposure. For example, the majority of beef cattle are

slaughtered young, giving them a much reduced lifetime exposure

compared with equivalent dairy cattle. Similarly, farms differ greatly

in stocking density, levels of stock movements, presence of M. bovis,

proximity to badgers and other risk factors. Despite this concern,

substructure among Eurasian cattle seems surprisingly slight, with

one study based on 19 highly informative microsatellite markers

finding only six groups among 48 very diverse breeds [41] and no

structure was found in Bos indicus in Columbia [42]. Our results lend

further support, with only three poorly defined groups being found

and a low genotype identity probability that differed by only 30%

between cows from the same breed and farm and cows that differed

in both farm and breed. Importantly, we show that, at neutral loci,

heterozygosity is effectively uniform across all breeds and farms,

removing the potential for spurious associations to arise due to

substructure, yet still reveals several highly significant associations

with reactor status. Finally, we also controlled statistically for the

modest amount of genetic heterogeneity that is present, variously at

the level of ‘breed’, the level of three weakly defined genetic clusters

identified by STRUCTURE and through a continuous adjustment

afforded by the principal component-based approach.

The extent to which population sub-structure appears not to be

too big an issue in our study is illustrated by our most consistent

Table 2. Summary of tests of association between bTB and single locus genotype.

Heterozygosity Genotype Within groups PCA

Marker FullB IntB FullG IntG BRD GRP GP1 GP2 GP3

C INRA 111 0.007 0.04 261024 0.008 0.05 0.002 0.02 561026 0.09 0.003

C BMS2753 0.38 0.45 0.02 0.04 0.002 761024 0.17 0.07 261025 ----

C CP26 0.71 0.70 0.04 0.02 0.56 0.64 0.12 0.16 0.14 ----

C BMC9006 0.45 0.41 0.25 0.24 0.76 0.76 0.05 0.04 0.49 ----

C BMS499 0.78 0.80 0.23 0.52 0.76 0.47 0.14 0.15 0.31 ----

C BMS2847 0.003 0.001 0.62 0.42 0.86 0.79 0.73 0.38 0.54 ----

C BOVILS85 0.12 0.18 0.22 0.19 0.90 0.53 0.50 0.91 0.73 0.003

C BMS495 0.03 0.05 0.12 0.12 0.19 0.13 0.03 0.40 0.37 ----

C BMS468 0.86 0.86 0.73 0.73 0.62 0.43 0.45 0.65 0.66 ----

C BMS2213 0.17 0.15 0.27 0.23 0.88 0.81 0.02 0.15 0.07 ----

1 TGLA327 0.47 0.38 0.95 0.98 0.77 0.56 0.72 0.87 0.15 ----

1 INRA131 0.39 0.84 0.003 0.42 0.15 0.01 0.08 0.47 0.61 0.004

1 BM7169 0.66 0.67 0.45 0.32 0.03 0.004 0.40 0.45 0.006 0.01

INRA 111 ------ ------- ------- ------- ------ ------- ------- ------- ------- -----

1 1at 461025 0.001 0.04 0.54 0.70 0.57 0.37 0.14 0.18 ----

1 85A 0.36 0.27 0.19 0.11 0.52 0.41 0.35 0.10 0.45 ----

2 TGLA73 0.09 0.13 0.18 0.09 0.60 0.38 0.003 0.76 0.01 ----

BMS2753 ------ ------- ------- ------- ------ ------- ------- ------- ------- -----

2 BMS1724 0.04 0.03 0.09 0.04 0.10 0.05 0.007 0.02 0.59 ----

2 BM7209 0.78 0.76 0.19 0.44 0.03 661024 0.02 0.12 0.01 0.004*

BMS495 ------ ------- ------- ------- ------ ------- ------- ------- ------- -----

3 INRA072 0.15 0.13 0.26 0.29 0.39 0.26 0.12 0.61 0.58 ----

The first 10 markers are first round candidates, indicated by a ‘C’ in the first column. Other markers comprise three groups flanking INRA111, BMS2753 and BMS495,
indicated by numbers 1, 2 and 3 respectively in the first column. Each flanking marker is ordered around the first round association (dashed lines in table). Values in bold
type are significant at P#0.05, uncorrected for multiple tests. Heterozygosity (scored 0,1) is tested using general linear models of the form S,G+H+G*H, where
S = status (reactor/non-reactor), G = group (B = breed or G = STRUCTURE group) and H = heterozygosity. Significance was tested by using ANOVA to compare models
with and without the term(s) deleted (either all heterozygosity terms = Full, or just the interaction term = Int). Single locus genotype-phenotype associations were
determined using the program GEPHAST, controlling for possible substructure at the level of breed (BRD) or STRUCTURE group (GRP). The ‘‘within groups’’ columns
refer to GEPHAST tests performed on restricted datasets comprising only cattle assigned to each of the three STRUCTURE defined groups. PCA refers to allele-specific
association tests after correction for population substructure using a principal components analysis. Of a total of 146 tests, only those significant at P, = 0.01 are
reported.
*At locus BM7209 two different alleles were significant, the other at P = 0.008.
doi:10.1371/journal.pone.0018806.t002
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association, INRA111. Here, by inspection, the 2-2 homozygote is

‘protective’, in the sense of being consistently over-represented in

our non-reactor controls. Calculating effect size across all ten

breeds reveals a consistent pattern with all but the least numerous

breed showing an excess of 2-2 genotypes in non-reactors, with an

average odds ratio of 2.18 (Table 4). Such a consistent pattern

across many breeds cannot easily be explained as a spurious trend

and shows that high breed diversity does not prevent the detection

of robust patterns. INRA111 is also interesting with respect to one

farm that contributed many [18] BBX reactors of very similar age

that were likely, therefore, to be related to one another. These

individuals plus three reactors from other farms carry nine

different INRA111 genotypes and only one 2-2. By contrast, seven

non-reactor controls from at least four different farms include five

2-2 genotypes. This difference is highly significant (x2
[1] = 13.86,

P = 0.0002) yet is the exact converse of the pattern expected of an

artefact, where close relatives from a single farm and controls from

diverse farms should carry few and many different genotypes

respectively.

Age is likely to be a confounding factor in studies of bTB

susceptibility, either due simply to the fact that older cattle have

had more opportunity for exposure or through a correlation

between age and breed (and thence genetics), with dairy cattle

generally being slaughtered at an older age than beef cattle.

Another possibility is genuine association between the disease,

genetics and age. This might be manifest either as older cattle

being a biased subset of survivors, lacking some genetically

susceptible individuals that had died earlier from bTB (or become

reactors and been slaughtered) or other disease, or perhaps

through a direct correlation between genotype and age of

maximum susceptibility. We therefore investigated the impact of

age by fitting GLMs where age was fitted as a covariate, with or

without interaction terms with group and genotype. In many

cases, adding in age caused an appreciable change in P-value, but

not always in the same direction; in some cases the existing

association appeared stronger and in others weaker. This seems to

confirm the importance of considering age when studying the

epidemiology of bTB but also shows that the relationship is by no

means simple. Where significance is reduced, this presumably

indicates a potentially spurious association driven, for example, by

age providing a surrogate measure for breed or group. However,

when significance is actually increased, this suggests that the

genetic association is genuine, with age reducing the error variance

and helping to expose a link to reactor status. These results

together emphasize the importance of considering both genetics

and the environment, and the dangers of considering either on

their own.

Beyond the issue of genetic substructure and confounding

factors such as age, the second persistent problem of association

mapping is that of false positives [14,16]. However, this is much

Table 3. Impact of fitting age in general linear models testing the strength of association between genotype and reactor status for
the SICCT test of exposure to bovine tuberculosis.

Marker A*B*G A+B+G B*G B+G A*S*G A+S+G S*G S+G

C INRA 111 0.11 0.07 0.004 0.1 0 0.005 0 0.004

C BMS2753 0.6 0.007 0.23 0.018 0 0.001 0.00005 0.003

C CP26 0.68 0.17 0.37 0.12 0.21 0.22 0.03 0.1

C BMC9006 0.005 0.36 0.11 0.39 0.004 0.52 0.01 0.57

C BMS499 0.81 0.42 0.57 0.41 0.17 0.31 0.21 0.36

C BMS2847 0.34 0.54 0.14 0.44 0.21 0.06 0.26 0.1

C BOVILS85 0.57 0.45 0.41 0.36 0.84 0.26 0.8 0.21

C BMS495 0.015 0.04 0.0006 0.097 0.06 0.006 0.03 0.06

C BMS468 0.008 0.57 0.05 0.6 0.47 0.47 0.72 0.75

C BMS2213 0.17 0.79 0.12 0.83 0.002 0.62 0.01 0.83

1 TGLA327 0.01 0.32 0.03 0.26 0.34 0.49 0.59 0.33

1 INRA131 0.85 0.96 0.5 0.94 0.13 0.19 0.28 0.08

1 BM7169 0.82 0.09 0.1 0.051 0.008 0.01 0.03 0.009

INRA 111 ------ ------ ------ ------ ------ ------ ------ ------

1 1at 0.05 0.13 0.01 0.26 0.56 0.31 0.67 0.47

1 85A 0.93 0.69 0.74 0.62 0.14 0.28 0.08 0.23

2 TGLA73 0.14 0.11 0.02 0.14 0.14 0.29 0.003 0.34

BMS2753 ------ ------ ------ ------ ------ ------ ------ ------

2 BMS1724 0.019 0.002 0.04 0.002 0.002 0.002 0.001 0.002

2 BM7209 0.02 0.09 0.03 0.06 0.001 0.0001 0.0002 0.00005

BMS495 ------ ------ ------ ------ ------ ------ ------ ------

3 INRA072 0.7 0.9 0.47 0.84 0.42 0.85 0.55 0.69

Each model is fitted with response variable reactor status (0 = positive test, 1 = negative test) and group (either breed, ‘B’, or STRUCTURE group, ‘S’, fitted as a factor) and
genotype (‘G’, fitted as a factor) either with or without age at slaughter (‘A’, fitted as a covariate. Models either included (*) or did not include (+) all possible second
order interactions between terms. Significance was assessed by repeatedly resampling genotype within breed/group without replacement and refitting the model. As
in Table 2, significant P-values (P,0.05, uncorrected for multiple tests) are highlighted in bold. P-values of 0 indicate none of 100,000 randomizations exceeded the
initial observed value.
doi:10.1371/journal.pone.0018806.t003

Genetic Susceptibility to Tuberculosis in Cattle

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e18806



reduced when a candidate gene approach is adopted. In our case,

despite much repeat testing to examine different forms of possible

association, we still conducted fewer than 500 statistical tests

overall, many of which involved the PCA structure correction

where every allele is tested separately, yet we still found three tests

that were significant experiment-wide. More realistic is to consider

each set of tests separately (heterozygosity, GEPHAST and PCA),

and to correct for false positives only within each set. When this is

done, more associations can reasonably be treated as significant,

many of which corroborate each other in the sense of linking the

same locus or genomic region to reactor status. Thus, while some

of our results must be attributable to type I errors, the majority of

lower P-values (say, P,0.005) are likely to be genuine associations

between genotype and reactor status, particularly for the two

strongest and most consistent associations, INRA111 and

BMS2753.

Despite considerable concordance between the different tests,

there is also appreciable heterogeneity. Thus, BOVILS84 reveals

an association with PCA alone, while BM2753 reveals strong

associations with the GEPHAST but not heterozygosity. This is to

be expected. The PCA approach assumes an ordering of effect

where one homozygote is most susceptible and the other is least, a

pattern that is not compatible with heterozygote advantage.

GEPHAST tests for any genotype association and should show

overlap with both PCA and heterozygosity, though might be less

powerful when the assumptions of the other two tests are met well.

In this respect, INRA111 is interesting because it yields significant

associations with all three methods, but spectacularly so for

GEPHAST in group 2. By inspection, despite this group being

defined by an independent set of markers and containing all

breeds sampled, the protective 2-2 genotype comprises only 28%

(n = 50) reactors but 72% (n = 81) non-reactors, a large excess

(x2
[1] = 23.7, P = 1.161026). Since 2-2 s are numerous, this

pattern is also significant in the heterozygosity test.

Heterogeneity is also present in terms of the strength of effect

found at any given locus in the three STRUCTURE groups,

where both INRA111 and BMS2753 show strong associations in

one group but substantially weaker trends in the other two.

Similarly, despite little variation in heterozygosity across breeds

and STRCTURE groups, in tests of association with heterozy-

gosity, the interaction term is often significant. Such heterogeneity

is consistent with human studies where susceptibility/resistance

factors involve different genes and/or different allele-specific

associations in different populations [43]. To discover whether this

is primarily due to recombination events reducing the correlation

between genotype and phenotype, or to a genuine difference in

which gene(s) most impact on bTB susceptibility/resistance

requires further study. Nonetheless, it is clear that a single breed

tells only part of the full story. Indeed, if we had sampled mainly

cows from STRUCTURE group 1 the strength of our two biggest

associations would have been markedly reduced. Note, this huge

variation in size of effect of INRA111 among the three

STRUCTURE groups seems at odds with the relative uniformity

of association between the 2-2 genotype and reactor status across

breeds. By inspection, this seems to be due to STRUCTURE

which, despite being applied to a panel of unlinked, neutral

markers, clusters cows with similar genotype-phenotype associa-

tions. This could plausibly arise if shared paternity by particular

bulls/related bulls strongly influences group membership, but this

is clearly an area where more research is needed.

As they stand, and despite already being rather strong, the sizes

of the genetic effects we report are almost certainly under-

estimates. First, being microsatellites, our markers only ever reflect

imprecisely what is happening at a neighbouring gene. If the

mutation causing the actual effect could itself be found and

genotyped as a SNP, we would expect to see an appreciable and

possibly large rise in effect size. Second, as discussed, our sample

set suffers from high heterogeneity both for likely disease exposure

and host genotype. A measure of the true effect size is only possible

when both these sources of variability are reduced, for example by

collecting enough samples to study key breeds separately. Another

option would be to add genotype data to existing models of

environmental risk factors. Third, the SICCT test itself can be

somewhat ambiguous, variously reflecting exposed, recovered and

currently affected animals. In our sample of reactors, just under

half had visible lesions and in a subset of these only 44% yielded

culturable M. bovis. Equally, some proportion of our control

samples probably derive from genetically susceptible but unex-

posed animals. In both cases any genotype-phenotype correlation

will be weakened, reducing statistical power [44]. Having said this,

Table 4. Distribution of 2-2 genotypes at locus INRA111 among reactors and non-reactors drawn from 10 breeds of cattle.

Breed R = 2-2 R?2-2 NR = 2-2 NR?2-2 pR pNR diff OR 95%CI

AA 4 1 9 0 0.8 1.00 0.20 NA NA

AAX 10 4 22 7 0.71 0.76 0.04 1.25 0.298–5.29

BAX 6 14 5 1 0.30 0.83 0.53 11.7 1.1–122

BBX 1 20 5 2 0.05 0.71 0.66 50 3.74–668

CHX 8 7 28 12 0.53 0.70 0.17 2.04 0.6–6.9

HEX 2 7 14 15 0.22 0.48 0.26 3.27 0.58–18.4

HF 20 10 7 1 0.67 0.88 0.21 3.5 0.38–32.5

HO 4 3 2 4 0.57 0.33 20.24 0.375 0.039–3.6

LIMX 8 5 43 21 0.62 0.67 0.06 1.28 0.37–4.39

SMX 17 6 19 5 0.74 0.79 0.05 1.34 0.35–5.2

Total 80 77 154 68 0.52 0.69 0.18 2.18 1.43–3.32

Raw counts are given in columns two to five, where R = 2-2 indicates reactors with the 2-2 genotype and NR?2-2 indicating non-reactors who do not have the 2-2
genotype. These are summarized in terms of the proportions of all animals in each breed who are reactors and non-reactors (pR and pNR), and the difference between
the two calculated (diff). Finally, the odds ratio (OR) of being a non-reactor given the cow has a 2-2 genotype is given for each breed apart from AA, where only one non
2-2 genotype was found, along with the upper and lower 95% confidence intervals.
doi:10.1371/journal.pone.0018806.t004
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even at our current effect size, INRA111 in particular looks

promising as a marker that could be used to inform breeding

strategies aimed at increasing genetic resistance: the 2-2 genotype

is already fairly common in all breeds and shows on average more

than twofold protection. Naturally, this might inadvertently

increase the frequency of a linked deleterious trait, though the

relatively high frequency of the 2 allele across many breeds argues

that this is unlikely to present a major problem.

Our two strongest associations are BMS2753 and INRA111.

BMS2753 was chosen for its proximity to IFNGR1 and lies in a

region containing several immune-related genes, including inter-

leukin (IL) 20RA, IL22RA2, and TNF alpha-induced protein 3.

Further work is needed to identify exactly which gene(s) is

involved. In contrast, INRA111 was included because of a

tentative association with ovine footrot and lies in a poorly

defined region of the current version of the cow genome that was

elsewhere shown to be associated with mastitis [45]. Using BLAST

to cross to the human and horse genomes we find unique, highly

significant (E-score,102100) associations with the same nearest

features of ASB3 (a compound locus described as ankyrin repeat

and suppressor of cytokine signaling (SOCS) box protein 3).

SOCS-3 can act to inhibit cytokine signaling to immune pathways

and has been identified as playing a role in combating

mycobacterial infections, making it a plausible candidate gene

[46], even though this was not the reason it was initially selected.

Finally, it is worth mentioning CP26 and BMC9006, two markers

yielding less strongly supported associations that are perhaps

worthy of further study.

Conclusions
In conclusion, we have successfully applied an unusual approach

to the task of finding genetic factors that influence susceptibility of

cattle to bTB, as indicated by the SICCT test, focusing on

heterozygote advantage in microsatellites near candidate genes

screened in a sample of cattle from diverse breeds and farms. We

show that population substructure is not as big a problem as many

believe. Instead, strong associations extend across breed groups and

in one case a single genotype consistently exhibits approximately

twofold protection. Assuming the SICCT test reflects genuine

susceptibility, this implies considerable promise for increased

resistance through selective breeding. Our study illustrates the

benefits of marrying ‘small science’ and ‘big science’ and may

impact on the heated debate concerning the role of badgers in

transmission, because the greater the proportion of variation in

reactor status that can be ascribed to the host genetics, the less there

is left to explain by other factors such as badger proximity.
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Science 298: 1797–1800.

19. Lyons EJ, Amos W, Berkley JA, Mwangi I, Shafi M, et al. (2009) Homozygosity

and risk of childhood death due to invasive bacterial disease. BMC Med Genet

10: 55.

20. Amos W, Bryant C (2010) Using human demographic history to infer natural

selection reveals contrasting patterns on different families of immune genes.

Proc R Soc B (online early).

21. de la Rua-Domenech R, Goodchild AT, Vordermeier HM, Hewinson RG,

Christiansen KH, et al. (2006) Ante mortem diagnosis of tuberculosis in cattle: a

review of tuberculin tests, y-interferon assay and other ancilliary diagnostic

techniques. Res Vet Sci 81: 190–210.

22. Strober W, Murray PJ, Kitani A, Watanabe T (2006) Signalling pathways and

molecular interactions of NOD1 and NOD2. Nature Rev Immunol 6: 9–20.

23. Ferwerda G, Girardin SE, Kullberg B-J, Le Bourhis L, de Jong DJ, et al. (2005)

NOD2 and Toll-like receptors are non-redundant recognition systems of

Mycobacterium tuberculosis. PLoS Path 1: e34.

24. Buddle BM, Wedlock DN, Denis M, Skinner MA (2005) Identification of

immune response correlates for protection against bovine tuberculosis. Vet

Immunol Immunopath 108: 45–51.

25. Waters WR, Palmer MV, Whipple DL, Carlson MP, Nonnecke BJ (2003)

Diagnostic implications of antigen-induced gamma interferon, nitric oxide and

tumour necrosis factor alpha production by peripheral blood mononuclear cells

from Mycobacterium bovis-infected cattle. Clinic Diag Lab Immunol 10: 960–966.

Genetic Susceptibility to Tuberculosis in Cattle

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18806



26. Singhal A, Jaiswal A, Arora VK, Prasad HK (2007) Modulation of gamma

interferon receptor 1 by Mycobacterium tuberculosis: a potential immune response

evasive mechanism. Infect Immun 75: 2500–2510.

27. Bennett S, Lienhardt C, Bah-Sow O, Gustafson P, Manneh K, et al. (2002)

Investigation of environmental and host-related factors of tuberculosis in Africa.

II Investigation of host genetic factors. Am J Epidem 155: 1074–1079.
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