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Abstract
Peroxisome Proliferator-Activated Receptors (PPAR)-γ belongs to the nuclear hormone receptor
superfamily of ligand-dependent transcription factors. It is a mediator of adipocyte differentiation,
regulates lipid metabolism and macrophage function. The ligands of PPAR-γ have long been in
the clinic for the treatment of type II diabetes and have a very low toxicity profile. Activation of
PPAR-γ was shown to modulate various hallmarks of cancer through its pleiotropic affects on
multiple different cell types in the tumor microenvironment. An overwhelming number of
preclinical-studies demonstrate the efficacy of PPAR-γ ligands in the control of tumor progression
through their affects on various cellular processes, including cell proliferation, apoptosis,
angiogenesis, inflammation and metastasis. A variety of signaling pathways have been implicated
as potential mechanisms of action. This review will focus on the molecular basis of these
mechanisms; primarily PPAR-γ cross-regulation with other signaling pathways and its relevance
to lung cancer therapy will be discussed.
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Introduction
Lung cancer is the leading cause of cancer death, [1] and every year 1.2 million new cases
are diagnosed worldwide. Despite improvements in diagnostic imaging, surgery,
radiotherapy and chemotherapy, the overall survival for lung cancer remains poor with only
14% of patients surviving 5 years from the date of diagnosis. This underscores the desperate
need for novel strategies for early detection, prevention and treatment of this disease. PPAR-
γ is known to be expressed in both human SCLC and NSCLC cell lines [2,3]. The
expression status of PPAR-γ was shown to correlate with differentiation status and survival
in the lung cancer patients [4,5]. Many PPAR-γ ligands were shown to inhibit tumor growth
and progression in preclinical models of lung cancer, by modulating various cellular
processes in cancer cells, stromal cells and tumor microenvironment. They do so by
influencing various signaling pathways in a PPAR-γ-dependent manner (Figure 1). In
addition, these ligands also employ other novel mechanisms including PPAR-γ-independent
mechanisms to exert their anti-neoplastic affects.

PPARs are members of the nuclear hormone receptor superfamily that includes receptors for
steroids, thyroid hormone, vitamin D, and retinoic acid [6]. PPARs are transcription factors
that upon ligand binding regulate both target gene expression and repression [7]. To date,
three isotypes of PPARs called PPAR-α, PPAR-γ and PPAR-δ have been identified [8,9].
Each of these three subtypes display differential tissue distribution and mediate specific
functions such as early development, cell proliferation, differentiation, apoptosis and
metabolic homeostasis [10]. PPAR-γ is highly expressed in adipose tissue and it is a master
regulator of adipocyte differentiation [11,12]. PPAR-γ is also expressed in multiple other
tissues, such as breast, colon, lung, ovary, prostate and thyroid [13]. A single PPAR-γ gene
is transcribed into three isoforms namely PPAR-γ1, PPAR-γ2, PPAR-γ3 and PPAR-γ4
utilizing four different promoters [8]. However PPAR-γ1 and γ3 transcripts both translate
into the same PPAR-γ1 protein. PPAR-γ2 protein contains an additional 30 aminoacids at N-
terminus compared to PPAR-γ1, which contribute to its constitutive transcription activation
function that is 5–6-fold greater than PPAR-γ1 [14].

PPAR-γ receptors are activated by several lipophilic ligands, including long-chain
polyunsaturated fatty acids and several eicosanoids. The cyclopentone prostaglandin J2, was
suggested to be the most potent endogenous ligand for the PPAR-γ receptor and is the most
commonly used naturally occurring PPAR-γ agonist [15,16]. A wide range of synthetic
PPAR-γ ligands have been developed. The most widely used synthetic agents belong to the
thiazolidinedione class of antidiabetic drugs, that include ciglitazone, troglitazone,
pioglitazone and rosiglitazone (also referred to as glitazones or TZDs). Some of the
glitazones were already in clinical use as insulin sensitizers in type 2 diabetic patients [17].
Non-thiozolidinedione compounds such as isoxazolidinedione JTT-501 [18] and the
tyrosine-based GW7845 [19] are also identified as PPAR-γ ligands along with several plant
derived compounds. [20–22].

Activation of PPAR-γ plays an inhibitory role in cell proliferation and growth by virtue of
its differentiation inducing ability. This property makes PPAR-γ activation by natural and
synthetic ligands an attractive tool in cancer treatment and prevention. The precise
mechanism(s) linking modulation of PPAR-γ with cancer growth inhibition is been
elucidated. PPAR-γ ligands exert their effects through both PPAR-γ dependent and
independent pathways, often triggering crosstalk with other signaling pathways (Figure 1).
Better understanding of the biological role of PPAR-γ and its ability to trigger crosstalk with
other cell signaling pathways would allow rational development of selective PPAR-γ
modulators, and for targeting aspects of PPAR-γ biology that are implicated in tumor
progression. This review will focus on the mechanisms of cross-regulation between PPAR-γ
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activation and signaling pathways that regulate hallmarks of a cancer cell and will discuss
the implications of this cross-talk for lung cancer therapy.

Mode of Action
Similar to other nuclear hormone receptors, PPARs contain five distinct regions A/B, C, D,
E and F [23]. C and E domains contain a highly conserved DNA-binding domain (DBD) and
a moderately conserved ligand-binding domain (LBD), respectively. The amino-terminal A/
B domain contains the AF1 domain which is implicated in ligand-independent activation. F
region contains a ligand-dependent activation domain, AF2. The D domain harbors a
variable hinge region and acts as docking site for co-factors. PPAR-γ binds to its response
elements (PPRE) in the promoter region of target genes through its DBD [24]. LBD is
responsible for ligand specificity and activation of PPAR-γ binding to PPRE. Recruitment of
co-factors occurs on AF2, located in the F region. The E/F domain also includes a region
involved in dimerization with the partner nuclear receptor, RXR [25].

Similar to other members of the nuclear hormone receptor superfamily, PPAR-γ functions as
a heterodimer with the retinoid X receptor (RXR). PPAR binds to 5′repeat unit of PPRE as a
heterodimer with RXR bound to the 3′ repeat. PPRE contain repeats of the sequence
AGGTCA separated by one or two nucleotides (known as DR-1 or DR-2 response elements,
respectively) and has been found in the promoter regions of most PPAR-γ target genes [26].
In the absence of ligand activation PPAR/RXR bind to various transcription co-repressors
(nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone
receptors, NCoR/SMRT) and histone deacetylases (HDACs), preventing the binding of
PPAR-γ/RXR to DNA [26]. After ligand binding PPARs undergo conformational change,
recruit certain co-activator complexes (p300/CBP, p160, etc.) to displace co-repressors and
the heterodimer binds to DNA on PPRE of the target genes. This results in the recruitment
of additional factors (TRAP, DRIP, etc.), disruption of nucleosomes, and chromatin
reorganization, facilitating the entry of general transcriptional machinery such as RNA Pol II
to promote transcription [27].

PPAR-γ can also negatively regulate expression of some pro-inflammatory genes by a
mechanism that does not involve PPAR-γ binding to its response elements, which is termed
as transrepression [28–30]. No unifying model was established to account for
transrepression activity of PPARs. The proposed models include direct protein – protein
interactions with other transcription factors, competing for co-activators, interacting with co-
repressors and regulation by kinase activity [26]. Specific examples and the proposed
mechanisms will be discussed in the subsequent sections of the review.

Regulation of PPAR-γ Function by Growth Factor Signaling
Several studies have implicated a role for growth factor induced mitogen-activated protein
kinase (MAPK) activation in the regulation of PPAR-γ function. It was shown that ERK,
JNK and p38 MAPKs phosphorylate a consensus-MAPK motif (PXSPP) located in N-
terminal AF-1 domain of PPAR-γ and thereby significantly inhibit its ligand-independent
and ligand-dependent transcriptional activation [31–33]. Growth factor activated MAPKs
phosphorylate Ser84 (Ser 82 in mouse) on PPAR-γ1 or Ser114 (Ser 112 in mouse) on
PPAR-γ2 in humans [34,35]. Consistently, mutating Ser84 or Ser112 prevents PPAR-γ
phosphorylation as well as the growth factor-mediated transcriptional repression [32].
Furthermore, deletion of consensus MAPK phosphorylation motif in PPAR-γ confers
enhanced transcriptional activity [36]. It was also shown that N-terminal phosphorylation
results in reduced ligand-binding affinity through inter domain communication between the
phosphorylated AF-1 domain and the ligand-binding pocket, resulting in the negative
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regulation of PPAR-γ activity [37]. Apart from this-on mitogenic stimulation, phospho-
MEK directly interacts with PPAR-γ. This leads to rapid export of PPAR-γ-MEK complex
from nucleus to cytoplasm through the Nuclear Export Signal (NES) of MEK, thus reducing
transcriptional activity of PPAR-γ. MEK does not significantly phosphorylate PPAR-γ
[35,36].

Various in vivo studies have established that growth factor activated MAPK cascades
regulate PPAR-γ function to control the balance between proliferation and differentiation in
certain cell types. During adipogenic differentiation of mesenchymal stem cells, co-
operation between PPAR-γ and MEK1 facilitates the adipogenic program by MEK1-
dependent induction of the C/EBPα gene [38]. Consistently, inhibition of MEK attenuates
high glucose enhanced adipogenesis and PPAR-γ expression in bone marrow-derived
mesenchymal stem cells [39]. Mice with the knocked-in S82/112A mutant allele of PPAR-γ
exhibit resistance to diet-induced obesity. Furthermore PPAR-γ phosphorylation on Ser 112
by ERK in Dok1 knockout embryonic fibroblasts exhibit defective adipogenic
differentiation [40]. Interestingly, MAPK signaling can also modulate PPAR-γ functions by
regulating the expression of co-factors needed for PPAR-γ transcriptional activation [41].
From the above examples, though the significance of PPAR-γ regulation by MAPKs is
evident in normal physiology, its role in the cancer cell survival is not well understood. In
cancer cells where MAPK signaling is elevated due to enhanced growth factor signaling, it
is assumed that differentiation promoting functions of PPAR-γ are attenuated. Therefore,
reactivation of PPAR-γ, by its ligands was used as a therapeutic approach to promote
differentiation and growth inhibition of cancer cells. However, in certain instances MAPK
activation is known to co-operate in mediating the biological effects of PPAR-γ.
Troglitazone induced a sustained ERK1/2 activation, concurrent with growth inhibition in
lung cancer cells, suggesting that in some cell types, PPAR-γ ligands utilize ERK-pathway
to promote growth inhibition [2,42]. Consistently, there are reports demonstrating that
sustained ERK activation can induce apoptosis and differentiation in cancer cells [42,43].

Inhibition of Pro-inflammatory Pathways by PPAR-γ Activation
Anti-inflammatory activity is one of the first non-diabetic functions attributed to PPAR-γ
and its ligands. PPAR-γ agonists rosiglitazone, troglitazone and 15d-PGJ2 were shown to
abrogate the expression of pro-inflammatory genes such as nitric oxide synthase (iNOS),
matrix metalloproteinase 9 (MMP-9), and scavenger receptor A in murine macrophages [44]
and TNF-α, IL-1β, and IL-6 in human monocytes [45]. Anti-inflammatory actions of PPAR-
γ are dependent on its ability to antagonize the transcriptional regulation of NF-κB, AP-1
and STAT [44,46]. However, rather than having a broader effect, PPAR-γ lignads were
reported to selectively inhibit only a subset of genes driven by above transcription factors.
For example, rosiglitazone inhibits LPS-induced MMP-9 expression, but not the LPS-
induced IL-8 expression [47]. In another mechanism, PPAR-γ is proposed to mediate
transrepression of a subset of LPS induced inflammatory genes in macrophages by
preventing the clearance of co-repressor complexes from their promoters. Under basal
conditions, iNOS gene promoter is occupied with NCoR/HDAC3/TBL/TAB2 complexes
[48] and following LPS stimulation the NCoR and HDAC3 components is cleared from
iNOS promoter by ubiquitin ligases. Interestingly, on agonist binding SUMOylated PPAR-γ
was shown to localize to NCoR complexes on the iNOS promoter and prevents its removal
by ubiquitination-dependent mechanism. Mutataion of K365 SUMOylation site on PPAR-γ
prevents its ability to repress iNOS promoter [30]. Similar results were obtained for
additional endogenous LPS-target genes including Ccl3, Ccl7, Cxcl10 and Tgtp, indicating
that this mechanism of transrepression is not specific for the iNOS promoter. In addition,
repression of only a subset of LPS-target genes by NCoR complexes indicates a PPAR-γ-
specific repression rather than a general repression of all LPS target genes [30].
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NF-κB is the master regulator of inflammatory responses. PPAR-γ is able to attenuate NF-
κB function either by directly interfering with the transcription activating capacity of the
NF-κB complex [49] or indirectly, by regulating proteins that suppress activation of NF-κB
or by competing for the proteins that are essential for NF-κB function through a process
known as squelching [50,51]. Ciglitazone block LPS-induced IL-12 production in murine
macrophages and promote apoptosis in HT-29 cells by inhibiting the activity of NF-κB
through direct protein-protein interaction between NF-κB subunits and PPAR-γ [49,52]. In
another mechanism, PPAR-γ was shown to prevent the up regulation of p53 as well as its
effector p21 in MCF-7 cells by replacing the NF-κB from its binding sites on the p53
promoter [53]. Alternatively, PPAR-γ inhibits NF-κB activity indirectly either by inducing
the expression of IκBα [54], an inhibitor of NF-κB or inhibiting the IKK activity, which
prevents IκBα degradation [55,56]. Even though regulation of IκBα by PPAR-γ was not
demonstrated, activation of PPAR-α in human smooth muscle cells was shown to increase
IκBα levels by transcriptional activation [57]. The other common indirect mechanism of
inhibition employed by PPARs, is competing for the limited pool of transcriptional co-
activators such as p300, CREB-binding protein, C/EBPb and GRIP-1/TIF-2) [58,59].
However, in many cases the role of co-regulators in transrepression by PPAR-γ were
deduced from studies utilizing over-expression systems and transient transfections
experiments, which do not necessarily reflect the actual scenario of transrepression observed
at naturally occurring levels of coregulators. Therefore, there is a need to address these
issues using appropriate experimental model systems. Similarly, direct and indirect
mechanisms are implicated in PPAR-γ-mediated inhibition of other pro-inflammatory
transcription factors including AP-1, C-JUN, STATs, and NFAT [58].

Activation of PPAR-γ Antagonizes TGF-β Signaling
Transforming growth factor (TGF-β) is a multifunctional cytokine involved in the regulation
of cell proliferation, differentiation and extracellular matrix production. Upon TGF-β
binding, the type II (TGFβRII) receptor heterodimerizes with type I (TGFβRI) TGF-β
receptor at the cell surface and that results in phosphorylation of R-Smads (Smad2 and
Smad3). R-Smads heterodimerize with Smad4, and translocate into the nucleus to induce
transcription of target genes [60,61]. During early stages when response to TGF-β in cells is
normal, it inhibits tumorogenesis. Whereas, in later stages of tumor progression when
genetic or epigenetic alterations in multiple pathways overcome the tumor suppressor
activity, resulting in the pleiotropic tumor promoting roles for TGF-β [62]. Although the
exact mechanism remains to be defined, mutual interference between PPAR-γ and TGF-β
signaling pathways has been reported at multiple levels including phosphorylation of PPAR-
γ, repression of PPAR-γ gene expression, and the interaction of PPAR-γ and Smad3 [63].

In hepatobiliary cells PPAR-γ activation inhibits the tumor suppressive activity of TGF-β by
inhibiting Smad transcriptional activity. In these cells, TGF-β treatment simultaneously
activates Smad-mediated gene transcription and phosphorylation of cPLA2α, wherein
phosphorylation of cPLA2α initiates two signaling pathways that counteract Smad-mediated
growth inhibition, including activation of its G-protein-coupled receptor EP1 through PGE2
and activation of PPAR-γ. Antisense inhibition of cPLA2α or siRNA-mediated depletion of
PPAR-γ enhances TGF-β-mediated Smad activation and partially restores the growth
inhibition by TGF-β [64]. On the other hand, PPAR-γ activity was inhibited by TGF-β,
during adipogenic differentiation, by decreasing the expression of both C/EBPα and C/
EBPβ, which are important co-regulators of PPAR-γ [65]. The basis for such a mutually
antagonistic affect between PPAR-γ and TGF-β is not clear. Recently it has been
demonstrated that Cited2 (CREB-binding protein/p300-interacting transactivator with ED-
rich tail 2) protein functions as a transcriptional co-activator for both TGF-β [66] and PPAR-
γ [67] and competing for the shared common transcriptional co-activator may result in
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mutual antagonism. Contrary to above examples, in vascular smooth muscle cells (VSMCs)
PPAR-γ activation by pioglitazone was reported to exert direct anti-atherosclerotic and anti-
restenotic effects by inducing apoptosis through increased TGF-β levels and translocation of
phospho-Smad2 into nucleus. This effect was blocked either by using PPAR-γ antagonist
GW9662 or anti-TGF-β1 antibody or activin receptor-like kinase inhibitor (SB-431442),
demonstrating the TGF-β-dependent regulation of PPAR-γ signaling [68].

Accumulating evidence suggests that the activation of PPAR-γ can also interfere with the
TGF-β signaling in the tumor microenvironment. In advanced stages of cancer, TGF-β is
known to induce activation of fibroblasts to myofibroblasts [69]. Myofibroblasts serve as
major stromal source of extracellular matrix proteins, especially fibrillar collagens,
fibronectin, proteoglycans, MMPs, cytokines and chemokines that are involved in
chemoresistance, angiogenesis, tumor migration, invasion and metastasis. Myofibroblasts
affect the cancer progression by secreting and organizing altered ECM within the tumor
stroma [70]. Both natural and synthetic PPAR-γ agonists are reported to suppress the
activation of fibroblasts into myofibroblasts [71]. PPAR-γ ligands 15d-PGJ2, ciglitazone and
rosiglitazone inhibited TGF-β-driven myofibroblast differentiation as well as type I collagen
production in human lung fibroblasts without affecting their viability [71]. Pioglitazone
attenuates the induction of fibronectin and its spliced variant EDA+FN by TGF-β in human
mesangial cells [72]. Similarly pioglitazone counteracts fibronectin activated invasion of
breast carcinoma through the suppression of TGF-β signaling. TGF-β is also a potent
inducer of the process known as EMT which is implicated in the dissemination of individual
cancer cells to distant organs for metastasis [69,73]. Activation of PPAR-γ was shown to
inhibit EMT at least in the context of fibrosis [74]. We have recently shown that activation
of PPAR-γ inhibits tumor metastasis in lung cancer cells by antagonizing Smad3-mediated
EMT [63].

Implications for Lung Cancer Therapy
Several independent studies including ours, demonstrated that various ligands of PPAR-γ
induce differentiation of lung cancer cells and inhibit their growth. Transcriptional
activation of PPAR-γ by ciglitazone or PGJ2 was shown to induce general (gelsolin, PPAR-
γ, Mad, and p21) as well as lineage specific (MUC1, SP-A, CC10, and HTI56)
differentiation markers in lung cancer cells making them less tumorigenic [75].
Interestingly, this differentiation response was observed only in the presence of serum in the
culture medium where PPAR-γ ligands inhibited cell growth to promote differentiation. In
the absence of serum, the same ligands induced apoptosis in the lung cancer cells, at a 5-fold
lesser concentration than what is required for inducing differentiation in the presence of
serum [4]. Consistently, using two different TZDs we showed inhibition of tumor cell
growth both in-vitro and in-vivo, by promoting differentiation but did not induce apoptosis.
In addition, we demonstrated that sustained Erk1/2 activation mediated troglitazone-induced
differentiation of lung cancer cells [2].

PPAR-γ ligands inhibit growth and induce apoptosis of lung cancer cells by different
mechanisms depending on the growth conditions and the ligands used. Ciglitazone and PGJ2
were shown to induce p21 expression transcriptionally by enhancing the binding of
transcriptional factors SP1 and C/EBP-α to the promoter of p21 gene. [76]. Similarly,
troglitazone treatment can activate the promoter activity of DNA damage inducible gene,
GADD153 and inhibit growth and induce apoptosis in NSCLC cells [77]. Rosiglitazone was
shown to effect lung cancer growth by modulating mTOR signaling [78]. In addition
pathways such as cPLA2, Cox2, PGE2, 15-PGDH, and Wnt7a were also implicated in the
PPAR-γ ligands induced growth inhibition of lung cancer cells [79] [80] [81]. In another
interesting study, overexpression of PPAR-γ cDNA alone was sufficient to inhibit tumor
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growth in-vivo, cellular migration and invasion in-vitro in lung cancer cells [82]. This study
clearly demonstrates the direct anti-neoplastic affects of PPAR-γ and suggests potential
presence of an endogenous PPAR-γ ligand.

In addition to affecting cancer cells, PPAR-γ ligands also influence tumor progression by
modulating various aspects of tumor microenviroment as described above in lung cancers,
including angiogenesis, ECM components, immune cell function, and fibroblast activation.
Rosiglitazone was shown to inhibit mouse lung tumor cell growth and metastasis in-vivo
through direct and indirect anti-angiogenic effects [83]. Similarly, A549 cell xenografts
from SCID mice that were treated with pioglitazone or troglitazone showed significant
reduction in blood vessel density. Consistently, treatment of A549 cells, in-vitro with
troglitazone or transfected with a constitutively active PPAR-γ blocked the production of
angiogenic chemokines IL-8, ENA-78, and Gro-α by inhibiting NF-κB transcriptional
activity that regulates their expression [84]. Among the ECM components, PPAR-γ ligands
were shown to inhibit fibronectin expression by antagonizing transcription factors that
regulate its expression. In addition, these ligands were also reported to inhibit the expression
of α5 integrin resulting in the reduction of a fibronectin receptor, α5β1. Together, these
results suggest that by inhibiting fibronectin and its receptor, PPAR-γ ligands disrupt tumor
cell and ECM interactions essential for tumor cell proliferation [85,86]. With respect to the
effects on immune cell functions in tumor microenvironment, PPAR-γ ligands reverse the
antitumor cytotoxic T-lymphocyte suppressive activity and the M2 phenotype of tumor
associated macrophages [87]. PPAR-γ ligands are also known to inhibit the expression of
several cytokines and chemokines produced by most of the major immune cell types present
in the tumor microenvironment. As described earlier these ligands can inhibit activation of
lung fibroblasts into myofibroblasts, a phenotype similar to that of tumor-associated
fibroblasts [71]. Together, these observations suggest that PPAR-γ might be an important
target for modulating lung tumor microenvironment.

PPAR-γ ligands, apart from their direct activity, also demonstrate a synergistic interaction
with other cytotoxic as well as targeted anti-cancer agents. Combining platinum based
chemo therapeutic drugs including cisplatin and carboplatin with PPAR-γ ligands such as
rosiglitazone and GW1929, demonstrate a potent synergistic activity against lung cancer
cells in-vitro and in-vivo [88,89]. Further analysis revealed that PPAR-γ ligands induce a
downregulation of metallothionins which sequester platinum drugs and prevent their
cytotoxicity [89]. We observed a similar synergistic interaction between PPAR-γ ligands
(troglitazone and pioglitazone) and chemotherapeutic drugs cisplatin and paclitaxel, in spite
of their two different modes of action. Interestingly, this synergy was observed only when
the treatment of PPAR-γ ligands is preceded by the treatment with cisplatin or paclitaxel.
This sequence specific synergy was suggested to be due to induction of PPAR-γ expression
by cisplatin and paclitaxel [90]. Among the targeted agents, PPAR-γ ligands facilitated the
antiproliferative effects of gefitinib (rosiglitazone), an inhibitor of the epidermal growth
factor receptor signaling [91], potentiated the effect of the HDAC inhibitor, phenyl butyrate
( Ciglitazone) [75], and demonstrated synergy with lovastatin (troglitazone) [92].

In summary, despite such a wide range of potential anti-tumor affects and overwhelming
amount of preclinical data, demonstrating the efficacy of PPAR-γ ligands, so far there are no
clinical trials testing the efficacy of these ligands in oncology, with the exception of one
ongoing clinical trial in lung cancer. Though less relevant to oncology use, recent findings
of potential liver and cardio toxicities associated with PPAR-γ ligands has partly tempered
the enthusiasm. However, a retrospective analysis of more than 80,000 individuals revealed
a 33% reduction in lung cancer risk among TZD users compared to nonusers after adjusting
for confounding variables [93]. This observation, together with the relatively low toxicity
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profile of TZDs that are currently in clinic justify prospective, randomized, clinical studies
to determine the true effect of PPAR-γ ligands, at least in lung cancer.
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EGFR Epidermal growth factor receptor

HDAC Histone deacetylases

IKK IκB kinase

IL-1β Interleukin 1 β

MAPK Mitogen activated protein kinase

MMP Matrix metallo protease

NES Nuclear export signal

PGC1α PPARγ coactivator-1

PGJ2 Prostaglandin J2

PGE Prostaglandin E

PPAR Peroxisome Proliferators-Activated Receptors
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RXR Retinoid X receptor
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TGF-β Transforming growth factor β

TNF-α Tumor necrosis factor α
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Figure 1.
Mutual cross-regulation of PPAR-γ and other signaling pathways and its implications
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