Table 5.
The correct classification rates (PCCR), sensitivity (Psens), and specificity (Pspec) percentages for the classification procedures based on models MI (D) − MIV (D) using metric distances and volumes with optimum threshold values πo = πopt based on the cost function C1(πo, w1, w2) with w1 = w2 = 1 and w1 = 1, w2 = 3 (top); and with optimum threshold values πo = πopt based on the cost function C2(πo, η1, η2) with η1 = η2 = 0.5 and η1 = .3, η2 = 0.7 (bottom).
| πo = 1/2 | πo = 18/44 | |||||||
|---|---|---|---|---|---|---|---|---|
| MI (D) | MII (D) | MIII (D)* | MIV (D) | MI (D) | MII (D) | MIII (D) | MIV (D)* | |
| PCCR | 66% | 64% | 73% | 68% | 57% | 47% | 66% | 68% |
| Psens | 56% | 56% | 56% | 44% | 83% | 67% | 67% | 61% |
| Pspec | 73% | 69% | 85% | 85% | 38% | 35% | 65% | 73% |
| Using optimum πo based on cost function C1(πo, w1, w2) with | ||||||||
| w1 = w2 = 1 | w1 = 1, w2 = 3 | |||||||
| MI (D) | MII (D) | MIII (D) | MIV (D)* | MI (D) | MII (D) | MIII (D) | MIV (D)* | |
| πopt | .51 | .50 | .45 | .38 | .51 | .47 | .36,.37 | .38 |
| PCCR | 68% | 64% | 70% | 70% | 68% | 57% | 68% | 70% |
| Psens | 56% | 56% | 67% | 72% | 56% | 61% | 78% | 72% |
| Pspec | 77% | 69% | 73% | 69% | 77% | 54% | 61% | 69% |
| Using optimum πo based on cost function C2(πo) with | ||||||||
| η1 = η2 = 0.5 | η1 = .3, η2 = 0.7 | |||||||
| MI (D) | MII (D) | MIII (D) | MIV (D)* | MI (D) | MII (D) | MIII (D)* | MIV (D) | |
| πopt | .81-.82 | .76-.78 | .50-.52 | .38 | .37 | .37 | .33-.34 | .22-.29 |
| PCCR | 75% | 73% | 73% | 70% | 59% | 61% | 66% | 55% |
| Psens | 39% | 39% | 56% | 72% | 95% | 100% | 89% | 89% |
| Pspec | 100% | 96% | 85% | 69% | 35% | 35% | 50% | 31% |
The model with the best classification performance is marked with an asterisk.