Table 9.
Using optimum πo based on cost function C1 (πo, w1, w2 ) with | ||||||
---|---|---|---|---|---|---|
w1 = w2 = 1 | w1 = 1, w2 = 3 | |||||
MI (DAPC)* | MII (DAPC)* | MIII (DAPC) | MI (DAPC) | MII (DAPC) | MIII (DAPC) | |
πopt | .45 | .45-.46 | .41 | .42 | .45-.46 | .36 |
PCCR | 66% | 66% | 66% | 61% | 66% | 64% |
Psens | 61% | 61% | 56% | 67% | 61% | 78% |
Pspec | 69% | 69% | 73% | 58% | 69% | 54% |
Using optimum πo based on cost function C2(πo, η1, η2) with | ||||||
η1 = η2 = 0.5 | η1 = .3, η2 = 0.7 | |||||
MI (DAPC) | MII (DAPC) | MIII (DAPC)* | MI (DAPC) | MII (DAPC) | MIII (DAPC) | |
πopt | .45 | .45-.46 | .32 | .37 | .35-.36 | .29 |
PCCR | 66% | 66% | 64% | 52% | 55% | 59% |
Psens | 61% | 61% | 89% | 100% | 100% | 100% |
Pspec | 69% | 69% | 46% | 19% | 23% | 31% |
The model with the best classification performance is marked with an asterisk.