Skip to main content
. Author manuscript; available in PMC: 2012 Jun 1.
Published in final edited form as: Comput Med Imaging Graph. 2011 Feb 22;35(4):275–293. doi: 10.1016/j.compmedimag.2011.01.005

Table 9.

The correct classification rates (PCCR), sensitivity (Psens), and specificity (Pspec) percentages for the classification procedures based on models MI (DAPC)MIII (DAPC) using APC in metric distances with optimum threshold values πo = πopt based on the cost function C1(πo, w1, w2) with w1 = w2 = 1 and w1 = 1, w2 = 3 (top); and with optimum threshold values πo = πopt based on the cost function C2(πo, η1, η2) with η1 = η2 = 0.5 and η1 = .3, η2 = 0.7 (bottom).

Using optimum πo based on cost function C1 (πo, w1, w2 ) with
w1 = w2 = 1 w1 = 1, w2 = 3
MI (DAPC)* MII (DAPC)* MIII (DAPC) MI (DAPC) MII (DAPC) MIII (DAPC)
πopt .45 .45-.46 .41 .42 .45-.46 .36
PCCR 66% 66% 66% 61% 66% 64%
Psens 61% 61% 56% 67% 61% 78%
Pspec 69% 69% 73% 58% 69% 54%
Using optimum πo based on cost function C2(πo, η1, η2) with
η1 = η2 = 0.5 η1 = .3, η2 = 0.7
MI (DAPC) MII (DAPC) MIII (DAPC)* MI (DAPC) MII (DAPC) MIII (DAPC)
πopt .45 .45-.46 .32 .37 .35-.36 .29
PCCR 66% 66% 64% 52% 55% 59%
Psens 61% 61% 89% 100% 100% 100%
Pspec 69% 69% 46% 19% 23% 31%
*

The model with the best classification performance is marked with an asterisk.