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Abstract
Oxidation reactions are vital parts of metabolism and signal transduction. However, they also
produce reactive oxygen species, which damage lipids, proteins and DNA, generating “oxidation-
specific” epitopes. In this review, we will discuss the hypothesis that such common oxidation-
specific epitopes are a major target of innate immunity, recognized by a variety of “pattern
recognition receptors” (PRRs). By analogy with microbial “pathogen associated molecular
patterns” (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered
to represent “danger (or damage) associated molecular patterns” (DAMPs). We also argue that
oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the
primary evolutionary pressure for the selection of such PRRs. Further, because many PAMPs on
microbes share molecular identity and/or mimicry with oxidation-specific epitopes, such PAMPs
provided a strong secondary selecting pressure for the same set of oxidation-specific PRRs as
well.

Because lipid peroxidation is ubiquitous and a major component of the inflammatory state
associated with atherosclerosis, the understanding that oxidation-specific epitopes are DAMPs,
and thus the target of multiple arcs of innate immunity, provides novel insights into the
pathogenesis of atherosclerosis. As examples, we show that both cellular and soluble PRRs, such
as CD36, toll-like receptor-4, natural antibodies, and CRP recognize common oxidation-specific
DAMPs, such as oxidized phospholipids and oxidized cholesteryl esters, and mediate a variety of
immune responses, from expression of proinflammatory genes to excessive intracellular
lipoprotein accumulation to atheroprotective humoral immunity. These insights may lead to
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improved understanding of inflammation and atherogenesis and suggest new approaches to
diagnosis and therapy.
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Introduction
The process of oxidative phosphorylation adopted by early ancestors of mitochondria has
determined the evolution of Eukaryotes as organisms deriving energy from oxidation of a
substrate. Our lives are clearly oxygen-centric, and both oxidative phosphorylation and non-
respiratory oxygenation are vital parts of metabolism and signal transduction. However,
oxidation reactions also produce reactive oxygen species, which damage, often excessively,
lipids, proteins and DNA. To counteract the oxidative damage, complex anti-oxidative
mechanisms reduce oxidized “bystander” molecules to their normal states. If these
mechanisms fail, then oxidation-damaged molecules, molecular complexes and cells must
be removed from the tissue. This task is most often performed by macrophages, professional
scavenger cells, and by other components of the innate immune system.

In this review, we will discuss the hypothesis that a major mechanism by which recognition
of oxidation-damaged molecular complexes occurs is via the detection of “oxidation-
specific epitopes” by “pattern recognition receptors” (PRRs) of innate immunity. The
concept of PRRs was first introduced to explain how a limited number of macrophage
receptors were capable of binding a much larger number of bacterial ligands 1. Such PRRs
were postulated to bind to structurally common pattern motifs on microbial products, termed
“pathogen associated molecular patterns” (PAMPs). Thus, a limited number of PPRs could
provide to the host a broad-based innate defense against a variety of microorganisms 1–3. By
analogy, we postulate that host-derived, oxidation-specific epitopes, which also constitute
products of diverse classes of oxidative reactions, can be considered to represent “danger (or
damage) associated molecular patterns” (DAMPs) 4. DAMPs, of course, refer to a much
broader group of “inadvertent” modifications of lipids, carbohydrates, proteins, and DNA,
aside from oxidative events, which pose danger to the functioning of an organism. Although
we will use the term DAMP to describe common oxidation-specific epitopes, as will be
developed below, many such epitopes share molecular identity and/or mimicry with epitopes
on microbes, thus often making the distinction between PAMPs and DAMPs a semantic
issue rather than a real distinction.

Traditionally, one would argue that the need to recognize microbial PAMPs provided the
evolutionary pressure for the emergence of PRRs. However, we would suggest that
recognition of host-originated DAMPs, including oxidation-specific epitopes, may have
provided equal if not more compelling evolutionary pressure 4. Here, we will only refer to
two arguments in favor of the DAMP hypothesis in the context of oxidation-specific
epitopes, and will discuss this in more detail at the end of the review. Recognition and
removal of apoptotic cells is an essential and very early process in embryonic development,
usually occurring in an environment protected from infectious pathogens. Macrophage
PRRs, such as CD36 and SR-A, which recognize oxidation-specific epitopes on apoptotic
cell surfaces, such as oxidized phospholipids (OxPL) and malondialdehyde (MDA)-
modified structures, are intimately involved in the process of apoptotic cell removal 5–8.
Another example is mammalian toll-like receptor-4 (TLR4) and bacterial lipopolysaccharide
(LPS). Though this is considered a classic PRR/PAMP pair, which provides one of the
strongest and wide-ranging innate immune responses to a microbial ligand in mammalian
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cells, recent evidence from our lab and others suggest that oxidized lipids, such as oxidized
cholesteryl esters (OxCE) and OxPL also appear to be ligands for TLR4 9–11. Indeed, the
prototypical drosophila’s Toll, although acting in a defensive role against microbes, is also a
developmental gene, essential in dorsoventral axis formation 12. Further, recent studies
demonstrate that both zebrafish paralogs of mammalian TLR4, TLR4a and TLR4b, do not
recognize bacterial LPS 13,14, although the ligands for zebrafish TLR4 are yet unknown.

In our immediate area of research – atherogenesis – the concept that oxidation-specific
epitopes form a family of DAMPs recognized by innate PRRs has led to an improved
understanding of “why” innate immunity is involved in the pathophysiology of
atherosclerosis. Oxidation of LDL is thought to contribute to atherogenesis by multiple
mechanisms, including the formation of a myriad of oxidation-specific epitopes, which not
only makes oxidized LDL a ligand for multiple PRRs, but leads to the generation of a
variety of oxidized lipids that directly influence atherogenesis in multiple ways. In the first
part of this article, we will briefly review potential mechanisms of LDL oxidation in vivo,
and evidence that oxidation-specific epitopes mediate binding to PRRs. In the second part,
we will discuss cellular and humoral PRR-mediated immune responses to oxidation-specific
epitopes and consider their roles in atherogenesis. In both parts, we will limit our discussion
to moieties derived from oxidation of polyunsaturated fatty acids (PUFAs) in PL or CE, as
well as the moieties resulting from modification of proteins with these products of lipid
oxidation. Most of these are found in various forms of oxidized LDL during the progression
of atherosclerosis.

Oxidized LDL
Many lines of evidence suggest that LDL undergoes oxidation in vivo, particularly under
conditions of hyperlipidemia and when retained in the vascular wall. A large body of work
has defined a variety of enzymatic mechanisms that could mediate oxidation of LDL,
including 15-or 12/15-lipoxygenase (LO), myeloperoxidase (MPO), and peroxidase-like
activity of hemoglobin, though other modes of oxidation are important as well (reviewed 15–
18). Non-enzymatic, free radical-mediated oxidation depends on the presence of superoxide,
hydrogen peroxide and nitric oxide generated by NADPH oxidases and nitric oxide
synthases, and the catalysis by transition metal ions, copper and iron, and hemin 18.

A widely used model of extensively oxidized LDL (OxLDL), leading to profound oxidative
degradation, is LDL subjected to prolonged incubation with copper sulfate 19. This type of
Cu2+-catalyzed oxidative attack on the PUFA in PL may lead to degradation of 40% of the
phosphatidylcholine 20,21. The apoB also undergoes drastic alterations, partly due to direct
oxidative attack and partly due to conjugation of oxidized lipid fragments with the protein.
Non-enzymatic oxidation catalyzed by Cu2+ depends upon the presence of lipid
hydroperoxides in the starting material 22,23, suggesting that LDL in vivo (or at least as
isolated) already contains such moieties. In the presence of Cu2+ these hydroperoxides
decompose to form peroxy radicals and alkoxy radicals, which turn, can initiate chain
reactions that generate many more hydroperoxides. Such OxLDL are internalized by
macrophages via scavenger receptors that recognize oxidation-specific epitopes, as
discussed below.

In contrast to extensively oxidized OxLDL, scavenger receptors do not recognize so-called
“minimally oxidized LDL” (mmLDL) 9. The reasons for this are not only a relatively low
concentration of oxidation-specific epitopes, but qualitatively different types of epitopes as
well. While truncated aldehydes, ketones and carboxyl products of advanced PUFA
oxidation, present both as “free lipids” and covalently bound to apoB, are abundant in
OxLDL, mmLDL predominantly contains hydroxides, hydroperoxides, endoperoxides and
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other early lipid peroxidation products of PL and CE. Such early products are formed in
LDL modified by 15LO, an intracellular enzyme found in all vascular cells under
inflammatory conditions 24–26. A mechanism by which cellular 15LO can lead to the
oxidation of the PUFA of CE residing in the core of extracellular LDL has been suggested
by Yoshimoto and co-workers 27. It involves binding of LDL to LRP-1, exchange of CE
between LDL and the cellular membrane, recruitment of 15LO from the cytosol to the site
of LDL binding, and then reverse transport of 15LO-oxygenated CE from the cell to the
LDL. This mechanism agrees well with the known preferential oxygenation of CE by
12/15LO expressing cells 25. Human 15LO and mouse 12/15LO have been proposed to play
a major role in in vivo LDL oxidation and the development of human and experimental
murine atherosclerosis, as reviewed in 28.

In the absence of transition metals, CE hydroperoxides are relatively stable, particularly
when shielded from water inside the lipophilic core of LDL. Accumulation of CE
hydroperoxides has been documented in human atherosclerotic lesions and in the lesions of
apoE−/− and LDLR−/− mice fed a high-fat diet 26,29,30. Using liquid chromatography mass
spectrometry analysis of mmLDL, we demonstrated polyoxygenated CE hydroperoxides in
which the cholesterol moiety was not oxidized, but the arachidonate acyl chain contained a
hydroperoxide at the 15th carbon as well as 1 to 4 additional oxygen atoms. These CE
hydroperoxides, which were also generated by direct incubation of cholesteryl arachidonate
with 15LO (the product of this reaction is abbreviated as 15LO-CE), were demonstrated to
induce a number of important biological responses in macrophages 9,26, as described below.

Innate Pattern-Recognition Receptors that Detect Oxidation-Specific
Epitopes

Macrophages express the highest density of cell surface and intracellular PRRs, but other
cell types express PRRs as well. In addition, there are important soluble innate PRRs
including soluble variants of some cellular PRRs, pentraxins, and natural antibodies (NAbs),
which are predominantly of IgM and IgA isotypes.

CD36, SR-A and other Scavenger Receptors
“Scavenger receptors” of macrophages were so named because they bound and internalized
extensively oxidized LDL (OxLDL), but not native LDL 31, and to date the list includes
CD36, SR-A1 and -A2, SR-BI, MARCO, LOX-1, PSOX, and others 32. Although all were
originally identified for their ability to bind oxidation-specific epitopes (DAMPs) of OxLDL
(or models of OxLDL), it is now apparent that they bind a wide variety of different ligands,
including many microbial pathogens (PAMPs) 8,33. CD36 and SR-A have the highest
affinity for OxLDL and acetylated LDL, respectively, and are responsible for up to 90% of
their uptake by macrophages in vitro 34. OxPL in OxLDL have been shown to mediate
CD36 binding 5,35–37. POVPC (1-palmitoyl-2-(5′-oxovaleroyl)-sn-glycero-3-
phosphocholine) is an example of an OxPL that binds to CD36. There appear to be at least
two different motifs on the OxPL that can confer recognition. First, we demonstrated that
the non-modified phosphocholine (PC) head group of OxPL, but not of native PL, is an
epitope of POVPC recognized by CD36 (and SR-B1) 36,38. This PC-dependent binding to
CD36 was observed for both free POVPC, as well as for POVPC covalently linked to lysine
residues of proteins (e.g. apoB in OxLDL or BSA) via Schiff base formation with the
reactive sn-2 aldehyde 37,39,40. Such covalently bound OxPL explain the ability of apoB of
OxLDL to bind to CD36 5,36,38,39. Experiments showing that POVPC linked to BSA also
bound to CD36 strongly support the interpretation that the PC moiety of OxPL was a
sufficient ligand to mediate binding to CD36. This was confirmed by demonstrating specific
binding of a labeled POVPC peptide to CD36-transfected COS-7 cells, and that cleavage of
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the PC moiety abrogated this binding 37. We also showed that cells undergoing apoptosis
contain an increased content of such OxPL, and that their binding and uptake by
macrophages could be inhibited entirely both by E06, a monoclonal natural antibody that
specifically recognizes the PC moiety of OxPL, as well as by POVPC-BSA 6,7. Thus, the
exposed PC head group of OxPL in OxLDL and apoptotic cells is a DAMP recognized by
macrophage scavenger receptors.

A second motif on OxPL was demonstrated in an elegant series of studies by Hazen, Podrez
and their colleagues, who demonstrated that variousoxidized moieties on the sn-2 side chain
of OxPL (in both PCand phosphoserine-containing PL) can also serve as ligands for CD36
35,41,42. These have the common motif of oxidized and truncated sn-2 fatty acids that
terminate in γ-hydroxy (or oxo)-α,β-unsaturated carbonyl groups. Irrespective of the
headgroup, the presence of these motifs on OxPL are also sufficient ligandsto mediate
binding of both OxLDL and apoptotic cells to CD36 43–45. However, this motif could not
account for the ability of modified apoB of OxLDL to bind to CD36. Indeed, we speculate
that the binding of both the PC and the oxidized side chain moieties of OxPL (in both the
lipid and apoB moieties) to different sites on CD36 would lead to cooperative high-affinity
binding of OxLDL to CD36. These data illustrate what appears to be the common “rule” that
such innate PRRs have the capacity to bind to multiple DAMPs. Another example
illustrating this rule is the observation that both OxLDL and acetyl LDL bind toSR-A, but at
different molecular sites 46. Because these PRRs are germline encoded, and thus limited in
number, it is likely that most such conserved receptors have the capacity to bind multiple
related epitopes, such as oxidation-specific epitopes, rather than one specific ligand.

Toll-like receptors
Toll-like receptors (TLRs) have been traditionally considered PRRs that sense the presence
of microbial PAMPs, which initiate complex signal transduction pathways and often
excessively strong inflammatory responses. TLRs often depend on binding co-receptors to
mediate ligand binding and presentation. Thus, CD14 on the cell surface first binds LPS,
then mediates LPS binding to TLR4/MD-2, the receptor complex that dimerizes with a
different TLR4/MD-2 pair upon binding of two LPS molecules. Among these LPS-binding
receptors, only TLR4 has a transmembrane domain and is capable of initiating signaling
47,48. CD14 also aids TLR2 signaling, and CD36 has been shown to associate with TLR2
and with TLR4 to provide ligands for their activation 49–51. These examples show a
multifaceted, ligand-dependent architecture of PRR complexes that determines the variety of
cellular responses.

Work from several laboratories have now developed the idea that TLRs also bind numerous
host-derived DAMPs 52. Work from our laboratory has demonstrated that mmLDL (made
by exposure of LDL to 15LO-expressing cells) binds to CD14 and activates macrophages
via TLR4/MD-2 53. (Importantly, all mmLDL preparations used in these studies were shown
to have negligibly low endotoxin levels). We found that 15LO-CE was responsible for many
(but not all) TLR4-dependent macrophage responses to mmLDL. The presence of a
hydroperoxide group in 15LO-CE is critical because a hydroperoxide-reducing agent,
ebselen, abrogated the TLR-4 mediated biological activity of both mmLDL and 15LO-CE
9,26.

In addition to oxidized CE, OxPLs have been suggested to activate TLR as well. For
example, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC – a
collection of PC-containing OxPLs) has been shown to bind membrane CD14 and an yet
unidentified GPI-anchored receptor on endothelial cells (EC), leading to activation of EC via
TLR4 10,54. In contrast, OxPAPC and other OxPLs binding to soluble CD14 and LPS-
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binding protein (LBP) prevent recognition of LPS by these proteins and impair LPS
activation of TLR4 54–56.

Since CD36 was shown to bind OxLDL and OxPL 36,37,45, as well as to present
diacylglycerides to the TLR2/TLR6 signaling complex 50,57, several laboratories sought
experimental evidence for CD36-mediated TLR2 activation by OxLDL. However, recent
results suggest that CD36 mediates OxLDL activation of the TLR4/TLR6 heterodimer, but
not of TLR2. Moreover, the OxLDL-induced TLR4/TLR6 activation occurred not on the
cell surface, but in the endosomal compartment 51.

Most of the studies to date have used mixtures of OxPL generated by air oxidation of PAPC,
and it is likely that future studies with specific OxPLs will help to more clearly identify the
exact interactions between the various OxPLs and TLRs and their co-receptors. What these
studies reveal is that TLR4, TLR2 and associated binding proteins represent important PRRs
for a variety of oxidized lipids, including various OxPLs and OxCEs, which constitute
endogenous DAMPs.

Soluble PRRs
Many PRRs expressed on the cell surface also exist in a soluble form, including soluble
CD14, MD-2, LOX-1, and CD36. Their functions have been postulated to be two-fold.
Similarly to their membrane-bound form, some soluble PRRs can activate their signaling
counterparts. However, at higher concentrations and when bound to different ligands, they
are inhibitory, as for example, was suggested for soluble CD14 and OxPL 54.

Other circulating PRRs include LBP, various lectins, the complement family of proteins, and
the pentraxins. The short pentraxin C-Reactive Protein (CRP), an acute phase protein, is a
valuable biomarker of inflammation and cardiovascular disease. However, this protein was
originally noted for its ability to bind to the PC adduct covalently bound to the cell wall
polysaccharide of S. pneumoniae and for its ability to mediate enhanced clearance of this
and other pathogens. We have shown that CRP specifically binds to the PC moiety of
OxPLs, whether present on OxLDL or on apoptotic cells, but does not bind to the PC of
non-oxidized phospholipids 58. Furthermore, CRP is found in atherosclerotic lesions and is
colocalized with PC-containing OxPL, presumably on OxLDL and apoptotic cells 58. We
hypothesize that in future studies many other highly conserved soluble PRRs will be
identified with the capacity to bind oxidation-specific epitopes.

Natural antibodies
The natural antibody (NAb) response is an important arc of innate immunity. NAbs can be
considered immunoglobulin PRRs, having in common with cellular and soluble PRRs a
limited repertoire and yet a wide range of pattern recognition. In mice, B-2 cells of adaptive
immunity secrete predominantly IgG antibodies, which have undergone affinity maturation,
and represent delayed, but highly specific humoral immune responses. In contrast, a special
subset of innate-like B-cells termed B-1 cells, secrete NAbs, which are predominantly IgM
and IgA and represent a rapid and first-line defense against pathogens. In contrast to B-2
cells of adaptive immunity, which are negatively selectedin fetal life producing anergy, B-1
cells are positively selected, leading to the presence of NAbs at birth or shortly thereafter.
Indeed, consistent with the ability to secrete NAbs in the complete absence of external
antigenic stimulation, a full repertoire of such NAbs canbe found in gnotobiotic mice 59. In
uninfected mice, most, if not all, IgM in plasma are of B-1 cell origin, and are
predominantly secreted from the spleen even in the absence of antigen. However,
established B-1 cell clones can be expanded later in life byantigen exposure leading to
increased IgM levels in plasma. B-1 cells have restricted use of VH genes that are minimally
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edited; thus, the IgM they generate are reflective of germline usage, with minimal to no
mutations. Because they are conserved by natural selection, the presumption is that,
fundamentally, NAbs provide advantageous properties maintaining homeostasis, such as
their crucial role in immediate host defenses against PAMPs and DAMPs 60,61, the latter
include oxidation-specific epitopes.

A good example is the prototypicE06 NAb that we cloned from a panel of hybridomas from
cholesterol-fed apoE-deficient mice, which had high IgM titers to OxLDL 62. E06 bound to
both the lipid and apoB moiety of OxLDL and to apoptotic cells 6,62,63. We subsequently
showed, by direct sequencing of the VH/VL chains and use of anti-idiotypic Abs, that E06
was100% homologous to the classic germline-encoded NAb T15, secreted by a well-
characterized B-1 cell clone described more than 30years earlier 64. The T15 clone was
intensively studied because it binds to PC (not as part of a PL) covalently linked to the cell
wall polysaccharide of pathogens and confers optimal protection to mice from lethal
infection with S. pneumoniae 65. Thus, these studies demonstrated molecular (and
immunological) identity between the PC of OxPL present on OxLDL and apoptotic cells on
one hand and the PC moiety present on pneumococcus and many other microbes on the
other hand. This dual specificity for an endogenous self- or neo-self-antigen and an
exogenous pathogen has been described as a characteristic of NAbs 61.

The PC of OxPL is only one example of what are likelyto be a wide variety of such
oxidation-specific epitopes towhich NAbs bind. For example, we cloned a NAb from
LDLR−/− mice, termed LRO1, which bound to oxidized cardiolipin but not native
cardiolipin 66 Cardiolipin is a major phospholipid of the inner leaflet of mitochondria, which
is oxidized when cells undergo mitochondrial disruption that occurs during apoptosis 67.
LRO1 bound to apoptotic cells but not viable cells. In addition, LRO1 bound to OxLDL, but
not native LDL – LDL is known to contain cardiolipin. As might be predicted, LRO1
immunostained atherosclerotic lesions as well.

There are many oxidation-specific epitopes. In normal mice, as much as 20% to 30% of all
IgM derived from B-1 cell clones bind to oxidation-specific epitopes 59. Among these, we
found ahigh prevalence of IgM to MDA and to the complex structural adducts that occur
when MDA is added to proteins. Remarkably, we previously documented a high titer of IgM
to MDA-LDL even in wild-typeC57BL/6 mice as well as in healthy adult humans 60,68.
Remarkably, in recent studies of newborn human umbilical cord blood, we found a similar
high titer of IgM to MDA epitopes, and similar to such NAbsin mice, they bind apoptotic
cells and atherosclerotic tissues 59. Because IgM do not cross the placenta, such IgM are of
fetal origin and considered to represent the human equivalent of innate NAbs. Thus, both in
mice and humans, oxidation-specific epitopes are an important target of innate NAbs.

These data demonstrate that oxidation-specific epitopes are an important target of innate
immune PRRs. Thus, PC, as presented in OxPL of OxLDL and apoptotic cells, or as
component of bacterial cell wall, is a DAMP/PAMP recognized by three different groups of
PRRs: scavenger receptors, CRP and NAbs. In a similar manner, we have developed data
that MDA, oxidized cardiolipin and others constitute similar sets of DAMPS, recognized by
their respective PRRs. We speculate that oxidized CEs, which mediate TLR4-dependent
biological activity as described below, will also be shown to fall into this category.

PRR-Mediated Biological Responses to Oxidation-Specific Epitopes
Cytoskeletal rearrangements and cell migration

The actin cytoskeleton dynamics regulates cell morphology, motility and endocytosis.
During the process of phagocytosis, the macrophage extends actin-driven filopodia to
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surround bacteria (recognized via PAMPs) or apoptotic cells (recognized via DAMPs).
Macropinocytosis is similar to phagocytosis in which extensive membrane ruffling due to
actin cytoskeletal rearrangements results in internalization of large volumes of extracellular
liquid. Several studies have suggested that oxidation-specific epitopes regulate cytoskeletal
function of macrophages.

In the filopodia of macrophages phagocytosing apoptotic cells, we observed polymerized F-
actin co-localized with 12/15LO, and 12/15LO activity was required for in vitro and in vivo
F-actin formation and for phagocytosis 69,70. As discussed earlier, mmLDL is in fact a
carrier of the products of 12/15LO-catalyzed oxidation of lipids, and addition of mmLDL to
macrophages resulted in robust actin polymerization, membrane ruffling and cell spreading
9,26,53. Such spreading would contribute to reduced migratory capacity and in turn to
macrophage localization to sites of enhanced content of oxidized CE, such as in
atherosclerotic lesions. While mmLDL treated macrophages had enhanced uptake of
modified LDL (see below), in turn, the polydirectional actin polymerization interfered with
its function of phagocytosis of apoptotic cells 53, a mechanism that may contribute to
defective clearance of apoptotic cells observed in atherosclerotic lesions 71.

Active components in mmLDL responsible for macrophage cytoskeletal rearrangements
were found to be polyoxygenated CE hydroperoxides, such as 15LO-CE discussed earlier,
which activate a TLR4-dependent signaling cascade 9,26. This mmLDL/OxCE mediated
TLR-4 dependent signaling was MyD88 independent, and mediated by spleen tyrosine
kinase (Syk) recruitment to a TLR4 signaling complex. This led to TLR4 and Syk
phosphorylation, downstream activation of ERK1/2 signaling cascade, phosphorylation of
paxillin, activation of Rac, Cdc42 and Rho GTPases, and the formation of a N-WASP/Arp2
complex, leading to dramatic, actin-dependent membrane ruffling (Figure 1). In addition,
mmLDL induced TLR4-independent activation of PI3K 70,72, which also contributes to
cytoskeletal rearrangements.

Steinberg and colleagues originally showed that components of OxLDL were not only
chemotactic for monocytes but also led to inhibition of migration of macrophages, which
would both enhance the local accumulation of macrophages within sites of inflammation
and oxidative events 73. In addition to the OxCE noted above, different oxidation-specific
epitopes, formed by LDL oxidation with MPO/hydrogen peroxide/nitrite, specifically bind
to CD36 and also induce macrophage spreading and reduce macrophage migration 74. The
CD36-mediated actin polymerization and cell spreading involves Src-dependent activation
(phosphorylation) of focal adhesion kinase (FAK) and NADPH oxidase; the latter produces
reactive oxygen species, which inactivate SHP-2 protein tyrosine phosphatase, contributing
to reduced dephosphorylation of FAK 74.

Lipoprotein uptake and foam cell formation
Lipoprotein uptake by macrophages within the intima and formation of foam cells is a major
atherogenic process connecting lipid deposition in the vessel wall with vascular
inflammation. Unregulated uptake by macrophages of OxLDL and other modified LDLs
bound to the intimal matrix 75, combined with down regulated efflux of lipids, stimulates
expression of pro-inflammatory cytokines, antigen presentation, secretion of matrix-
degrading enzymes, and often results in cell death, thereby promoting further lesion
development and its eventual rupture. The mechanisms of uptake of modified LDL by
macrophages are diverse 8,32,76 and in part reflect the multitude of oxidative modifications
of LDL, as well as other modifications. Depending on the prevalence of different oxidation-
specific epitopes, macrophages could use different combinations of binding receptors and
different uptake mechanisms to remove these DAMPs from the tissue, but at the expense of
generating foam cells.
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In vitro experiments in which macrophages were exposed to OxLDL and acetylated LDL
only, showed that CD36 and SR-A were responsible for 75–90% of uptake of these
lipoproteins 34. It has been demonstrated that the CD36-mediated OxLDL uptake depends
on the activation of Src and JNK kinases 77 (Figure 1). Similarly to mouse macrophages, a
comparison of monocyte/macrophages from patients with a total deficiency of CD36 with
normal monocyte/macrophages suggests that about 50% of the in vitro uptake of OxLDL is
attributable to this receptor, under the conditions studied 78. However, epidemiological data
of CD36 deficient subjects with respect to cardiovascular disease are not yet available, and
murine model studies produced mixed results. Using hypercholesterolemic CD36−/− and
SR-A−/− mice, several groups suggested that SR-A and CD36 play quantitatively important
roles in mediating uptake of OxLDL and promoting the development of atherosclerosis in
apoE−/− mice 79–82. In contrast, a different group demonstrated that both SR-A−/−, apoE−/−

and CD36−/−, apoE−/− double knockout mice, although having significant reductions in
peritoneal macrophage lipid accumulation in vivo, had increased atherosclerosis or no
change in the lesion size 83. A follow up study by this group confirmed that even the
combined CD36/SR-A deficiency in apoE−/− mice had no effect on foam cells in
atherosclerotic lesions or the lesion size, but revealed reduced complexity and size of
necrotic areas in the lesions, suggesting a role for CD36 and SR-A in cell death 84. The
discrepancy between the results obtained in different laboratories underscores the
complexity of the mechanisms of macrophage lipid accumulation and atherogenesis 32,76.

As noted earlier, mmLDL does not bind to CD36; it binds to CD14 and induces TLR4/
MD-2-dependent cytoskeletal rearrangements. Remarkably, mmLDL-induced formation of
membrane ruffles results in the ruffles’ closing into large endosomal vesicles
(macropinosomes). This mmLDL (and 15LO-CE)-induced process of macropinocytosis
captures lipoproteins from the cellular microenvironment and results in macrophage uptake
of mmLDL itself, as well as other lipoproteins in the vicinity, such as native LDL and even
OxLDL (Figure 1). Knockdown of TLR4 or Syk abolishes macrophage lipoprotein
accumulation stimulated by either mmLDL or 15LO-CE 9. Mouse experimental studies
support a role for TLR4 in the development of diet-induced atherosclerosis. TLR4 is
expressed on endothelial cells and macrophages within human and mouse atherosclerotic
lesions 85,86. A deficiency in TLR4 attenuates the development of atherosclerosis in
hyperlipidemic apoE−/− mice 87. Over expression of both TLR2 and TLR4 in the intima of
carotid arteries of hyperlipidemic rabbits significantly augmented atherosclerosis, although
transfection of only TLR4 or only TLR2 resulted in little change in atherosclerosis 88. In
human epidemiologic studies, the common Asp299Gly TLR4 polymorphism (loss-of-
function) was associated with a decreased risk of carotid artery and femoral artery
atherosclerosis and cardiovascular cause of death 89; however subsequent studies from
different laboratories that evaluated different clinical manifestations of atherosclerosis
reported inconsistent results 90–95.

Unlike the defined models of OxLDL or mmLDL that we use in the laboratory, oxidized
LDL in atherosclerotic lesions is likely more complex, containing not only oxidation-
specific epitopes found in both OxLDL and mmLDL, but yet unidentified epitopes as well.
How can one measure in vivo the quantitative importance of each individual PRR-mediated
uptake mechanism? We have recently suggested to tackle this problem by comparing the
kinetics of lipid accumulation in vivo by wild-type macrophages versus that by various PRR-
deficient macrophages, e.g. TLR4-deficient macrophages 96. For this purpose, we used
optically transparent zebrafish larvae as a model for monitoring vascular lipid accumulation
in live animals. We found that feeding zebrafish a high-cholesterol diet (HCD) resulted in
remarkable hypercholesterolemia and lipoprotein oxidation, accompanied by the formation
of fatty streaks and myeloid cell recruitment to major blood vessels 96. Genetic homologs
and/or activity of 12/15LO, MPO and Nox enzymes have been identified in zebrafish.
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Moreover, our recent studies found high levels of biologically active OxCE and OxPL
molecular structures accumulated in hypercholesterolemic zebrafish 97. An advantage of the
optically transparent zebrafish model is that unlike cell culture experiments in which
lipoproteins are modified in vitro and then added at arbitrary concentrations to the cells, in
our zebrafish model, macrophages are exposed to a multitude of lipoprotein modifications
occurring in vivo. TLR4-deficient and wild-type mouse macrophages were injected into
zebrafish larvae in which HCD has induced the formation of fatty streaks. Because zebrafish
larvae are transparent and because we used fluorescently labeled cells and fluorescent
dietary lipids, we were able to quantify macrophage lipid uptake in vivo, directly in the
environment of a fatty streak. Using this model, we found that the rate of in vivo lipid uptake
by TLR4-deficient macrophages was significantly lower compared to the uptake by wild-
type macrophages, supporting results of our in vitro experiments 9,96. Similar measurements
with macrophages lacking other receptors and signaling molecules could be used in the
future to measure a set of rate constants to compare different mechanisms of foam cell
formation and specifically, the quantitative role of different PRRs.

Proinflammatory gene expression
The first report of proinflammatory properties of OxPL was that they induced monocyte
binding to vascular endothelial cells (EC) 98,99, which is a critical early step in the formation
of vascular lesions. OxPAPC has been widely used as a collection of biologically active
OxPL. EC stimulated with OxPAPC secrete chemoattractants MCP-1 and IL-8 and express
adhesion molecules connecting segment 1 (CS1) fibronectin and P-selectin on cell surface,
which lead to monocyte recruitment and binding to the EC 98. The expression of CS-1
fibronectin is mediated by cAMP-induced R-Ras and PI3K activity 100. PEIPC (1-
palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphocholine) was identified as a highly
active component of OxPAPC, and exerted its activity via binding to prostaglandin E2
receptor (EP2) 101. In addition to MCP-1 and IL-8, OxPAPC induced expression of IL-6,
CCL3, CCL4, and VEGF 102,103. Although TLR4 seems to be involved in OxPAPC-induced
IL-8 secretion by EC10, the NF-B pathway was not activated, and the EC response to
OxPAPC was mediated by the c-Src/JAK2/STAT3, SREBP and unfolded protein response
(UPR) pathways 103–106. VEGFR2 mediates OxPAPC-induced recruitment of Rac1 to the
NADPH oxidase-4 complex, resulting in strong ROS generation by EC. The ROS
generation was, in turn, responsible for expression of inflammatory and sterol metabolism
genes, but not the genes of UPR and antioxidative responses 107 (Figure 2). It should be
noted that the PC-containing OxPL present on apoptotic cells and their apoptotic bodies can
also mediate such biological effects. Thus apoptotic cells and blebs can induce IL-8 release
from endothelial cells, effects blocked by antibody E06 7,108.

mmLDL signals via TLR4/MD-2, but unlike LPS, the bacterial ligand for TLR4, mmLDL
induces only modest levels of expression of pro-inflammatory cytokines 72. This is likely
due TLR4 clustering with different cellular receptors 51,109, as well as due to the different
set of adaptors recruited to the cytoplasmic domain of TLR4 in response to mmLDL as
compared to LPS. mmLDL induces some MyD88-dependent effects, but a major signaling
pathway for mmLDL seems to be the recruitment of Syk to TLR4, and Syk-dependent
activation of ERK1/2 and PLCγ9,110. The latter activates PKC and NADPH oxidase-2
(Nox2), resulting in generation of ROS. ROS has been suggested to play a major role in
regulation of many intracellular signaling pathways, including NF-κB. We have
demonstrated Nox-2 dependent expression of RANTES, IL-1β, and IL-6 in macrophages
stimulated with mmLDL. In turn, RANTES induced migration of vascular smooth muscle
cells 110 (Figure 2).

Because of the signaling differences in the LPS- and mmLDL-induced activation of TLR4,
we hypothesized that costimulation of macrophages by mmLDL and by low levels of
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bacterial LPS would result in cooperative effects, leading to greater activation than achieved
by either stimulus alone. Indeed, we demonstrated that mmLDL and low levels of LPS
cooperatively upregulated expression of a number of proinflammatory genes, including
chemokines Cxcl2, Ccl3 and Ccl4, both in vivo and in vitro 111. A de novo motif analysis of
promoters of cooperatively activated genes suggested involvement of AP-1 transcription
factors, a finding that agrees with an ERK1/2-dependent character of mmLDL activation. In
addition, mmLDL induced phosphorylation of c-Jun and the release of nuclear receptor
corepressor (NCoR) from the promoter regions of Cxcl2 and Ccl3 111 (Figure 3). These
molecular mechanisms of cooperative macrophage activation with mmLDL and low levels
of LPS may be relevant to the increased risk of acute cardiovascular events in patients with
atherosclerosis complicated by chronic infections, obesity and type 2 diabetes and other
conditions associated with subclinical endotoxemia.

Although initial evidence placed pattern recognition on the cell surface, new data suggest
that signaling by intracellular PRRs is as important as the ones originating from the plasma
membrane. We will review two examples, both published in 2010. One demonstrates that
recognition of OxLDL (and amyloid-β peptide) by CD36 triggers assembly of a
heterotrimeric complex composed of CD36, TLR4 and TLR6 51. The signaling likely
originates on the cell surface, where OxLDL induces CD36-mediated activation of a Src
kinase Lyn, which, in turn, initiates TLR4/TLR6 dimerization. The assembly of the CD36/
TLR4/TLR6 complex is completed in the endosomal compartment, where both the MyD88
and TRIF adaptors propagated the signal, leading to activation of NF-κB, generation of ROS
and expression of Cxcl1, Cxcl2, Ccl9, Ccl5 and IL-1β51.

The second example involves not an oxidized lipid, but cholesterol crystals. However, lipid
peroxidation is known to promote formation of crystalline structures of free cholesterol 112.
Recent studies using laser reflection and fluorescent microscopy suggested that cholesterol
crystals emerge at the earliest time points of diet-induced atherogenesis, together with the
appearance of immune cells in the subendothelial space 113. Cholesterol crystals localized
both extracellulary and inside macrophages in atherosclerotic lesions. Microcrystals in
general and cholesterol crystals in particular have been shown to activate the intracellular
PRR, NLRP3 (cryopyrin), the critical component in the caspase-1-mediated production of
active IL-1 114. Indeed, cholesterol crystals induced IL-1βsecretion by wild type but not
NLRP3−/− macrophages, and transplantation of NLR3−/− or IL-1α/β−/− bone marrow into
LDLR−/− mice significantly reduced diet-induced atherosclerosis 113.

Expansion of oxidation-specific NAbs and atherosclerosis
Activation of cellular PRR by oxidation-specific epitopes results in many pro-inflammatory
and pro-atherogenic effects, as summarized above. In contrast, NAbs seem to protect against
atherosclerosis. In vitro, the E06 NAb, which binds the same PC-containing OxPL as does
CD36, prevented OxLDL and apoptotic cell uptake by macrophages 6,63. Because
immunization of mice with heat-inactivated PC-containing S. pneumoniae was known to
robustly expand T15/E06 B-1 cell clones, we immunized cholesterol-fed LDLR−/− mice
with heat killed pneumococci to see if this would reduce atherosclerosis. Indeed,
immunization induced high titers of E06/T15 IgM and significantly reduced atherosclerosis
115. The atheroprotective property of anti-PC IgM was corroborated in a vein graft
atherosclerosis model in which T15 IgM was infused intravenously 116, and by the
demonstration that immunizing apoE−/− mice with PC-KLH was atheroprotective 117.
Furthermore, we have shown that E06can bind to and block pro-inflammatory effects of PC-
containingOxPL7,11,108, and this property undoubtedly also contributes importantly to the
anti-inflammatory and anti-atherogenic properties of these oxidation-specific IgM. The
overall importance of IgM to atherogenesis was demonstrated by the observation that when
secretory IgM knockout mice were crossed with LDLR−/− mice, atherosclerosis was
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dramatically enhanced 118. As we have shown that oxidation-specific epitopes are a major
target of NAbs in mice (and humans) it is very likely that IgM to such epitopes play a major
role in this protective effect. We predict that similar to E06, NAbs to other oxidation-
specific epitopes, such as MDA, 4-hydroxy-2-nonenal, and oxidized cardiolipin, will be
anti-inflammatory and atheroprotective as well.

Because NAbs have been conserved by natural selection, it is likely that on balance they
must have been beneficial to the host, aside from their role in atherogenesis. For example,
we and others have shown that by binding to oxidation-specific epitopes on the surface of
apoptotic cells, they facilitate complement-dependent enhanced clearance in vivo 59,119,120.
Because we have shown in principle that increasing the titer of such antibodies can be anti-
atherogenic, identifying the epitopes to which such NAbs bind should identify antigens that
could be used to develop an atheroprotective vaccine. Inaddition, enhancing such NAb titers,
possibly even passively, could be used to limit the pro-inflammatory effects of oxidized
lipids in acute situations, such as in acute coronary syndromes 121, or in viral induced
respiratory distress syndromes, a situation in which the oxidized lipids to which they bind
are proinflammatory 11,122. Antibodies to these epitopes could be used to image not only
atherosclerotic lesions 123 but a variety of inflammatory settings in which such epitopes are
ubiquitously expressed, as well as to target therapeutic molecules to active sites of
inflammation. It can be envisioned that a better understanding of this important
compartment of innate immunity will ultimately identify novel therapeutic targets that can
be exploited to interfere with atherogenesis and inflammatory states in general.

Conclusions
In this article, we summarized evidence that PRR recognition of oxidation-specific epitopes
initiates many important innate immune processes, having both pro-atherogenic and anti-
atherogenic consequences. To put these findings into perspective, because PRRs are
germline encoded, the observation that oxidation-specific epitopes are targeted by multiple
innate PRRs strongly implies that these epitopes represent important endogenous “danger
signals” against which multiple defenses are selected to provide homeostasis. Moreover,
endogenous oxidation-specific epitopes likely exert positive selection pressure for NAb-
producing B-1 cells, which are selected in fetal life, or shortly thereafter. NAbs are present
even in germ-free mice, never exposed to microbial PAMPs. The observation that similar
epitopes on infectious pathogens are also recognized by NAbs suggests that such pathogens
are likely to have also exerted selection pressure later in life. A similar argument may be
offered that oxidation-specific epitopes are among the primary selecting antigens for other
innate immune receptors as well.

We further suggest that the fundamentally important altered-self antigens leading to
selection of oxidation-specific innate PRRs are apoptotic cells and the apoptotic blebs and
cellular debris resulting from such programmed cell death (Figure 4). Cells undergoing
apoptosis develop mitochondrial disruption, leading to generalized enhancement of
oxidative events. In turn, a wide variety of lipids are oxidized, including cardiolipin,
phosphatidylserine, and phosphatidylcholine 124. (Future studies will determine if OxCEs
are also found on dying cells). Such epitopes are greatly enriched in the apoptotic blebs that
budoff from such cells 6,108 and are present in the circulationas microparticles. Scavenger
receptors participate in apoptotic cell recognition and clearance by phagocytes. We have
shown that syngenic apoptotic cells are highly immunogenic and pro-inflammatory if not
promptly cleared 7, and since apoptosis is a universal biological event from the earliest
stages of development, we suggest that this provides a strong evolutionary pressure for
innate mechanisms to efficiently clear such dying cells. Indeed, the fact that there are
apparently multiple and redundant mechanisms to effect clearance of apoptotic cells
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indicates the biological importance of this process 125. Remarkably, nearly all of the
different oxidation-specific monoclonal antibodies we have cloned to date, both from
murine or human libraries, bind to apoptotic cells and apoptotic bodies, presumably to effect
their removal, as noted above. Furthermore, these same oxidation-specific epitopes are
ligands mediating apoptotic cell recognition by various scavenger receptors 33. Failure to
adequately clear the daily burden of apoptotic cells would likely lead to inflammation,
immune activation and pathology, as for example, promotion of atherogenesis 71,126.

In contrast to atheroprotective oxidation-specific NAbs, cellular PRR recognition of
oxidation-specific epitopes have predominantly pro-atherogenic effects, at least under
conditions of marked hypercholesterolemia generated in the Western diet fed murine models
studied. However, such marked hypercholesterolemia is not likely to have been influential in
evolutionary selection. Rather, PRRs likely evolved as protective mechanisms against the
proinflammatory effects of oxidation-specific epitopes, such as those found in apoptotic
cells, or even the oxidized lipids found extracellularly, such as on apoptotic blebs or
lipoproteins. Because many of the same oxidation-specific PRR also recognize similar
molecular patterns on pathogens, we speculate that the ability to protect against infectious
pathogens provided a strong secondary selecting pressure as well. It is also plausible that
these cellular PRRs developed accompanying stronger cellular responses to such infectious
pathogens than those resulting from host-derived activation. This implies that the
intracellular signaling pathways linking a PRR response to an endogenous DAMP may be
different than those involved in the same PRR’s response to an infectious PAMP. Indeed,
examples of differential responses of TLR4 to mmLDL (and its OxCE) and to LPS were
discussed above. Thus, to provide a strong host response to an acute invading pathogen,
TLRs initiate an “over-reactive” cellular response. In contrast, the cellular response
mediated by the same PRR to an endogenous DAMP, such as OxCE, is more muted, as the
OxCE is ubiquitously present, and the cellular response is aimed at maintaining
homeostasis. Nevertheless, chronic exposure to increased levels of DAMPs such as
oxidation-specific epitopes induced by hypercholesterolemia, induces low-grade but
sustained activation of PRRs and, thus, contributes to the inflammatory state characteristic
of atherogenesis.
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Non-standard Abbreviations and Acronyms

CE cholesteryl ester

DAMP danger-associated molecular pattern

EC endothelial cell

KLH keyhole limpet hemocyanin

LDL low-density lipoprotein

LPS lipopolysaccharide

LO lipoxygenase

mmLDL minimally oxidized LDL
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MDA malondialdehyde

NAb natural antibody

OxCE oxidized CE

OxLDL oxidized LDL

OxPAPC oxidized PAPC

OxPL oxidized PL

PAMP pathogen-associated molecular pattern

PAPC 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine

PC phosphocholine

PEIPC 1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphocholine

PL phospholipid

POVPC 1-palmitoyl-2-(5′-oxovaleroyl)-sn-glycero-3-phosphocholine

PRR pattern recognition receptor

PUFA polyunsaturated fatty acids

ROS reactive oxygen species

SR scavenger receptor

Syk spleen tyrosine kinase

TLR toll-like receptor
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Figure 1. Oxidized lipid moieties induce lipoprotein accumulation in macrophages
Macrophage lipoprotein uptake mechanisms can be separated into (1) macropinocytosis,
when actin polymerization and extensive membrane ruffling result in the ruffles closing into
large endosomes and capture of large volumes of extracellular material, including all classes
of native and oxidized LDL present in the vicinity of the cell, and (2) micropinocytosis,
when ligand-receptor binding leads to membrane invagination and nearly stoichiometric
internalization of the ligand or the lipoprotein carrying this ligand. mmLDL and
polyoxygenated CE hydroperoxides (OxCE) induce Syk recruitment to TLR4, Syk and
TLR4 phosphorylation and subsequent ERK1/2-dependent activation of small GTPases Rac,
cdc42 and Rho, and phosphorylation of paxillin, leading to actin reorganization and
membrane ruffling. Resulting macropinocytosis promotes foam cell formation 9. Binding of
OxLDL or OxPL to CD36 initiates Lyn-dependent phosphorylation of JNK, which is
essential for CD36-mediated OxLDL uptake, although the mechanism linking JNK with the
membrane dynamics is unclear 77. The TLR4- and CD36-mediated uptake mechanisms are
only examples; there are numerous other PRRs involved in oxidation-specific epitope-
stimulated lipoprotein internalization by macrophages.

Miller et al. Page 23

Circ Res. Author manuscript; available in PMC 2012 January 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Oxidized LDL and OxPL induce ROS generation in vascular cells
In macrophages, OxLDL binding to CD36 induces recruitment of Lyn, a Src kinase, its
activation and phosphorylation of Vav, which in turn activates Rac 74. Unlike OxLDL,
mmLDL induces recruitment of Syk to TLR4 and Syk-dependent activation of Vav and Rac
9. In addition, mmLDL induces TLR4- and Syk-dependent activation of PLCγand PKC,
which induces recruitment of p47phox, and p67phox (not shown) to the Nox2 enzyme
complex, and activated (GTP-bound) Rac completes the complex, leading to ROS
production 9,110. High levels of extracellular ROS may exacerbate the oxidative damage,
while intracellular ROS are important signaling molecules, mediating cytokine secretion.
One of mmLDL-induced, Nox2-dependent chemokines, RANTES, induces VSMC
migration 110. Nox4 is the predominant NADPH oxidase in endothelial cells. It is activated
by OxPAPC via VEGFR2-dependent Rac recruitment 107. However, the mechanism of the
OxPAPC activation is unclear. Although OxPAPC is capable of inducing VEGF production
by endothelial cells 103, anti-VEGF antibodies do not block OxPAPC activation of VEGFR2
107. ROS in endothelial cells mediate secretion of MCP-1 and IL-8 and thereby promote
monocyte migration.
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Figure 3. mmLDL and low-dose LPS induce cooperative TLR4-mediated signaling in
macrophages
mmLDL induces rapid, JNK-dependent phosphorylation of Jun, which leads to removal of
NCoR and derepression of AP-1. This, together with rapid phosphorylation of ERK1/2,
results in the completion of the AP-1 transcription complex, which is later strengthened by
delayed ERK1/2 and Jun phosphorylation induced by LPS 111. However, LPS-induced Jun
phosphorylation is mediated by IKKε, which is brought to the promoter region with the NF-
κB transcription factors 127. Cooperative activation of AP-1 and NF-κB result in increased
expression of proinflammatory genes induced by co-stimulation with mmLDL and LPS 111.
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Figure 4. Pattern recognition of oxidation-specific DAMPs and microbial PAMPs
Using the example of the phosphocholine (PC) epitope, we illustrate in this cartoon our
hypothesis of the emergence and positive selection of multiple PRRs that recognize common
epitopes, shared by modified self and microbial pathogens. According to this hypothesis,
oxidation of plasma membrane phospholipids in apoptotic cells alters the conformation of
the PC headgroup, yielding an exposed epitope, accessible to recognition by macrophage
scavenger receptors, NAbs, and pentraxins, such as CRP. These PRRs were selected to clear
apoptotic cells from developing or regenerating tissues. Recognition by the same receptors
of the PC epitope of capsular polysaccharide in gram-positive bacteria (e.g. S. pneumoniae)
strengthened positive selection of these PRRs and probably helped to select additional
strong proinflammatory components to PRR-dependent responses. (Note the PC on the
bacteria is not part of a phospholipid.) Finally, oxidized lipoproteins, prevalent in humans as
a result of dyslipidemia and impact of environmental factors and in experimental animals,
bear OxPLs with the PC epitope exposed in an analogous manner to that of apoptotic cells.
This leads to OxLDL recognition by PRRs and initiation of innate immune responses. The
balance between pro-inflammatory responses of cellular PRRs and atheroprotective roles of
NAbs plays an important role in the development of atherosclerosis. There are likely many
more oxidation-specific epitopes that represent such DAMPS and corresponding PRRs that
represent respective innate responses.
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