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Summary

Enthusiasm for therapeutic cancer vaccines has been rejuvenated with the recent completion of
several large, randomized phase 111 clinical trials that in some cases have reported an improvement
in progression free or overall survival. However, an honest appraisal of their efficacy reveals
modest clinical benefit and a frequent requirement for patients with relatively indolent cancers and
minimal or no measurable disease. Experience with adoptive cell transfer-based immunotherapies
unequivocally establishes that T cells can mediate durable complete responses, even in the setting
of advanced metastatic disease. Further, these findings reveal that the successful vaccines of the
future must confront (i) a corrupted tumor microenvironment containing regulatory T cells and
aberrantly matured myeloid cells, (ii) a tumor-specific T-cell repertoire that is prone to
immunologic exhaustion and senescence, and (iii) highly mutable tumor targets capable of antigen
loss and immune evasion. Future progress may come from innovations in the development of
selective preparative regimens that eliminate or neutralize suppressive cellular populations, more
effective immunologic adjuvants, and further refinement of agents capable of antagonizing
immune check-point blockade pathways.
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Introduction

‘Even the longest journey must begin where you stand.’
- Lao-tzu, Chinese Philosopher

There is inherent intellectual, conceptual, and methodological appeal to the idea of actively
immunizing patients with cancer against their disease. Prophylactic vaccines against
infectious agents have unquestionably been a major contributor to improved life expectancy
in both the developed and developing worlds over the last two centuries (1). More recently,
the development of vaccines that induce protective immunity against viral pathogens known
to induce cancer, such as high risk serotypes of the human papillomavirus (HPV) and the
hepatitis B virus (HBV), have entered routine clinical practice (2-5). Inspired by these
successes, great effort, expense, and the precious resource of patient volunteers have been
employed in an attempt to develop therapeutic cancer vaccines. The path thus far has not
been an easy one.
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Nearly seven years ago, we summarized our experience in the Surgery Branch of the
National Cancer Institute, U.S.A. and that of a wide range of international investigators who
had performed well designed and methodologically sound clinical trials of therapeutic
cancer vaccines using standard oncologic assessment criteria as a study end point (6). The
conclusions drawn from this critical analysis were as sobering as they were controversial:
the overwhelming majority (>96%) of patients in the studies evaluated who received vaccine
therapy for their underlying cancer did not exhibit objective evidence of cancer regression
using standard oncologic reporting criteria. In hindsight, such a poor overall response rate
was perhaps predictable as all early phase oncology clinical trials, when considered together,
have response rates on the order of 3.8% to 11%, depending on whether the specific trial
included an approved reagent with known anti-tumor activity (7,8).

Following this publication, some investigators have advocated for modification of current
World Health Organization (WHO) and Response Evaluation Criteria in Solid Tumors
(RECIST) response criteria specifically for immunotherapy trials in an attempt to avoid
possible underestimation of clinical benefit an experimental immunotherapy may provide
(9-12). Arguments in favor of modifying these criteria have in part been based on the
observation that a proportion of melanoma patients treated with ipilimumab, a blocking
monoclonal antibody targeting the negative co-stimulatory molecule cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) (CD152), experienced prolonged stabilization of
disease or even transient progression of disease before achieving an objective response
consistent with current assessment criteria (12—14). Additionally, in a recently completed
phase I11 clinical trial using the same reagent, only a modest proportion of patients (about
11%) experienced tumor regression consistent with WHO criteria despite having an overall
survival benefit compared with the control arm (15). However, as has correctly been pointed
out by others (16,17), ad hoc modification of current response criteria may just as likely lead
to the risk of overestimation of benefit, thereby allowing patients to continue on an inactive
and potentially toxic regimen without the opportunity to transition to other clinical trials.

This latter point has become increasingly important in diseases such as melanoma, where we
have gratifyingly transitioned from a paucity of efficacious treatment options to a number of
approaches that in early phase trials have significant anti-tumor activity. Specifically, the
adoptive cell adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes (TILS) into
lympho-depleted patients or the use of potent inhibitors of the BRAF V600E oncogene
mutation in the roughly 50% of patients harboring this mutation (18) have very high
objective response rates ranging from 50% to as much as high as 81% (19-21). It is for these
reasons that groups such as ours have remained committed to adhering to standardized
oncologic response criteria and evaluation of overall survival as primary end points in
cancer immunotherapy trials until well-validated surrogate end points are prospectively
established in an effort to allow for meaningful and objective comparisons between studies
(16,22,23). Regardless, there is broad consensus in the oncology and immunotherapy
communities that randomized clinical studies using overall survival as a primary endpoint
can (i) provide definitive evidence on whether immune-based interventions for the treatment
of cancer are truly providing benefit to patients, defined strictly as extending longevity, and
(ii) allow for the validation of surrogate end points or response criteria that may be
incorporated into the design of future clinical trials (24-26).

Since we last summarized the state of therapeutic cancer vaccines in 2004 (6), several such
phase 111 trials have matured and reported their findings either in peer reviewed journals or
in abstract form. While some of these trials did not reach their predefined primary study end
points, others have reported positive results. In one notable case, the data from the trial led
to the approval of sipuleucel-T by the United States Food and Drug Administration (FDA)
as the first therapeutic cancer vaccine in humans (27). Additionally, beyond large phase 111
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clinical trials, numerous early phase clinical studies of therapeutic cancer vaccines testing
new vaccine modalities or targeting novel antigens continue to be initiated and reported.
Armed with these findings, we feel it is time for the cancer immunotherapy community to
once again take pause, reflect, and ask the question: “has the era of efficacious therapeutic
cancer vaccines finally arrived?’

In this review, we provide an updated critical re-assessment of the state of therapeutic cancer
vaccines. While significant technical and scientific progress has been achieved in the fields
of vaccinology and immunobiology and although the important bench mark of positive
randomized phase 111 immunotherapy clinical trials has finally been reached (27-29), much
remains to be accomplished both in terms of efficacy and applicability. As we discuss
below, current and future therapeutic vaccines must overcome multiple barriers to achieve
success: (i) a corrupted tumor microenvironment containing regulatory T cells (Tregs) and
aberrantly matured myeloid cells with suppressive properties (MDSC), (ii) a tumor-specific
T-cell repertoire that is prone to immunologic exhaustion and senescence, and (iii) highly
mutable tumor targets capable of antigen loss and immune evasion. We conclude by offering
our perspective on a rational path forward to improving immunotherapies for the treatment
of metastatic cancer. These include a renewed investment in the development of effective
immunologic adjuvants, consideration for the use of pharmacologic modulators of critical
metabolic and developmental pathways (such the mTOR and Wnt/B-catenin pathways)
which have shown promise in enhancing T-cell quality and function in pre-clinical studies,
ongoing development of checkpoint blockade inhibitors, and finally combining active
immunization or its surrogates with the adoptive transfer of tumor-reactive T cells.

A critical re-assessment of contemporary therapeutic cancer vaccine trials

Defining the metrics of success

There are multiple metrics that may be used to assess the relative success or failure of a
given therapeutic cancer vaccine candidate. The most robust, and arguably the most
meaningful, clinical end-point in therapeutic oncology clinical trials is the assessment of
overall survival --the extent to which an experimental intervention actually extends a
patient’s life. As standard therapeutic and best supportive care practice patterns continuously
evolve, a meaningful assessment of overall survival can only be performed when the
survival of a group of patients receiving an experimental intervention is directly and
contemporaneously compared to a control arm that does not receive the intervention.
Although this randomized design can provide definitive results if performed correctly, it also
has a number of insufficiencies. The ethical issues associated with this clinical trial design
have been discussed elsewhere and can be of concern where some control patient cohorts
receive treatments known to be ineffective or inferior (30). In addition, the accurate
determination of overall survival in this manner often takes a large patient cohort followed
over a period defined in many months if not years. Thus, there remains a critical need for
surrogate end points which could allow investigators to determine early on and with a
relatively small number of patients whether an intervention is worth developing further.

An intuitive and commonly used surrogate end point in immunotherapy trials is
measurement of changes in the immune system (11,31). This may be accomplished by
assessment of antigen-specific cytotoxicity or T-cell proliferation, determination of T-cell
reactivity by enzyme-linked immunospot assay (ELISpot) or intracellular cytokine assays,
enumeration of tetramer-reactive T cells, or quantification of antigen-specific antibodies
compared before and after vaccination (32). It is now clear, however, that the mere induction
of very high levels of tumor-reactive T cells in circulation is often inadequate to offer
protection from cancer recurrence or mediate cancer regression in realistic animal models or
in human patients. For example, in pmel-1 T-cell receptor (TCR) transgenic mice, where
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greater than 95% of all CD8* T cells are reactive against a major histocompatibility complex
(MHC) class I-restricted epitope derived from the shared melanoma/melanocyte antigen
gp100, tumor growth is identical in transgenic mice and in non-transgenic littermate controls
(33,34). Similarly in humans, very high levels (in excess of 10% of all peripheral blood
CD8™ T cells) have been raised against an HLA-A*0201 restricted gp100-epitope through
prime-boosting in adjuvant melanoma patients with no objective evidence of disease (35).
Despite these impressively high levels of circulating anti-tumor T cells, there was no
apparent difference in the rates at which patients experienced recurrence of their disease.
Taken together, these data suggest that while measurement of precursor frequency provides
some immunological data, including whether or not a vaccine is sufficient to cause immune
activation and expansion, currently available assays are not necessarily predictive of patient
benefit.

A second surrogate end point often used in immunotherapy trials is determination of the
response rate, an objective and standardized measurement of tumor shrinkage. For both
classic cytotoxic chemotherapy agents and newer, so-called molecularly targeted agents, a
higher overall objective response rate appears to be reasonably well correlated with the
likelihood that a particular agent will obtain regulatory approval (36,37) and, more
importantly, extend overall survival (38,39). Additionally, determination of the response rate
is relatively facile and reproducible between institutions using common radiographic
instruments, such as computed tomography (CT) scanners. Finally, in contrast with ‘stable
disease’ measured over an arbitrary time frame, assessment of objective responses
minimizes the possibility of false positive results because inactive agents are expected to
have a response rate that approaches zero and spontaneous regression in diseases like
melanoma is exceedingly rare (40). It is for these reasons that we continue to believe there is
important value in assessing and comparing the objective response rate mediated by
different immunotherapy regimens, particularly in the setting of early phase clinical trials.

A re-appraisal of early phase cancer vaccines trials since 2004

To determine whether progress has been made in the efficacy of early phase therapeutic
cancer vaccines since 2004, the year of our last published overview (6), we selected a
sample of therapeutic vaccine trials including 856 patients representing multiple types of
solid cancers and which explicitly used standardized oncologic response criteria (41-43) as
a study endpoint (Table 1). Although the sheer number of cancer vaccine trials precluded
analysis of every trial that was performed in this interval, we sought to include a wide
variety of studies we felt were representative of the field as a whole, including trials
evaluating tumors considered to be immunogenic and non- immunogenic and which
evaluated a diverse array of vaccine platforms. Trials that included compounds with known
anti-tumor activity were specifically excluded. As discussed above, given the poor
predictive value of current immuno-monitoring correlates with clinical efficacy, combined
with the low false positive rate of anti-tumor activity when objective responses are observed,
we used response rates as a measure of a positive outcome. While stabilization of disease,
particularly when strictly defined and prolonged in duration, may very well translate into
improved survival for conventional chemotherapies (44), molecularly targeted therapies
(45,46), and immunotherapies (15), we chose not assess this parameter as it is difficult to
make sense of in what are generally small single arm studies. Consequently, our present
analysis may underestimate the benefit of any given vaccine regimen.

Thirty-three objective responses were reported for an overall objective response rate of 3.7%
across all of the trials evaluated. There were 13 (3.7%) responses in 347 patients receiving
peptide vaccines, 10 (4.2%) in 240 patients receiving dendritic cell vaccines, 1 (0.9%)
response in 108 patients receiving recombinant viral vaccines, 2 (2%) responses in 98
patients receiving tumor cell vaccines, and 4 (7.8%) responses in 51 patients receiving DNA
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plasmid vaccines. Four (4.8%) responses were seen in 83 total patients that received either
full-length protein, peripheral blood mononuclear cell (PBMC), ganglioside, or RNA-based
vaccines. These results are essentially identical to our findings in 2004, where we found our
own vaccine trials had a response rate of only 1.9%, with only a 3.8% response rate
observed by extra-mural and international investigators (6). Taken together, these data
suggest that when considered as a whole and when using objective response rate as the
metric of success, there has not been a significant improvement in the efficacy of early
phase therapeutic cancer vaccine trials since 2004.

Overall survival in randomized therapeutic cancer vaccine trials

As noted above, survival is arguably the most important and least subjective study endpoint
in therapeutic oncology trials. Therefore, in addition to surveying early phase therapeutic
vaccine trials which reported objective response rates, we also assessed the efficacy of a
series of large, randomized and controlled clinical trials of therapeutic cancer vaccines
where overall survival was a study endpoint (Table 2). Trials that focused exclusively on
vaccination in the setting of no observable disease (adjuvant setting) were excluded from our
analysis.

Unfortunately, as is the case with many oncologic therapies in late-stage testing (47), the
majority of these trials did not reach their primary endpoint or failed to find differences in
overall survival. In most cases, this was despite promising early phase clinical data with the
very same agents. Some vaccine trials did, however, demonstrate a significant improvement
in overall survival (27,48,49). For example, 2 out of 3 nearly identically designed phase 111
trials evaluating sipuleucel-T in men with metastatic castrastion-resistant prostate cancer
(CRPC) reported an improvement in overall survival on the order of approximately 4
months in the group randomized to receive vaccination over the placebo group (27,48,50).
Of note, only a single objective partial response was recorded among the 330 patients who
received vaccine in the one trial that explicitly reported radiographic responses, and there
were no significant differences in time to progression in any of the 3 trials. Further, declines
in PSA values of 50% or more were observed in only 13 of 536 patients (2.4%) randomized
to the sipuleucel-T arms across all 3 trials.

This pattern of increased survival in the absence of objective responses or a delay in time to
progression runs counter to previous experience with conventional cytotoxic chemotherapies
where either disease regression or stabilization of disease was correlated with improvements
in overall survival (38,39). As such, these findings have been met with caution and reserve
among some investigators (51). Some have suggested that a flaw in the trial design or
imbalances between the study groups (52) may have accounted for apparent differences in
survival between treatment groups in the absence of demonstrable anti-tumor effects.
Indeed, patients randomized to the vaccine arm received docetaxel, a chemotherapy known
to improve overall survival in this patient population (53,54), both earlier and with greater
frequency than patients randomized to the placebo arm. A recent subgroup analysis of the
TAX327 study, one of the registration trials for docetaxel in metastatic CRPC patients,
suggests that men who were asymptomatic or minimally symptomatic had a median overall
survival of 25.6 months (55). This value is very close to the 25.8 month survival observed in
patients randomized to the sipuleucel T arm of the study. To correct for this potential
confounding factor, the authors performed a post hoc analysis censoring patients at the time
they initiated docetaxel therapy. However, as the authors correctly point out, there is no
universally accepted method to correct for the impact of subsequent treatment.

In a separate prostate cancer vaccine trial using a heterlogous prime-boosting regimen with
recombinant pox-viruses encoding PSA, a significant improvement in overall survival was
also observed, although the study’s primary end-point of improved time to progression was
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not met (49). However, several confounding factors with this trial have been brought to
attention (56). Specifically, there were apparent imbalances between the two groups such
that survival in the control arm was far less than would be predicted based on established
nomograms (57). Additionally, no information regarding subsequent therapies such as
docetaxel was reported, limiting the ability to determine the extent to which differences in
outcome may be attributed to the effects of the experimental vaccines versus those of
established therapies. A planned phase 111 trial using this same pox-virus based regimen
should help resolve these questions more definitively and may help add further weight to the
concept of improved overall survival in the absence of overt anti-tumor responses (58).

Even in these positive trials, no tail in survival was observed, implying that nearly all
patients would ultimately die as a direct consequence of their underlying malignancy. This
critical limitation of active immunization for the treatment of cancer, as presently conceived
and employed, was predicted in mouse models (Fig. 1). Clearly improvement in the
treatment of cancer often comes in small, incremental waves. It is abundantly clear,
however, that immunotherapy is capable of causing durable and complete tumor regressions,
albeit in a minority of patients at present (59) and especially after intensive host
conditioning followed by ACT (19,20). It therefore seems reasonable that cancer
vaccinologists may aspire to such a goal of more robust and durable responses to vaccine
therapy by adapting principles gained through experience with successful adoptive T-cell
therapies. Promising pre-clinical and early clinical work offers some hope of how to
rationally move forward towards this goal.

A critical need for better immunologic adjuvants

Adjuvants, substances added to vaccines that trigger components of the innate immune
system to increase or modify a subsequent adaptive immune response, have been known to
be a critical determinant of the success or failure of vaccines for over 90 years (60). Despite
this fact, the mechanisms of action and even a precise knowledge of the constituents of
many vaccine adjuvants have remained poorly characterized until quite recently (61,62). It is
for this reason that the late Charlie Janeway famously and poignantly described the nature of
adjuvants as ‘the immunologist’s dirty little secret’ (63). Some current and previously tested
cancer vaccine formulations, such as recombinant viral vectors, functionally contain or are
designed to express their own adjuvant (64,65). Many others, such as peptide-based
vaccines, do not and therefore require co-administration of adjuvant in order to induce a
productive immune response.

Historically, the choice of adjuvants available for human application has been extremely
limited, in part due to concerns regarding toxicity but also due to significant regulatory and
financial hurdles (66). In fact, only aluminum salt-based adjuvants and a combination of
aluminum hydroxide with monophosphoryl lipid A (MPL), a natural glycolipid derived from
Salmonella cell membranes that functions as a Toll-like receptor 4 (TLR4) agonist, have
been licensed for human use in the United States. Although there is generally a greater
acceptance of possible side effects and toxicity related to vaccine adjuvants in potentially
life-threatening diseases, such as human immunodeficiency virus (HIV) infection and
cancer, our current armamentarium of adjuvants remains woefully inadequate. Several
recent examples illustrate this point.

Based in part on pre-clinical data that demonstrated enhanced protection from tumor re-
challenge using irradiated tumor lines retrovirally transduced to secrete granulocyte-
macrophage colony-stimulating factor (GM-CSF) (67), this cytokine has frequently been
incorporated into many preventative and therapeutic cancer vaccines. Until recently,
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however, the impact of adding GM-CSF to cancer vaccines in patients had not been
systematically evaluated in a controlled fashion.

Two randomized trials comparing active immunization either with or without co-
administration of GM-CSF in adjuvant melanoma patients demonstrated inferior
immunologic and patient outcomes in the groups randomized to receive GM-CSF (68,69). In
one trial, patients were given a combination of 12 different class I-restricted melanoma-
associated epitopes in conjunction with a class I1-restricted tetanus “helper’ epitope with or
without GM-CSF (68). Immune responses against many of the class I-restricted epitopes, as
measured by both ELIspot and frequency of tetramer-reactive cells, were significantly lower
in the GM-CSF arm. In addition, a trend towards inferior survival was observed in the GM-
CSF arm. In a second trial, an allogeneic, irradiated, whole-cell melanoma vaccine derived
from three different melanoma cell lines was administered alone or in combination with
GM-CSF (69). All study participants received BCG as an additional form of adjuvant.
Patients in the GM-CSF arm had an impaired cell-mediated immune response, as evidenced
by reduced delayed-type hypersensitivity responses to low doses of the immunizing cell
lines, compared with the control arm. Of greater concern, this trial also observed a trend
towards worse overall survival in those patients who received GM-CSF. These findings
mirror results from earlier clinical studies where either reduced immunogenicity or a failure
to augment immunogenicity was seen in vaccine regimens using GM-CSF as an adjuvant
compared to a control arm that did not receive the cytokine (70-73). The mechanism behind
the reduced immune-responsiveness observed in the presence of exogenous GM-CSF
remains to be completely determined. However, it is intriguing to note that GM-CSF was
found to inhibit, rather than potentiate, vaccine-induced immunity in pre-clinical as well as a
recent clinical study by expanding a population of myeloid cells with suppressive properties
(termed MDSC) (74-76). Some authors have suggested that lower-doses of GM-CSF (<80
ug per day) may enhance rather than attenuate cell-mediated immunity; however, this
hypothesis requires further evaluation in patients (67).

A second recent example of the critical deficiency in effective vaccine adjuvants involves
our experience and that of others with Montanide ISA 51 incomplete Freund’s adjuvant
(IFA), an oil-in-water emulsion frequently used in peptide vaccine clinical trials. In 2006,
the formulation of Montanide ISA 51 IFA was altered at the mandate of regulatory agencies
so that the oleic acid component would be derived from olives, rather than beef tallow, due
to theoretical concerns regarding transmission of animal-borne illnesses such as prion
disease. This change impacted several ongoing clinical trials, in effect creating an unplanned
experiment where sequential cohorts of patients would receive either IFA containing animal
derivatives (IFA AD) or IFA derived from vegetable material (IFA VG) (77,78). This
change was not without apparent consequence.

In a retrospective analysis of immune responses generated in sequential adjuvant clinical
trials using gp100:209-217 (210M), an anchor-modified epitope of the shared melanoma/
melanocyte antigen gp100 (79), we found that immune responses were significantly reduced
following the transition from an animal-derived to a vegetable-derived source of IFA (76).
Using animal-derived IFA, we found that the vast majority (89%) of patients could be
immunized against gp100 using a multi-course vaccination regimen with tetramer-positive
frequencies reaching as high as 42% of all circulating CD8" T cells (80,81). Of note, a
subset of patients who received peptide in saline alone did not exhibit any evidence of
immunization (81). Following the transition to IFA VG; however, we discovered that
antigen-specific immune responses, as measured by ELISpot and in vitro sensitization
assays, as well as local skin reactions were all dramatically impaired. Although some groups
did not find any apparent differences in the ability to immunize patients in the interval
spanning the transition from IFA AD to IFA VG, these trials incorporated a class I1-
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restricted helper epitope in their vaccine regimen, potentially mitigating the loss of any
‘contaminant’ in the animal-derived product that may have boosted the adjuvanticity of the
compound (78). In pre-clinical studies, peptide immunization using IFA VG caused antigen-
specific CD8" T cells to undergo a primary proliferative response but entirely abrogated
their ability to mediate a recall response on boosting. Further, peptide/IFA mixtures resulted
in long-term sequestration of antigen-specific CD8* T cells at the vaccination site, in part
due to continuous antigen presentation by dendritic cells and B cells (82). Whether this is a
specific property of IFA VG or all oil-in-water emulsions remains to be determined. Taken
together, these examples demonstrate our critical need to develop more potent and consistent
molecularly defined adjuvants.

Cell-intrinsic modulation of T-cell differentiation status using

pharmacologic modulators of metabolism

Memory CD4* and CD8* T cells are diverse with respect to phenotype, function, and
anatomic partitioning. Classically, memory T cells have been divided into two major
subsets, termed central memory T cells (Tcm) and effector memory T cells (Tem), based in
part on the surface expression of the lymph node homing molecules CD62L and CCR7 as
well as the ability to secrete 1L-2 (83). More recently a third T memory subset, termed T
memory stem cell (Tscm), has been described in mice that display robust self-renewal and
the multi-potent capacity to generate Tcm, Tem, and effector T cells (84,85). Experiments in
viral, bacterial, and tumor models have revealed that Tcm are more efficient than Temcells
in clearing pathogens and treating tumors due to their enhanced proliferative capacity,
persistence, and poly-functionality (86,87). Additional experiments have demonstrated that
Tscm are even more potent yet than Tcm cells in their recall capacity and ability to mediate
tumor regression (85). Thus, the selective generation of highly functional Tcm and Tscm
subsets in vivo following vaccination has been a sought after goal in vaccinology. Several
recent reports suggest that such selectivity in T-cell memory subset formation may indeed be
possible through the pharmacologic modulation of the metabolic fitness of responding T
cells.

Complementing immunologic adjuvants, which act in a cell-extrinisic manner to enhance
immunologic function, has been the recent development of a class of reagents which we
have termed cell-intrinsic modulators of metabolism and memory formation (CIMMs) (88).
Through the modulation of key metabolic and developmental pathways, such as the
adenosine monophosphate-activated kinase (AMPK)/mammalian target of rapamycin
(mTOR) and Wnt/p-catenin pathways, CIMMs have been shown to enhance both the quality
and quantity of memory CD8" T cells generated in mice (85,89-91) and non-human
primates (89). Importantly, many candidate CIMMs are already available for human use,
potentially allowing for the expeditious translation into human vaccine studies in the near
future (88).

Araki and coworkers (89) demonstrated that pharmacologic inhibition of the mTOR
pathway using the FDA-approved immune-modulator rapamycin either during the priming
or contraction phases of a primary CD8* T-cell response could enhance T-memory
formation. Specifically, the authors found that rapamycin administration during T-cell
priming and expansion augmented the absolute number of both Tcm and Tem compared
with mice given a vehicle control due to enrichment in IL-7RaMI"KLRG1!°% memory
precursors at the peak of the immune response. By contrast, administration of rapamycin
during the contraction phase caused an accelerated accumulation of Tcm cells. Similarly,
rapamycin during in vitro priming of CD8* T cells under type 1 conditions with 1L-12 was
also found to augment memory formation and anti-tumor immunity following adoptive cell
transfer (91). In a related study, Pearce and colleagues (90) demonstrated that provision of
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the commonly used diabetes drug metformin, an AMPK-agonist, during the contraction
phase of a primary immune response enhanced subsequent CD8* T cell memory recall
responses and augmented protection tumor from tumor challenge.

The canonical Wnt/B-catenin pathway (92) has recently been found to be a key
developmental pathway necessary for the generation of Tscm (85) and the persistence of
CD8* T memory cells in general (93-95). By potentiating Wnt/B-catenin signaling through
inhibition of glycogen synthase kinase-f, a component of a multimeric complex that
normally targets B-catenin for proteosomal degradation, an increased frequency of tumor-
reactive Tscm and Tcm was observed in response to vaccination with a recombinant pox-
virus vector. Notably, this enhancement in desirable memory subsets occurred without
compromising the absolute number of responding antigen-specific CD8* T cells.

Immunologic checkpoint blockade antagonists and the removal of
suppressive cell populations

The paradigm for a prototypical naive T-cell response to an antigenic challenge, such as an
acute viral infection, is that responding T cells undergo a multi-log clonal expansion, acquire
effector functions and permeate peripheral tissues, clear the instigating pathogen, and
subsequently contract to form a durable population of antigen-experienced memory T cells
(96). In cases where the target antigen remains persistent and is not cleared rapidly, such as
the tumor-bearing state or in chronic viral infections, this orderly sequence of events can
become profoundly disrupted. Consequently, T cells may be generated that are progressively
impaired or ‘exhausted” with respect to their functional and proliferative capabilities (97,98).
Such exhaustion is likely to be a leading, if not primary, reason for the relative
ineffectiveness of the majority of therapeutic cancer vaccines. Correlated with the exhausted
T-cell phenotype is the surface expression of a diverse array of negative regulatory
molecules, including CTLA-4, programmed cell death-1 (PD-1) (CD279), lymphocyte-
activation gene 3 (LAG3) (CD223), and T-cell 1g- and mucin-domain-containing molecule-3
(TIM-3), among numerous others (99). Besides being markers of T-cell exhaustion, these
molecules actively contribute to suppression of cytokine secretion and proliferative potential
(100). Thus, they can represent ideal targets for therapeutic blockade to restore T-cell
function in the tumor-bearing state, particularly when combined with concurrent immune
stimulation such as vaccination.

CTLA-4 is a type | transmembrane glycoprotein that possesses close homology to the
costimulatory molecule CD28 (101). Like CD28, CTLA-4 binds both B7-1 (CD80) and
B7-2 (CD86); however, it does so with much higher affinity. Consequently, under limiting
conditions, CTLA-4 may function as a B7 sink (102,103). In contrast to CD28, which
delivers pro-proliferative and anti-apoptosis signals to T cells, ligation of CTLA-4 functions
to restrict T-cell activation. Beyond serving as a counter-regulatory factor for T-cell
activation, CTLA-4 has also been found to be progressively upregulated on chronically
stimulated and exhausted T cells (104). Further, CTLA-4 is constitutively expressed on the
surface of Tregs, where it contributes to the ability of these cells to antagonize the effector
functions of responding T cells (105), including anti-tumor T cells (106).

Treatment with the CTLA-4 blocking antibody ipilimumab has moderate single-agent
efficacy in mediating cancer regression in melanoma (15,107-110) and renal cell carcinoma
patients (111). More importantly, ipilimumab has recently been demonstrated to
significantly extend overall survival of previously treated melanoma patients in a recently
completed randomized phase 11 clinical trial (15). Interestingly, although the addition of a
gp100 peptide vaccine with ipilimumab had no significant impact on overall survival
compared with ipilimumab alone, the combination did cause a significant reduction in the
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overall response rate. These results contrast with the recent experience of combining the
same gp100 peptide with bolus IL-2 where an increased frequency of objective responses
and a significant improvement in progression free survival were observed compared with
IL-2 administration alone (28). The reason why peptide vaccination appears to enhance IL-2
mediated responses while potentially limiting ipilimumab responses remains unclear.
However, given that overall survival was not impaired in the combined vaccine plus
ipilimumab arm, combined with pre-clinical data suggesting that vaccination may augment
the anti-tumor function of CTLA-4 (112). Trials combining alternative vaccine regimens
with blockade of CTLA-4, using other checkpoint mediators such as PD-1 (113), or
combinations of checkpoint inhibitors may show promise.

Combining ACT with vaccination or vaccine surrogates

In contrast with experience from most therapeutic cancer vaccines, adoptive T-cell therapy
can mediate objective tumor regression consistent with standard assessment criteria and,
more importantly, durable long term complete responses in a reproducible minority of
melanoma patients (19,20,114-116). It is this latter point in particular, the ability to mediate
complete and sustained eradication of all observable cancer even in the setting of advanced
disease, which appears to distinguish ACT from other standard and experimental treatment
modalities for metastatic melanoma. Thus, any intervention which could increase the
frequency of durable complete responses with ACT could have tremendous clinical impact.
One such intervention may be the combination of ACT with concurrent antigen-specific
vaccination or a mimetic for vaccination.

Studies in mice using multiple different tumor models have demonstrated that antigen-
specific vaccination in combination with adoptively transferred CD4* or CD8* tumor-
reactive T cells can potently enhance the magnitude of the anti-tumor immune response
raised against established tumors (117-123). The mechanisms underlying these improved
responses with concurrent vaccination following ACT are multi-factorial. However, key
components include induction of a multi-log clonal expansion of adoptively transferred T
cells (118), facilitation of T-cell entry into peripheral sites throughout the body where
tumors may reside (34,121), and the release of cytokines, such as IFNy, which allow T cells
to scan and detect target tissues expressing cognate antigen (121,124,125). Preliminary
clinical experience using either adoptive cell transfer of TIL in combination with concurrent
vaccination or transfer of EBV-reactive T cells genetically engineered to express a receptor
against a tumor-associated antigen into EBV-positive patients suggest that in vivo antigen
re-stimulation may also augment antitumor T-cell function in humans (126,127).

From a practical standpoint, co-administration of an antigen-specific vaccine in combination
with ACT requires knowledge of the reactivity contained in the transferred T-cell
population. This may be possible when the transferred T cells are mono-specific by design,
such as T cells genetically engineered to express a single exogenous T-cell receptor (TCR)
(128,129) or a cloned population of T cells raised against a defined epitope (115,130,131).
In the case of TILs, however, provision of an antigen-specific vaccine at the time of cell
infusion can prove technically challenging, if not impossible. In general, TILs contain
reactivity against a multitude of tumor antigens rather than possessing a single dominant
specificity. Further complicating matters, more than 50% of TIL cultures contain reactivity
that is autologous in nature (19,20,132), precluding the ability to administer an “off the
shelf’ vaccine reagent targeting these antigens. This is an especially critical problem, as
optimization of the in vivo function of TILs remains a high priority. In contrast with other
sources of T cells for ACT, such as cloned T cells (115,130,131,133) or T cells engineered
to express exogenous TCRs reactive against shared melanoma/melanocyte antigens
(128,129), TILs appear to be capable of mediating durable cancer regression in a larger
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frequency of patients with relatively less toxicity to host tissues (19,20). Recent experiments
in mice have demonstrated at least two potential solutions to solve this problem by
providing mimetics for vaccination that act in an antigen-independent manner.

Ablative host conditioning with HSC rescue can mimic vaccination

One approach has been to increase the intensity of host pre-conditioning prior to cell
infusion to the point that rescue of hematologic function through the transfer of
hemaptopoetic stem cells (HSCs) is required (134,135). In mice, it has long been known that
host conditioning with a sub-lethal, non-myeloablative dose of radiation or provision of
immune-depleting chemotherapy prior to T-cell infusion can potently enhance the anti-
tumor function of transferred T cells (136—140). The mechanisms underlying this augmented
tumor immunity have recently been resolved (141). These include removal of antigen-
irrelevant CD4* and CD8* T cells as well as NK cells which function as homeostatic
cytokine sinks for the cytokines IL-7 and 1L-15 (140,142), a temporary depletion of
suppressive cell populations such as CD4*CD25*FOXP3* T regulatory cells (Tregs) and
MDSCs (135,143), and mucosal injury liberating systemic levels of the TLR4 agonist LPS
into circulation which is capable of maturing splenic dendritic cells (144).

Building on these findings, experiments have subsequently been undertaken to determine the
impact of intensifying host conditioning to a fully myeloablative state. In addition to
providing for a deeper and more durable reduction in potentially suppressive cell
populations, including Tregs, MDSCs, and NKT cells (135), myeloablative host-
conditioning unexpectedly also induced a profound expansion of transferred T cells in a
HSC-dependent manner (134). Significantly, this expansion occurred in the absence of an
exogenously provided antigen-specific vaccine. Perhaps most importantly, myeloablative
host conditioning followed by HSC rescue provided equivalent tumor treatment to ACT
combined with concurrent vaccination in myeloablated and non-myeloablated hosts. Thus,
myeloablative conditioning with HSC rescue can replace the requirement for antigen-
specific vaccination to achieve optimal tumor treatment. High intensity host conditioning
has been translated to TIL transfer in patients with an apparent increase in the frequency of
objective responses (20), including a relatively high rate of durable complete responses,
compared with patients who have been treated with TILs alone or TILs with non-
myeloablative pre-conditioning (145).

Programming tumor-reactive T cells prior to cell transfer can replace vaccination

A second approach to provide the benefits of concurrent vaccination with ACT in an
antigen-independent manner has been to ‘program’ T cells with a short-term stimulus
immediately prior to cell infusion. Work pioneered in the Pamer, Ahmed, and Schoenberger
(146-149) laboratories has demonstrated that provision of a brief, TCR-focused
programming stimulus to naive CD8* T cells is sufficient to induce clonal proliferation,
acquisition of effector functions, and entry into the memory pool in the absence of additional
stimulation. Adapting this approach to antigen-experienced cells, we and others (125,150)
have shown in mice that tumor-reactive, memory-like CD8* T cells can be programmed in
an antigen-specific manner with irradiated peptide-pulsed APCs or in an entirely non-
specific manner using combined anti-CD3/anti-CD28 stimulation. Programmed tumor-
reactive T cells expanded vigorously in vivo upon transfer, gained effector functions, and
killed tumor in an IFNy-dependent manner, all in the absence of a systemically administered
cancer vaccine. By contrast, transfer of non re-stimulated T cells resulted in only a marginal
delay in tumor growth compared with untreated controls. Translation of the programming
approach to patients may be accomplished through bead-based delivery of costimulation
signals (151), stimulation of T cells with adherent or removable artificial antigen presenting
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cells (152), or by subjecting T cells to a rapid expansion protocol with anti-CD3, IL-2, and
allogeneic irradiated feeder cells immediately prior to cell transfer (153).

Conclusions

The era of effective immune-based therapies for the treatment of advanced solid cancers is
upon us. A nearly 25 year experience with bolus IL-2 has shown that a reproducible
minority of patients with advanced metastatic cancer can enjoy durable, long-term complete
responses which may even represent cures (154,155). More recently, immune check-point
blockade using antibodies to CTLA-4 has demonstrably improved overall survival in
previously treated melanoma patients (15). Further, the adoptive transfer of tumor-reactive T
cells into lympho-depleted hosts has shown that a significant percentage of treated patients
can experience immune-mediated cancer regression across multiple institutions
(19,156,157). The latest results from cancer vaccine trials may indicate a prolongation in
survival in the absence of evidence of objective tumor regression or significant prolongation
in time to progression. The seeming dissociation of clear antitumor activity with
improvements in survival will require new hypotheses, new mechanistic inquiries, and new
exploratory techniques to validate these observations. Nevertheless, despite apparent
progress in the field of cancer vaccines, it is clear from all of the available evidence using
the current therapeutic cancer vaccines in the setting of metastatic disease that patients
almost universally exit treatment with viable and hence ultimately lethal tumors. These
findings stand in stark contrast with immunotherapies based on the adoptive transfer of
tumor-specific T cells after immunodepleting regimens, where complete and long-lasting
tumor regression is incontrovertibly observed (20). It is important to note, however, that any
shortcomings in the current cancer vaccines should not be viewed as an experimental dead
end but rather as an opportunity to continue to explore the development of enhanced
immune adjuvants, the possible incorporation of CIMMs into clinical trials, and an incentive
to continue innovative combinations of vaccines with immune checkpoint blockade and
adoptive T-cell transfer-based immunotherapies.
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Fig. 1. Efficacy of therapeutic cancer vaccines in mouse and human

Realistic animal models for the treatment of human cancers have been developed in an
attempt to test, improve, and refine immunotherapies for possible clinical translation. In
many cases, results in mice have predicted both limitations as well as promising new
therapies in man. (A) Treatment of established B16 melanoma in mice with a recombinant
viral vector encoding the shared self/tumor antigen gp100 plus recombinant IL-2 causes a
statistically significant (P = 0.0029) but modest improvement in overall survival. All mice
ultimately expired from uncontrolled tumor growth. (B) Treatment of metastatic castration
resistant prostate cancer in humans with autologous peripheral-blood mononuclear cells
activated with a recombinant fusion protein consisting of GM-CSF and the self/tumor-
associated antigen prostatic acid phoshatase causes a statistically significant (P =0.03) but
modest improvement in overall survival. The vast majority of patients expired from
uncontrolled tumor growth. Data reproduced with permission from Kantoff P, et al, NEJM
2010.
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