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Although Arabidopsis (Arabidopsis thaliana) is the best studied plant species, the biological role of one-third of its proteins is
still unknown. We developed a probabilistic protein function prediction method that integrates information from sequences,
protein-protein interactions, and gene expression. The method was applied to proteins from Arabidopsis. Evaluation of
prediction performance showed that our method has improved performance compared with single source-based prediction
approaches and two existing integration approaches. An innovative feature of our method is that it enables transfer of
functional information between proteins that are not directly associated with each other. We provide novel function predictions
for 5,807 proteins. Recent experimental studies confirmed several of the predictions. We highlight these in detail for proteins
predicted to be involved in flowering and floral organ development.

Arabidopsis (Arabidopsis thaliana) is the most widely
used model organism in plant research. Unraveling
the biological processes in this species, therefore, is
essential for the understanding of plant biology in
general and for the transfer of this knowledge to other
species. Fundamental to this goal is the functional
annotation of Arabidopsis proteins. While the aim of
the National Science Foundation 2010 initiative on
Arabidopsis was to reveal the function of each of its
proteins by 2010 (Berardini et al., 2004), currently one-
third of the proteins still lack a functional annotation in
terms of their biological roles. It is unlikely that these
missing annotations can be generated solely by large-
scale experimental analysis, as these often provide
only a general view on the functions of proteins. At the
same time, targeted experiments remain time consum-

ing and often require a specific prior hypothesis of
function, which for many proteins cannot be formu-
lated. As a complementary approach, therefore, com-
putational methods are needed that can accurately
predict protein functions on a large scale or provide
leads for hypotheses of function and the design of
targeted experiments.

Methods like BLAST (Altschul et al., 1990) and
InterProScan (Zdobnov and Apweiler, 2001; Mulder
et al., 2005) infer the functions of proteins by identi-
fying their homologs in sequence databases and by the
presence of domains that are associated with particu-
lar functions, respectively. This homology-based trans-
fer is a powerful approach for functional annotation of
novel proteins, but also one that can lead to errone-
ous inferences because similarity at the sequence
level does not necessarily imply that proteins carry
out the same function. Also, for lineage-specific or
highly divergent proteins, the probability of identi-
fying a functionally characterized homolog is small.
Finally, homology transfer cannot deal with subfunc-
tionalization and neofunctionalization of recent
paralogs. Besides plain sequences, other types of in-
formation need to be integrated to maximize the cov-
erage and accuracy of function prediction (Forslund
and Sonnhammer, 2008).

Proteins that participate in the same biological pro-
cess often interact physically or exhibit correlations in
their expression patterns. High-throughput experi-
ments provide genome-wide information on such
associations. In addition, protein-protein interactions
can be predicted from sequences (Marcotte et al., 1999;
Itzhaki et al., 2006; van Dijk et al., 2008). The associ-
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ations can be viewed as a network with nodes repre-
senting proteins and edges representing the interac-
tions between them. Computational methods can
employ those networks for function predictions by
analyzing the topology of the network to identify sets
of proteins with dense interactions between them
(Enright et al., 2002) or to analyze their direct relation-
ships (Letovsky and Kasif, 2003; Vazquez et al., 2003)
using the guilt-by-association principle. Such methods
employ statistical models, the performance of which
relies on appropriate selection of the parameters.
Recently, we (Kourmpetis et al., 2010) developed a
method that accurately estimated these model param-
eters using a Bayesian approach and that outper-
formed other related methods.

Integrated approaches for protein function predic-
tion make use of diverse types of data. Peña-Castillo
et al. (2008) evaluated such methods using multiple
genomic data sets from Mus musculus and concluded
that different data sources provide complementary
pieces of information on protein function.

For Arabidopsis, various types of genomic data sets
are available. The genome sequence is completed
(Arabidopsis Genome Initiative, 2000), gene coexpres-
sion levels have been calculated using expression
values from a wide variety of conditions (Obayashi
et al., 2009), and physical protein-protein interactions
have been identified through experiments or predicted
through homology (Geisler-Lee et al., 2007).

Despite the availability of these data, only a limited
number of studies have focused on function prediction
of Arabidopsis proteins through the integration of
data. Clare et al. (2006) predicted the molecular func-
tions of proteins integrating sequence features with
expression experiments. The authors used the decision
tree algorithm Q4.5 (Quinlan, 1993) to predict function
terms of the controlled vocabularies of Gene Ontology
(GO; Ashburner et al., 2000) and the Munich Informa-
tion Center for Protein Sequences (Frishman et al.,
2001). Their algorithm was developed for predictions
that required functional classes to be ordered in a
hierarchical tree structure. GO has a Directed Acyclic
Graph (DAG) structure that is not a tree. Therefore,
Clare et al. (2006) restricted their predictions to the GO
terms that are related to molecular functions and
further to the most general terms that have a tree
structure. Lan et al. (2007) predicted the functions of
Arabidopsis proteins that are involved in plant re-
sponse to abiotic stress by combining different gene
expression experiments. Horan et al. (2008) grouped
Arabidopsis proteins with similar expression patterns
by cluster analysis and predicted functions based on
overrepresented GO terms in each identified cluster.
The agglomerative clustering algorithm assigned each
protein to exactly one cluster, while the complex
nature of the biological processes led to the expecta-
tion that proteins will belong to multiple clusters.
Furthermore, the cluster analysis did not provide
information on the uncertainty of each prediction.
GeneMania (Mostafavi et al., 2008) is a Gaussian

Markov Random Fields-based method for protein
function prediction that combines multiple networks.
In the evaluation experiment of Peña-Castillo et al.
(2008), GeneMania was shown to be one of the most
accurate methods, and besides predictions for theMus
musculus proteins, it was further applied to several
species including Arabidopsis. Bradford et al. (2010)
combined sequence data, gene location in the chro-
mosome, phylogenetic profiles, physical protein-pro-
tein interactions, and expression levels to predict
functions of proteins in Arabidopsis. Using a two-
step approach, the authors first constructed ranked
lists of proteins that are functionally associated with
each query protein. Functions were then inferred by
Gene Set Enrichment Analysis (Subramanian et al.,
2005) of these lists. Since a large fraction of Arabidop-
sis proteins lack functional annotations, the ranked
lists may contain no or only a few proteins with GO
terms assigned to them. The analysis thus has diffi-
culty identifying infrequent GO terms. Lee et al. (2010)
derived a composite functional linkage network
(Karaoz et al., 2004) for the Arabidopsis proteins by
integrating data from sequences, coexpressions, and
physical interactions from Arabidopsis and from other
species. As in the previous approach, functional infer-
ence was only possible when at least one direct neigh-
bor of the query protein had a known function. From
the total set of 7,465 Arabidopsis proteins without
functional annotation, 2,986 (40%) were not linked to
any protein with known function; therefore, function
predictions for them was not possible. VirtualPlant
(Katari et al., 2010) is visualization software that inte-
grates different sources of data for Arabidopsis, in-
cluding GO function information on the proteins.
VirtualPlant is valuable for bridging the gap between
biologists and bioinformaticians by providing an in-
tuitive way to integrate and mine diverse data sources
but does not perform de novo function prediction.

In this study, we performed genome-wide function
prediction for Arabidopsis proteins by integrating
protein sequences, gene expression data, and experi-
mentally derived or predicted protein-protein interac-
tions. We applied Bayesian Markov Random Fields
(BMRF; Kourmpetis et al., 2010), a probabilistic
method shown to be suitable when the functions of
a large number of proteins have to be predicted, such
as in the case of Arabidopsis. A powerful feature of
BMRF is that it can transfer functional information
beyond direct interactions and so can provide function
predictions for proteins linked with other proteins of
unknown function. In the studies of Bradford et al.
(2010) and Lee et al. (2010), such predictions were not
possible. We extended the original BMRF to multiple
data sources using the framework of Deng et al. (2004),
and in a one-step approach, we optimize data source
integration for function prediction. Our analysis re-
sulted in 64,721 novel protein function predictions for
5,807 proteins in 867 GO terms that provide detailed
functional descriptions. We provide the predictions
in the Web site (http://www.ab.wur.nl/bmrf/). After
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demonstrating the performance of our method using
cross-validation as a validation step, we investigated
recent experimental evidence for our predictions. As
an example of the usefulness of our predictions, we
evaluated our predictions on proteins involved in the
flowering process in Arabidopsis.

RESULTS

Model Selection

We extended our BMRF function prediction ap-
proach (Kourmpetis et al., 2010) to deal with multiple
and diverse data sets and applied it to sequence data,
protein-protein interaction data, and coexpression
data available for Arabidopsis. The first and most
crucial step in our study was to identify the best
performing function prediction model. We investi-
gated six models of different levels of complexity.
Three of those used only one type of data (sequence,
protein interaction, or coexpression). The other three
used different ways to integrate the various data
sources. For benchmarking, we masked the annota-
tion of a set of proteins with known annotations. This
set was divided in three strata: network-specific pro-
teins that appear in either (1) the protein-protein
interaction network or (2) the coexpression network
and (3) those that appear in both. We randomly
selected 100 proteins per stratum and predicted their
functions. We evaluated the performance by construct-
ing 100 such benchmarking data sets, one for each of
100 GO terms, and used the area under the receiver
operating characteristic curve (AUC) as the perfor-
mance measure.
Table I shows the mean AUC scores for the candi-

date models in four different evaluation settings
(higher value means better performance). Overall,
the best performing model is the one that integrates
networks and sequence information (BMRF-UNION-
DOMAINS). In general, the predictions based on the
integrated network outperformed those from single

networks (Fig. 1, A and B). The prediction perfor-
mance improved not only for proteins that appear in
both networks but also for network-specific proteins
(Fig. 1, A and B; Table I). The latter was unexpected,
because the neighborhood of a network-specific pro-
tein does not change after the integration of the net-
works. This performance improvement, therefore,
reveals an appealing property of BMRF, namely the
propagation of information over long ranges across
the network. A more flexible model for network inte-
gration that allows the parameters to vary between the
networks did not show any improvement compared
with the simpler one of constraining the parameters to
be equal (Fig. 1C). The model that uses all three data
sources clearly had the best performance compared
with all other candidate models. We proceeded using
this model to make novel predictions for the Arabi-
dopsis proteins.

Protein Function Prediction for Arabidopsis

We applied our probabilistic method integrating
protein-protein interactions, gene coexpression, and
functional domains to predict functions for 8,247
Arabidopsis proteins with unknown biological roles.
Our procedure computes a posterior probability for
each protein against and for each GO term, which
makes the interpretation of the predictions somewhat
difficult. To overcome this problem, we constructed a
list with positive predictions after obtaining the opti-
mal F-score cutoff on the posterior probability from the
set of annotated proteins and applying it to the set of
proteins with unknown functions. This resulted in a
list of 64,721 predictions for 5,807 proteins against 867
GO terms (the list is available at http://www.ab.wur.
nl/bmrf/). For each prediction, we calculated the
Precision and Recall at the given probability cutoff in
order to facilitate further use (biological interpreta-
tion) of the list. Both metrics are high in the list of
predictions (Fig. 2). The density of Recall rates shows
that an appreciable fraction of proteins received a
prediction, while the Precision rates, which are even

Table I. Mean AUC scores for the evaluation data sets

BMRF-PPI (BMRF-COEX) denotes the application of BMRF to the protein-protein interaction (coex-
pression) network. EN-DOMAINS denotes the application of Elastic Net to the domain information.
BMRF-MULTI denotes the integration of the PPI and COEX networks internally by BMRF. BMRF-UNION
denotes the application of BMRF to the union of the PPI and COEX networks, whereas BMRF-UNION-
DOMAINS also adds the domain information. PPI Only and COEX Only evaluate performance for the
masked proteins that appear only in the PPI and COEX networks, “Intersection” for the masked proteins
that appear in both networks, and “All” for all masked proteins. The best performing score per category is
shown in boldface. NA, Not available.

Model/Protein Sets PPI Only COEX Only Intersection All

BMRF-PPI 0.67 NA 0.68 NA
BMRF-COEX NA 0.66 0.67 NA
EN-DOMAINS 0.61 0.63 0.61 0.62
BMRF-MULTI 0.71 0.70 0.74 0.70
BMRF-UNION 0.70 0.70 0.74 0.68
BMRF-UNION-DOMAINS 0.76 0.77 0.79 0.75
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higher than the Recall rates, show that the list contains
a large fraction of correctly predicted proteins.

For validation, we investigated whether there was
recent experimental evidence in the literature support-
ing our predictions and that was not available at the
time of our computations. For this purpose, we down-
loaded the annotation file for Arabidopsis on April 18,
2010, from GO and identified the proteins that were
annotated after October 13, 2009 (the date on which we
downloaded the annotation file used in our predic-
tions). There were 194 new annotations with GO terms
from the Biological Process branch for 103 proteins
that were included in our prediction list. In 14 cases,
we predicted the exact GO term (Table II) or a more
detailed one according to the GO DAG. For 109 new
annotations, we predicted one or more GO terms that
are more general but related. Hence, in total, we
predicted a GO DAG-related function (more general,
exact, or more specific) for 123 out of the 194 (63%).
This level of performance is highly significant (P ,
0.00001) as judged by a permutation test.

We also compared the prediction performance
of BMRF with two recently published integration
methods, Aranet (Lee et al., 2010) and GO-AT (Bradford
et al., 2010), using the list of new annotations as the
validation data set. Each method provides scored pre-
dictions from which we calculated Precision and Recall
at a series of cutoffs. The Precision of BMRF was higher
than the other methods at any given recall rate (Fig. 3).

For the newly annotated proteins, we also make
718 predictions that were not inferred by the newly

obtained experimental data. We expect that at least
some of our novel predictions will be confirmed in
future experiments. Below, we further comment on
some of the supported predictions.

Monaghan et al. (2009) performed double mutant
analysis on the Arabidopsis proteins MAC3A and

Figure 2. Densities for Precision (light blue) and Recall (red) from the
list of predictions. The mass for the Recall lies in the region of 0.2 and
larger. The precision is high, with its mode at 0.8. [See online article for
color version of this figure.]

Figure 1. Scatterplots showing the relative perfor-
mance (AUC score) of different protein function
prediction models. The performance was evaluated
for 100 GO terms using four sets of masked proteins:
those that appear only in the PPI network (light blue)
or only in the COEX network (dark blue), proteins that
appear in both (red), and the full set of proteins
(yellow). A and B, Integrated approach BMRF-
UNION against BMRF-PPI (A) and BMRF-COEX (B).
For the majority of the cases, the integrated approach
performs better not only for proteins that appear in
both networks but also for the network-specific pro-
teins (light and dark blue). C, Comparison between
the two network integration methods BMRF-UNION
and BMRF-MULTI shows little difference in perfor-
mance. D, Comparison of BMRF-UNION-DOMAINS
with the BMRF-UNION and EN-DOMAINS. The
performance of the fully integrated approach is sig-
nificantly better compared with the other methods.
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MAC3B and showed that they are involved in the
defense response against plant pathogens. InterPro
searches did not return information related to the
function of those proteins, while the BLAST2GO tool
predicted the more general term “defense response.”
On the other hand, BMRF predicted the GO term
“defense response to bacterium” (GO:0042742) for
both proteins, which is in complete agreement with
the aforementioned experimental study (Fig. 4A).
Also, BMRF predicted the involvement of MAC3B in
“activation of innate immune response” (GO:0002218),
which is also a defense-related process. The same gene
was identified to have a ubiquitin-protein ligase mo-
lecular function (Wiborg et al., 2008). BMRF predicted
that MAC3B is involved in the biological process
“protein ubiquitination” (GO:0016567), which is in
accordance with that study. Furthermore, Borges
et al. (2008) performed a genome-wide transcriptome
analysis identifying MAC3B to be involved in “em-
bryonic sac development” (GO:0009553), a function
that was also predicted by BMRF. Other examples in
which BMRF accurately predicted protein functions
include YUC8, which was recently identified by Rawat
et al. (2009) to be involved in the “auxin biosynthetic
process” (Fig. 4B), and BIR1, which was identified to
be involved in “negative regulation of defense re-
sponse” (Gao et al., 2009; Fig. 4C). BMRF predicted
that AT3G8710 is involved in “intracellular signaling
cascade” (GO:0023034). On the basis of results de-
scribed by Meng et al. (2010), this protein is newly
assigned to the more general term “cell communica-
tion” (GO:0007154).

Flowering and Floral Organ Development in Arabidopsis

As a specific example of the usefulness of our
method, we here focus on the evaluation of predictions
for flowering and floral organ development. Obvi-
ously, this is a biological process for which annotation
transfer between species is only possible within the
plant kingdom. Given the current scarcity of annota-
tion for plants, homology-based methods have limited
scope for annotation transfer from other species; there-
fore, our network-based approach is, in principle,
better suited.

GO terms were selected that describe processes re-
lated to flowering and floral organ development (Sup-
plemental Table S1). We first discuss a few groups of
proteins, including transcription factors (TFs), that are

Table II. Experimentally verified predictions where BMRF predicted the exact GO term or a more detailed one

Relation denotes the relation between the GO terms of the new annotation and the BMRF prediction: E, exact prediction; D, the GO term
predicted by BMRF is a successor of the annotation according to the GO DAG.

Protein Annotation Reference BMRF Prediction Relation

AT1G04510 (MAC3A) Defense response to
bacterium

Monaghan et al. (2009) Defense response to
bacterium

E

AT2G33340 (MAC3B) Defense response to
bacterium

Monaghan et al. (2009) Defense response to
bacterium

E

AT4G28720 (YUC8) Auxin biosynthetic process Rawat et al. (2009) Auxin biosynthetic process E
AT5G48380 (BIR1) Negative regulation of

defense response
Gao et al. (2009) Negative regulation of defense

response
E

AT4G15200 (AFH3) Actin nucleation Ye et al. (2009) Actin nucleation E
AT4G23130 (CRK5) Response to salicylic acid

stimulus
Chen et al. (2004) Response to salicylic acid stimulus E

AT1G18370 (HIK) Cytokinesis Oh et al. (2008) Cytokinesis E
AT3G10570 (CYP77A6) Flower development Li-Beisson et al. (2009) Flower development E
AT3G13220 (WBC27) Pollen development Xu et al. (2010) Pollen development E
AT1G08450 (CRT3) Defense response to

bacterium
Li et al. (2009) Defense response to bacterium E

AT3G23070 (CFM3A) Seed development Asakura et al. (2008) Embryonic development ending in
seed dormancy

D, E

AT5G64580 (MUB3.10) Embryonic development Mutwil et al. (2010) Embryonic development ending in
seed dormancy

D

AT1G77740 (PIP5K2) Growth Camacho et al. (2009) (1) Cell tip growth; (2) developmental
cell growth

D

AT3G08710 (ATH9) Cell communication Meng et al. (2010) Intracellular signaling cascade D

Figure 3. Precision versus Recall curves for BMRF (blue), GO-AT (red,
dashed), and Aranet (light green) using as validation set the newly
annotated proteins (those deposited in the GO database after April 18,
2010). The Precision level at any Recall is higher for BMRF than for the
other two methods. [See online article for color version of this figure.]
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predicted for the selected GO terms and then focus on
two particular terms: “floral transition” (GO:0010228)
and “corolla development” (GO:0048465).

One important class of TFs with known roles in the
regulation of floral transition and in flower develop-
ment are the MADS domain proteins (Coen and
Meyerowitz, 1991; Ng and Yanofsky, 2001; Ferrario
et al., 2004). For several members of this family, BMRF
predicted additional functions that are consistent with
those known functions. For example, for the MADS
domain protein Agamous-Like6 (AGL6), the GO term
“floral organ development” was predicted, as was the
more detailed term for “carpel, gynoecium, and ovule
development.” Although in Arabidopsis the function
of AGL6 has remained elusive so far (due to the lack of
a single loss-of-function mutant exhibiting a clear
phenotype), recently it was shown that an AGL6
homolog is involved in petal and anther development
in petunia (Petunia hybrida; Rijpkema et al., 2009).
Hence, our prediction for floral organ development
is supported by independent evidence. A second
MADS domain protein predicted for carpel/gynoe-
cium development was AGL15. This protein has a
known function in the floral transition process
(Adamczyk et al., 2007), but our prediction suggested
that it has a broader function in the development of
floral organs.

Several other MADS domain proteins with un-
known functions to date were predicted to function
in flower development, including AGL13, AGL14,
AGL71, AGL72, and AGL79. Note that several of these
proteins arose through lineage- or species-specific
duplications that occurred in the MADS domain pro-
tein family. Such duplications render annotation trans-

fer based on orthology inadequate because it cannot
deal with subfunctionalization or neofunctionaliza-
tion, while our network-based method can in principle
deal with these cases. Two additional predictions for
carpel development, the MADS domain proteins AP3
(AT3G54340) and PI (AT5G20240), seem incorrect in
light of existing knowledge that these proteins are only
involved in the development of petals and stamens,
although it is known that PI is temporarily expressed
in the fourth whorl, where carpel formation takes
place (Goto and Meyerowitz, 1994).

Regulation of transcription via MADS domain TFs
involves histone modification proteins (Hill et al.,
2008; Ng et al., 2009). Similarly, chromatin modifica-
tions are important in the regulation of the floral
transition (for review, see He, 2009). An interesting
aspect of our predictions is that several proteins re-
lated to chromatin modifications are predicted to be
involved in flower development, including histone
H3, SPT16 (AT4G10710), and SSRP1 (AT3G28730),
which are part of a chromatin-remodeling complex.
These predictions do not necessarily imply that those
proteins have a very specific function in flower devel-
opment, as it could well be the case that many different
TFs that are involved in various biological processes
fulfill their functions via such proteins. Indeed, histone
H3 is predicted to be involved in some other devel-
opmental processes as well (e.g. leaf morphogenesis).

In addition, two methyltransfersases are predicted
to be involved in the floral transition, one of which
(PRMT6: AT3G20020) is closely related to a histone-
regulating methyltransferase (PRMT10: AT1G04870)
with a known function in regulating the floral transi-
tion (Niu et al., 2007). Note that for the floral transition

Figure 4. Illustrations of three experimentally verified cases where BMRF successfully recovered the exact function of proteins.
A, MAC3A and MAC3B were predicted to be involved in “defense response to bacterium.” MAC3A has an experimentally
determined interaction with CDC5 as well as one predicted by the interolog from Homo sapiens with PRL1. PRL1 is also
predicted to interact with MAC3B by a Saccharomyces cerevisiae interolog. Both CDC5 and PRL1 are involved in defense
response to bacterium. B, YUC8 was successfully predicted to be involved in “auxin biosynthetic process.” This protein does not
interact with any proteins involved in this process. Still, the prediction was based on the presence of two InterPro domains in its
sequence. C, BIR1 is involved in “negative regulation of defense response,” which is correctly predicted by BMRF through its
coexpression with four other proteins known to be involved in this process. [See online article for color version of this figure.]
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in particular, an epigenetic mechanism is biologically
meaningful as a way to bridge the temporal separation
between the induction of a flowering-competent state
by, for example, vernalization and the initiation of
flowering in spring (Jung and Müller, 2009).
TFs are important for regulating biological pro-

cesses in general and flower development in particu-
lar. At a lower level, however, target genes with more
specific molecular functions are obviously involved in
those processes. One particular set of proteins pre-
dicted by our method are hydrolases (more specifically,
hydrolases that hydrolyze glycosyl compounds). For
one of those (AT3G56310, a putative a-galactosidase),
which is assigned to the process “positive regulation of
flower development,” there is indeed supporting lit-
erature evidence (Rojo et al., 2003; van Doorn and
Woltering, 2008). Other predicted hydrolases include
an a-galactosidase (positive regulation of flower de-
velopment) and AT3G48700, which is expressed dur-
ing the petal differentiation and expansion stage,
according to The Arabidopsis Information Resource
(TAIR). For the GO term 0048573 (photoperiodic con-
trol of flowering time), among others, the hydrolases
AtXTH17, -18, and -19 are predicted. However, ac-
cording to Osato et al. (2006), these are preferentially
expressed in the roots, and there is evidence for a
principal role for the AtXTH18 gene in primary root
elongation. Hence, this prediction seems unlikely.
We now briefly discuss our predictions for two par-

ticular processes, the floral transition (GO:0010228) and
corolla development (GO:0048465). The floral tran-
sition refers to the transition from the vegetative to
the reproductive phase. Themethyltransferase PRMT6,
a methyltransferase-related protein (AT5G53920, ribo-
somal protein L11 methyltransferase-related), and pro-
tein AtBAG2 (AT5G62100) were all predicted for floral
transition. For PRMT6, the closely related protein
PRMT10 is indeed known to be involved in this process
(Niu et al., 2007). AtBAG2 is one of the BAG (for Bcl-2-
associated athanogene) proteins, which are plant ho-
mologs of mammalian regulators of apoptosis. These
proteins regulate apoptosis-like processes associated
with pathogen attack, abiotic stress, or plant develop-
ment. For the two BAG family members AtBAG2 and
AtBAG6 (AT2G46240), knockouts have been shown to
give early flowering (Doukhanina et al., 2006), which
provides strong support for our predictions.
Another interesting prediction for floral transition is

AT1G10320, which is a U2 snRNP auxiliary factor-
related protein (it is predicted as well for photoperiodic
control of flowering time). This protein is involved in
splicing regulation (Lorković et al., 2000), and evi-
dence is mounting for a role of alternative splicing in
the floral transition (Terzi and Simpson, 2008). In
particular, some MADS domain proteins have alter-
native splicing variants with a putative role in this
process. One example is FLM (AT1G77080), which via
exon-skipping can form two different variants (E.I.
Severing, A.D.J. van Dijk, R.G.H. Immink, and R.C.H.J.
van Ham, unpublished data).

Corolla development refers to the development of
the petals of a flower. Here, several members of the
glutaredoxin family were predicted. As there are in-
deed indications for the involvement of glutaredoxin
in petal development (Xing et al., 2005), this prediction
seems reasonable.

DISCUSSION

In this study, we apply BMRF, a computational
method for protein function prediction, to the pro-
teome of Arabidopsis. By integrating diverse data
sources (experimentally identified protein interac-
tions, expression levels, and sequence-derived fea-
tures), we predict 64,721 novel GO terms for 5,807
Arabidopsis proteins. Performance metrics such as
Precision and Recall are estimated for each prediction.
We show that our predictions are of high precision and
may provide leads for the design of new hypothesis-
driven experiments.

It is well known that high-throughput data sets such
as those used in our study contain measurement
errors. Taking this error into account, by incorporating
the edge confidence values in the BMRF model, may
lead to further improvement in the prediction perfor-
mance. The coexpression values that we used in this
study capture correlations between expression levels
shown in a wide range of biological conditions. How-
ever, some proteins may interact only in particular
circumstances and therefore have correlated expres-
sions only under those conditions. We plan to work on
using such data more efficiently in the BMRF model.
Furthermore, the GO annotation files we used do not
contain all the available information concerning the
functions of Arabidopsis proteins. Integration with
additional sources of function information (e.g. by
literature mining) may improve the prediction perfor-
mance of BMRF.

Figure 5. Recall and Precision scores estimated from the held-out set
(proteins with “masked” annotation) versus those from the training set
(proteins with known annotation; x axis). In supervised learning,
performance estimates are based on the held-out set. A, The Recall
rates of the training and the held-out set are in accordance. B, Precision
estimated from the training set provides a conservative estimate of the
true precision estimated by the held-out set.
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We statistically evaluated the prediction perfor-
mance of BMRF and compared our predictions with
recent new annotations deposited in the GO. From the
total of 194 such new annotations, BMRF provided
exact or more detailed function predictions for 14 cases
and more general but related GO terms for 109 cases.
Thus, for 63% of the novel annotations, BMRFwas able
to predict a relevant function, which is a highly sig-
nificant result as judged on the basis on a permutation
test. BMRF gave better predictions than two recently
proposed integrative approaches as judged on the
basis of the Precision-Recall curves for the new anno-
tations. We further studied the predictions related to
flowering processes and found several cases where
our predictions are supported by the literature and
therefore may provide information for further exper-
imental validation.

BMRF is a computational method for function pre-
diction that integrates large-scale data sets and trans-
fers functional information between proteins that
interact indirectly. These two properties make BMRF
a very useful method for protein function prediction in
the genomic era, as shown here by the application to
the Arabidopsis proteome. Based on the results pre-
sented here, we expect that our method will also show
its value for other plant and animal species.

MATERIALS AND METHODS

Protein-Protein Interaction Network

Physical interactions between proteins provide valuable information for

their functions. Proteins that interact are members of the same complex and

involved in the same biological process or pathway. There are around 3,000

experimentally identified interactions between Arabidopsis (Arabidopsis thali-

ana) proteins. In addition, interactions can be predicted by detecting interact-

ing orthologs. Such predicted interactions are called interologs. Geisler-Lee

et al. (2007) used the orthology detection algorithm INPARANOID (Remm

et al., 2001) to identify Arabidopsis interologs from several well-studied

species, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila

melanogaster, and Homo sapiens. We downloaded the experimentally derived

interactions and the interologs from the TAIR Web site and constructed a

protein-protein interaction (PPI) network that contains 7,177 proteins with

72,266 interactions.

Coexpression Network

Besides direct physical interactions, proteins involved in the same biolog-

ical process present correlations in their gene expression. Genome-wide

expression experiments, therefore, provide an important data source for

protein function prediction. In the recent study of Lee et al. (2010), gene

expression was found to be the most informative data source for protein

function prediction. The ATTED-II database (Obayashi et al., 2009) aggregates

58 experiments and 1,388 microarray slides in total. We downloaded the

coexpression data from the ATTED-II Web site on July 21, 2009. For each

coexpression, a confidence value is provided, which is defined by the mutual

rank of the coexpression of two proteins. The authors calculate the Pearson

correlation coefficient between all pairs of proteins. Then, for each protein,

they rank the Pearson correlation coefficient. As confidence value for an

interaction, they calculate the mutual rank (i.e. the square root of the product

for the rankings in both directions of the interaction). This coexpression

measure is useful for protein function prediction (Obayashi and Kinoshita,

2009). Our coexpression network (referred to as COEX) was constructed by

setting the maximum mutual rank to 60. COEX contains 22,133 proteins with

358,540 interactions.

Functional Domains

Sequence signatures are an important source of information concerning the

function of a protein. InterPro (Mulder et al., 2005) aggregates the most

important tools and databases that are used to identify such sequence patterns

and to link them to particular functions, primarily at the molecular level. We

used the identified InterPro functional signatures for the proteome of

Arabidopsis. This data set was downloaded directly from the TAIR Web site

in October 2009.

GO Annotations

We downloaded the annotation file for Arabidopsis from the GO, with

version 1.1271 deposited on October 13, 2009. This file contains in total 14,038

Biological Process annotations. Annotations with evidence code “Inferred

from Electronic Annotation” were removed from the data set because these

are derived from InterPro hits, which we used independently in our study for

function prediction. All remaining annotations were up-propagated to their

more general terms using the GO DAG structure. In total, there were 2,894 GO

terms appearing at least once, but many of them were extremely sparse (i.e.

containing less than 10 proteins assigned to them after up-propagation). Our

final set contained 1,024 GO terms and 8,247 proteins lacking Biological

Process annotations in the Arabidopsis proteome.

Protein Function Prediction

BMRF for a Single Network

We investigated different approaches for protein function prediction. Our

starting point was the BMRF method for protein function prediction based on

a single network described in an earlier study (Kourmpetis et al., 2010). In

particular, given a network that contains N proteins and S edges (indicating

interactions between proteins), a particular function of interest (i.e. a GO term)

is represented by a N-dimensional binary vector X with element xi = 1 if

protein i is annotated as performing the function and xi = 0 otherwise. The

elements of X that correspond to unannotated proteins are unknown. The

objective of BMRF is to infer the unknowns given the observed part of X using

the edges of the protein network. The log odds of the probability that an

unannotated protein xi performs the function of interest, given the annotations

for all other proteins, denoted by X2i, depends on the number of its direct

neighbors performing the function and the number of them that do not

perform the function:

log
Pðxi ¼ 1jX�iÞ
Pðxi ¼ 0jX�iÞ ¼ aþ b1 +

j2Si
xj þ b0 +

j2Si
ð12 xjÞ ¼ a þ b1Mi1 þ b0Mi0

where a denotes the intercept, b1 and b0 are interaction parameters, and Si

denotes the set of proteins that interact with protein i, so that Mi1 denotes the

number of proteins that interact with protein i and perform the function while

Mi0 denotes those that interact with protein i but do not perform the function.

Inference for the unannotated part of X can be made using a Markov Chain

Monte Carlo approach (Kourmpetis et al., 2010). We refer to BMRF-PPI when

this method is applied to the PPI network and to BMRF-COEX when it is

applied to the COEX network. In both cases, the predictions are limited to the

proteins that appear in the network that BMRF is applied to. For example, it is

not possible to make predictions for the proteins appearing only in the COEX

network by applying BMRF to the PPI network.

BMRF for Multiple Networks

A natural way to integrate multiple networks through BMRF is by using a

set of interaction parameters per network. This approach was originally

proposed by Deng et al. (2004):

log
Pðxi ¼ 1jX�iÞ
Pðxi ¼ 0jX�iÞ ¼ aþ b

PPI

1 MPPI

i1 þ b
PPI

0 MPPI

i0 þ b
COEX

1 MCOEX

i1 þ b
COEX

0 MCOEX

i0

We refer to this model as BMRF-MULTI. A special case of this model is

obtained by constraining the interaction parameters between the networks to

be equal (i.e. b1
PPI = b1

COEX and b0
PPI = b0

COEX). This approach is equivalent to

applying BMRF to the single network that is the union of the PPI and COEX

Kourmpetis et al.
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networks. The union network has an edge if an edge appears in at least one of

the networks. We refer to the latter model as BMRF-UNION.

Elastic Net for Functional Domains

Given the set of M available InterPro domains, we constructed the N 3 M

binary matrix D, where the element dnm is equal to 1 if protein n contains the

InterPro domain m and 0 otherwise. The probability that a protein performs

the function of interest depends on the presence/absence profile of domains.

We write this relationship as a logistic regression with binary variables:

log
Pðxi ¼ 1jDÞ
Pðxi ¼ 0jDÞ ¼ b

D

0 þ +
M

m¼1

b
D

mdim

The parameter vector bD contains the regression coefficients for the

domains and can be estimated using the proteins with known functional

annotation. A particular GO term is expected to be related to only a small

subset of the domains, and those domains usually act in a concerted way.

Therefore, we aim to perform variable selection while keeping highly corre-

lated variables in the model. A suitable method for this purpose is the Elastic

Net (EN; Zou and Hastie, 2005) version for logistic regression (Park and

Hastie, 2007). EN combines Lasso regression (Tibshirani, 1996) and Ridge

regression (Hoerl and Kennard, 1970). In Lasso regression, the sum of the

absolute values of the regression coefficients is penalized, while in Ridge

regression, their sum of squares is penalized. EN combines both regulariza-

tion methods using a convex parameter for which on one extreme the model

becomes equivalent to Lasso and on the other extreme to Ridge regression. In

cases with highly correlated variables, Lasso tends to include only one of those

variables in the model. In our application, we aim to obtain a sparse model

that includes the set of domains that are related to the function. For this

reason, we selected EN as the most appropriate method for this application.

EN has two parameters to be set prior to model selection. The first is the

convex parameter (taking values between 0 and 1), and the second is the

penalty parameter. Usually, those parameters are estimated through cross-

validation. We adopted a simple approach by fixing the convex parameter to

0.5 (that gives equal weight to both methods) and by selecting from a series of

penalty parameters the one that leads to the largest model containing no more

than 10 variables (domains). All computations involving ENwere made using

the GLMNET R package (Friedman et al., 2010). We refer to this function

prediction model as EN-DOMAINS.

Integration of Networks and Functional Domains

Let Pd denote the output (on logit scale) from EN-DOMAINS. We insert Pd

into the BMRF model, also adding one more parameter, bd:

log
Pðxi ¼ 1jX�iÞ
Pðxi ¼ 0jX�iÞ ¼ aþ bdPdi þ b

PPI

1 MPPI

i1 þ b
PPI

0 MPPI

i0 þ b
COEX

1 MCOEX

i1

þ b
COEX

0 MCOEX

i0

Function prediction is further performed by BMRF and updating bd in the

same way with the other parameters in the model. We remark that all the

quantities in this model are updated during BMRF, while Pdi remains constant.

Performance Evaluation

We estimated the performance of each protein function prediction model

by constructing 100 benchmarking data sets, one for each of 100 GO terms

randomly selected from different levels of generality. For each GO term, we

selected 300 proteins with known function (i.e. known whether it is assigned

or not to this particular GO term) to be treated as unknowns. The selection of

these “masked” proteins was done using the following procedure. First, the

proteins with known functions were classified in three sets: those that appear

only in the PPI network, those that appear only in the COEX network, and

finally those that appear in both networks. One hundred proteins were

randomly selected from each set to be treated as unannotated. Consequently,

200 proteins appear in the PPI network and 200 in the COEX network while

100 appear in both. For the very sparse GO terms (i.e. those with less than 20

proteins assigned to them), we randomly selected exactly half of the proteins

that belong to the GO term to be masked. All the protein function prediction

models were applied to the 100 benchmarking data sets so obtained. For the

evaluation of prediction performance, we used the AUC (Hanley and McNeil,

1982, Fawcett 2006), Precision (Prec), Recall (Rec), and F-score [F-score =

2*Prec*Rec/(Prec + Rec), i.e. the harmonic mean of Recall and Precision].

Recall and Precision are defined as the fraction of proteins correctly predicted

of having the function out of the total number of proteins having the function

and the fraction of proteins correctly predicted of having the function out of

the total number of proteins predicted having the function, respectively. High

Recall and high Precision are conflicting aims, and the F-score is a compromise

between them that is often used in information retrieval.

All performance metrics were computed using the ROCR R package (Sing

et al., 2005).

Construction and Evaluation of a List with
Novel Predictions

BMRF computes for each protein the probability of membership in each

GO term, except for the most general ones (with more than 3,000 proteins

annotated to them). From these membership probabilities, we constructed a

list of novel predictions by selecting the cutoff per GO term that maximized

the F-score in the set of proteins with known annotations.

We tested this method for cutoff selection on the benchmarking data sets.

We first obtained the optimal cutoff using the proteins with known function

and then applied this cutoff to the predicted part. Both sets of proteins

estimate closely the Recall values (Fig. 5). The Precision when estimated from

the set of proteins with known function is a conservative estimation of the one

obtained from the set of masked proteins.

The novel predictions were compared with the new annotations in the

annotation file of April 18, 2010. Because the predictions may be related to the

correct annotations by being more general or more specific, we used the GO

DAG structure to up-propagate the predicted and the “true” annotations per

protein. We define as true positives the set of GO terms that appear in both

lists, as false positives those that appear only in the predicted one, and as false

negatives those that appear only in the true list. From the measurements, we

calculated Precision, Recall, and F-score. The F-score was tested for statistical

significance, for which we used a Monte Carlo permutation test, in which the

prediction lists of proteins were randomly permuted (shuffled) among pro-

teins that were common to our predictions and the new annotations. After

each shuffle, the F-score was calculated. The P value of the test is the rank of

the F-score in the data among all the F-scores calculated from the shuffled data

divided by the number of permutations. With 100,000 permutations, the

lowest obtainable P value is thus 0.00001.

Performance Comparison of BMRF with Other
Prediction Methods

We used the list of new annotations as a validation set to compare the

performance of BMRF with two state-of-the-art methods that provide function

predictions for Arabidopsis proteins, Aranet (Lee et al., 2010) and GO-AT

(Bradford et al., 2010). We obtained function prediction lists with confidence

scores by querying theWeb servers of these twomethods. Precision and Recall

values were calculated in the full range of scores per method by applying

cutoffs and up-propagating the resulting lists. The posterior probabilities from

BMRF are uncalibrated in the sense that it is not useful to apply a single cutoff

for all the GO terms. For this comparison, we calibrated the probabilities using

the function:

pcalng ¼ 1

1þ expð2Uðpng; pgÞÞ
with

Uðpng; pgÞ ¼ a log
� png
12 png

�
þ ð12 aÞlog

� pg

12 pg

�

and png is the BMRF posterior probability for protein n at GO term g and pg is

the prior probability of membership for GO term g (i.e. the proportion of the

proteins in our data set that are assigned to this term). After some exper-

imenting using yeast data (Kourmpetis et al., 2010), the parameter awas set to

2, which gives, for sparse GO terms, calibrated probabilities that are the

product of png and png/pg. The calibrated probabilities are available from

http://www.ab.wur.nl/bmrf/.
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Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Selected GO terms for flowering and floral organ

development.
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JD (2008) Comparative transcriptomics of Arabidopsis sperm cells.

Plant Physiol 148: 1168–1181

Bradford JR, Needham CJ, Tedder P, Care MA, Bulpitt AJ, Westhead DR

(2010) GO-At: in silico prediction of gene function in Arabidopsis

thaliana by combining heterogeneous data. Plant J 61: 713–721
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