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Introduction
Major advances in genetics, including the sequencing of the human genome in 20011,2 and
the publication of the HapMap in 20053, have paved the way for a revolution in our
understanding of the genetics of complex diseases, including cardiovascular disease (CVD).
After years of inconsistent results and failures to replicate putative candidate gene
associations, high throughput technologies (that genotype over 500,000 genetic markers,
known as single nucleotide polymorphisms [SNPs]) and novel statistical tools have led to a
literal explosion of novel genetic markers associated with complex human diseases. In the
context of CVD, these advances have been remarkably successful in uncovering many novel
genetic associations with myocardial infarction and cardiovascular risk factors such as
lipids, blood pressure, diabetes and obesity. A major objective of these studies has always
been to provide new insights into the biology of cardiovascular disease. However, a highly
touted additional aim of these discoveries has been to use these genetic markers to usher in a
new era of personalized medicine by incorporating genetic information into risk prediction
(including for the primary prevention of CVD). In fact, direct-to-consumer testing of
recently discovered genetic markers has proliferated despite a lack of evidence for clinical
use.4

As with all nascent technologies, many fundamental questions remain to be answered: Can
genetic markers or gene scores improve CVD risk prediction, over and above, validated risk
algorithms such as the Framingham risk score and a family history of CVD? How many
SNPs are responsible for the genetic component of CVD, and how many genetic markers
will we need to discover to reliably improve risk prediction? What are the implications of
the allelic architecture of CVD and other complex diseases for risk prediction? And, finally,
what steps will be needed prior to bringing this information to patients? In this review, we
will examine each of these questions with regards to risk prediction of coronary artery
disease (CAD) and myocardial infarction (MI) in a primary prevention setting.

Cardiovascular Risk Prediction – Is there a need for improving currently
used algorithms?

For over five decades, the major cardiovascular risk factors, namely male sex, hypertension,
cholesterol, smoking and diabetes have been well known.5 Based on these factors, a number
of risk prediction algorithms scores have been developed, including the Framingham risk
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score, that provide an estimate of the 10-year risk (and recently, the 30-year risk) of CVD.
6-9 Generally speaking, the metrics used to assess risk scores include an assessment of their
performance for risk discrimination, calibration, risk reclassification, and clinical utility
(change in management and patient outcomes associated with their implementation)
(reviewed by Cook et al.10). Discrimination is summarized by the c-statistic, which
represents the area under the receiver–operating-characteristic curve (plotting ‘sensitivity’ in
relation to ‘1-specificity’). The numerical value of the c-statistic represents the probability of
correctly ranking two randomly selected individuals (ine likely to develop disease and one
not so predisposed) based on their predicted risk from the prediction model under
evaluation. Calibration compares the predicted risk with the observed risk in groups of
individuals classified by risk level and provides a measure of the overall accuracy of the risk
estimates derived by the model. Reclassification, a newer metric, estimates the improvement
(or lack threreof) in risk classification of individuals using a novel marker compared to a
standard model without the marker of interest. Most currently used risk scores have been
validated in many populations and have been shown to have good discriminatory capacity
and calibration. However, risk reclassification and clinical utility of many of these scores
has been less well studied and remains an area of active investigation.

One common reason offered for pursuing newer risk factors/markers is that current risk
scores explain a modest proportion of CVD incidence in the community. Indeed, a common
misconception is that only 50% of the incidence of CVD is explained by the traditional risk
factors and, therefore, novel markers of pre-clinical disease are needed to refine
contemporary risk prediction algorithms.11 In fact, the major risk factors explain a large
proportion of the risk of CVD.12 However, it is estimated that nearly 15-20% of MI patients
have none of the traditional risk factors and would be considered “low risk” by current risk
prediction scores.13

Whereas the importance of the traditional risk factors and the utility of current risk
prediction algorithms cannot be ignored, efforts to improve risk prediction are needed given
that CVD is preventable, the first manifestation may be sudden cardiac death, the occurrence
of a MI is associated with a high early mortality, and survivors may suffer considerable
morbidity and a reduction in the quality of their lives. This had led to an intense search for
novel biomarkers that can enhance the currently available risk scores. However, the majority
of studies that have claimed to identify novel biomarkers that enhance risk prediction
beyond the Framingham risk score have been noted to have flaws in their design, analysis or
interpretation.14 Recently, an expert group has proposed criteria for appropriate assessment
of the clinical utility of novel biomarkers for the purpose of enhancing CVD risk prediction.
15

One category of biomarkers that has evoked extensive study recently is that of genetic
variants. As for other biomarkers, the case for risk prediction using genetic polymorphisms
must be held up to the same standards. Incremental improvement of the addition of a genetic
biomarker must be shown over and above well-validated risk scores using standard metrics
to evaluate their clinical performance. Therefore, useful genetic markers for risk prediction
will need to be sufficiently uncorrelated with known CVD risk factors as to provide
independent information regarding risk. It can also be argued that any genetic marker should
also provide incremental risk information, over and above, a model which incorporates
family history8,16,17, given that such information is often readily available.

The interest in incorporating genetic information into risk prediction algorithms stems from
the fact that many MI patients have a family history of the CVD, which confers a nearly
doubling of the risk of MI among family members, even after adjusting for traditional
cardiovascular risk factors.18,19 Moreover, the heritability of MI, which provides an estimate
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of the genetic variance in MI risk, has been estimated at 40-60%.20,21 These findings
suggest that genetic factors play an important role in cardiovascular disease and could
potentially refine risk prediction for CVD. Indeed, recent genetic studies have confirmed
that several genetic factors are associated with MI and CAD, which has led to much
excitement regarding the possibility of their use for risk prediction.

Genome-Wide Association Studies - Initial Successes in gene discovery
To date, genome-wide association studies (GWAS) have been remarkably successful in
uncovering many novel genetic loci not previously implicated in cardiovascular disease.
Among the first major discoveries for CVD were the simultaneous reports of the association
of variants at the 9p21 locus with MI.22,23 This association represents one of the most
consistent and robust SNP-disease associations in the GWAS era, having been replicated in
several independent samples in numerous ethnicities. A recent large meta-analysis reported
an allele relative risk of 1.27 (95% CI 1.23-1.31, p = 1.62 × 10−12) for CAD.24 Despite the
strength and consistency of the associations of 9p21 variants with CVD traits, little is known
about the biological role of this locus and how it may confer increased CVD risk. This SNP
is located in a gene desert, with the nearest gene, ANRIL, being several thousand kilobases
away. Despite significant effort, the function of ANRIL, a non-coding RNA, has not yet been
elucidated but continues to be an area of active investigation. In a recent study, the mouse
ortholog of the 9p21 locus (CDKN2A/2B) associated with CAD was successfully knocked
out. These mice had reduced survival, a more rapid increase in body weight, and a
hyperproliferative smooth muscle cell phenotype suggesting altered vascular cell dynamics.
25 If these findings are confirmed this would represent a novel mechanism for myocardial
infarction that is unrelated to conventional risk factors. Several additional GWAS for MI
have also been completed identifying a number of novel loci (Table 1).26-30 In addition,
GWAS for blood pressure,33-35 and lipid traits36-38 have also discovered additional loci
that are associated with these traits. “To date, over 100 new genetic variants have been
discovered that relate to MI or MI risk factors using GWAS39 (13 SNPs have been
replicated for MI; 26 for high density lipoprotein levels, 16 for low density lipoprotein
levels; 26 for triglycerides levels; 42 for diabetes and fasting glucose; 10 for hypertension; 6
for C-reactive protein levels and 16 for body mass index).” These SNPs have been
rigorously replicated in one or multiple additional independent studies confirming that they
represent genuine true associations with CAD. After years of inconsistent results,40,41 these
studies have provided an early glimpse at the underlying genetic risk of CAD. However,
these initial studies represent the first steps towards understanding the complete allelic
architecture of CAD and it is likely that many more genetic variants remain to be
discovered42. Yet, despite our limited understanding of genetic risk for CAD, a number of
studies have attempted to incorporate these newly discovered genetic risk variants into CVD
risk prediction tools with limited initial success (as reviewed below; Table 2).

Use of Genetic Information for Cardiovascular risk prediction – Overview of
initial experience with single genetic variants and genetic risk scores

Several studies have evaluated the predictive power of the addition of single SNPs and
combinations of risk SNPs into genetic risk scores on MI risk based on pre- and post-GWAS
results (Table 2). Additions of single SNPs at 9p21 to the Framingham risk score have not
been found to consistently improve risk prediction.44,47 A genetic risk score incorporating 9
CAD associated SNPs resulted in a >2-fold higher odds ratio for MI in subjects in the
highest quintile of the risk score compared to those in the lowest quintile but did not
evaluate the incremental value of the addition of such a score to traditional risk factors.28 In
a separate report, a genetic risk score using SNPs strongly associated with lipid levels
conferred a 15% increase in CAD risk per lipid-associated SNP allele.46 Despite the
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increased CAD risk per allele, the genetic score did not improve discriminative ability over
and above traditional risk factors, and showed only modest improvement in risk
reclassification. The limited success of these initial studies has led to the development of
more elaborate genetic risk scores comprising many SNPs encompassing both MI risk
alleles and SNPs associated with other cardiovascular risk factors in an effort to increase the
genetic risk explained and to improve the predictive performance of genetic risk scores. A
genetic risk score comprising 101 validated SNPs from large-scale GWAS of MI and other
cardiovascular risk factors was evaluated for cardiovascular risk prediction in over 18 000
women. After adjustment for traditional risk factors, the genetic risk score was not
associated with CVD events and the addition of the genetic risk score to a standard risk
prediction model did not significantly improve discrimination or reclassification.

Despite incorporating multiple CAD associated SNPs, genetic risk scores to date have
explained less than 5% of the inter-individual variance in risk53 and have not led to
clinically meaningful improvements in risk prediction. However, the modest improvements
in risk reclassification seen in some of these studies45,46 highlight the future potential for the
use of genetic markers for risk prediction, as additional genetic variants are discovered.

Although the results of these initial studies of genetic risk prediction have been
underwhelming, several important insights regarding the future of cardiovascular genetic
risk scores can be gleaned from these initial studies of genetic risk prediction. First, the
incremental predictive utility of genetic risk scores that explain a small fraction of the
heritability will likely be marginal. In order to significantly improve risk prediction, genetic
risk assessment will need to be markedly refined. It has been suggested that approximately
20% of the heritability needs to be explained to provide similar discrimination as obtained
from standard risk prediction models.54 Second, the addition of predictors with relative
risks <10 will have limited effect on risk discrimination,55 although their contribution to risk
reclassification warrants further study. Therefore, it is not surprising that the addition of
recently discovered genetic markers for MI, with relative risks ranging from 1.1-1.3, have
had led to limited improvements in risk prediction. For useful risk prediction, genetic risk
scores with many additional markers will likely be needed to improve contemporary CVD
risk stratification algorithms. It must also be emphasized that relative risks across extreme
comparisons (i.e. top quintile of genetic risk to bottom quintile of genetic risk), which are
often reported for genetic risk scores, are not relevant for risk prediction. For translation to
risk prediction, the reported risks should be compared with ‘average’ risks found in the
general population where risk prediction will likely be used in a primary prevention setting.

‘Effect’ Estimates from Initial Discovery GWAS – Caveats and Implications
for risk prediction

An important additional consideration explaining the limited success of genetic risk
prediction is that effect estimates for associations from discovery GWAS may be biased and
of limited utility in risk prediction. First, genetic effect estimates from GWAS are likely
inflated due to the “winner’s curse”, where early reports of relatively large effect sizes
become attenuated with further replication in studies of increasing sample sizes.56,57
Second, estimates from meta-analysis in the genetic literature frequently assume ‘fixed
effects’ despite important between study heterogeneity. It has been demonstrated that some
markers become statistically non-significant at a genome-wide level when ‘random effects’
models are used and therefore may have poor generalizability across populations. 53,58
Third, several GWAS have used extreme subjects to identify genetic associations by
sampling high genetic risk cases (i.e “hypercases” that are frequently younger with less risk
factors and a positive family history) and low genetic risk controls (i.e. hypercontrols who
lack such factors) further inflating effect estimates.59 Moreover, the odds ratios generated
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from case-control GWAS to date (which have used prevalent cases and controls) are likely
overestimating the true risk ratio as MI is not a “rare disease” and controls have not been
sampled using an appropriate sampling strategy (e.g. incidence-density sampling) to provide
odds ratio estimates that approximate risk ratios.60,61 Lastly, most GWAS to date may also
suffer from major potential survival biases as enrollment into the study is conditional upon
survival post-MI. Given that 30-70% of MI patients die prior to admission to the hospital,
62-64 analyses of prevalent MI cases are poorly representative of most incident MIs.

While these practices are acceptable for gene discovery, the relative risk estimates
associated with putative genetic variants are unlikely to be applicable to the general
population where risk prediction is applied for a future time horizon. Accordingly, it is
likely that such estimates will perform poorly in prospective assessments of CVD prediction
in a primary care setting. These observations highlight an important point – that if risk
prediction is the objective, then GWAS of incident CVD are needed in large prospective
cohort studies of representative populations to complement currently available studies. To
date, and to our knowledge, there have been no published GWAS for incident CVD using a
prospective cohort design despite calls stressing the importance of such a study design in
genetic epidemiology.65

How Many SNPs do We Need for CVD prediction? – Theoretical predictions
using the c-statistic

Despite criticisms that the c-statistic is insensitive to most biomarkers studied in the “-omics
era”,66 it still represents an important, yet perhaps overly conservative, starting point for
evaluating the possibility of using genetic variants or risk scores in CVD risk assessment. A
number of simulation studies have provided important information regarding the feasibility
of genetic risk prediction in CVD using the c-statistic as the metric for discrimination. We
review these investigations, acknowledging that similar simulations are warranted using
additional newer metrics such as risk reclassification.

For genetic studies, the c-statistic is a function of the heritability, the genetic variance
explained by the genetic variants, the prevalence of the disease condition, and the minor
allele frequency in the population.67,68 For CVD, it can be estimated that the upper bounds
of the c-statistic is ~0.90, for populations with 10% prevalence of disease, and ~0.85 for
populations with a higher disease prevalence.67,69 While achieving the maximum c-
statistics would provide excellent discrimination, this would require identifying all the
genetic variants associated with CVD. A more reasonable goal would be to achieve c-
statistics ~0.80-0.85, which would still represent an improvement over current risk
prediction models. It has been estimated that to achieve this level of discrimination, ~100
uncorrelated genetic variants (i.e., in linkage equilibrium) with relative risks of ~1.5, minor
allele frequencies of 10%, and explaining ~20% of the heritability of CVD would be needed.
67 However, few CVD genetic variants identified in the GWAS or pre-GWAS eras with
relative risks in this range. If we assume that CVD genetic variants will have mean relative
risks of 1.1-1.2, then even 100 genetic variants would only explain 1.0-9.1% of the variance
of CVD and provide c-statistics ~0.75,68 which would be similar but not much better than
current prediction models. To achieve a higher level of discrimination based on the genetic
relative risks observed most frequently to date (i.e., RR 1.1-1.25), it can be estimated that
150 to >400 genetic variants would be needed depending on the frequency of these genetic
variants (i.e., >5% minor allele frequency [MAF]).67

While the large number of genetic variants required for a useful genetic risk score may seem
daunting, it can be argued that the these simulations may artificially inflate the estimated
number of genetic variants needed for reliable CVD risk prediction due to reliance on the c-
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statistic, which may be insensitive to the small effects of genetic variants. Using a method
that relied on the accuracy of genetic risk prediction (i.e. genetic variance explained by the
genetic score) instead of the c-statistic, it has been reported that many fewer genetic variants
may be needed for useful CVD risk prediction.70 Under the assumption that a reasonable
number of genetic variants (i.e. <1000) with weak effects explain the heritability of CVD,
the authors estimate that a large case-control study with 20,000 subjects and a 1:1 case to
control ratio, could identify 80-120 genetic variants explaining >50% of the genetic variance
of the disease.70 They also demonstrate that this set of genetic variants would likely have
good to excellent calibration in a validation dataset and would have relative risks of ~4.0 for
the top 5% of subjects based on the genetic risk score compared to the average risk in the
population. However, it should be noted that this inference is based on simulation modeling
an assumed risk of disease (prevalence of 5-10% with a sibling relative risk of 1.45-2.90). In
addition, published empirical studies have not reported on the proportion variance explained
as a potential metric for risk prediction, thereby underscoring the need for additional
research. Although there is some debate regarding the optimal metric for assessing the utility
of genetic markers in simulation studies (and the appropriate genetic models for these
simulations), these studies provide valuable insight on the future feasibility of genetic risk
prediction. Similar evaluations of novel metrics, such as the net reclassification index, have
not been reported as yet and would provide important new information for assessing genetic
risk prediction.

While apparently encouraging for genetic risk prediction, these simulations depend on
assumptions regarding the total number of genetic variants needed to explain the totality of
genetic variation in CVD. If the heritability of CVD can be explained by 100-1000 SNPs,
then risk prediction may be possible with a relatively small number of SNPs (~100) in the
near future. However, the total number of SNPs that explain the heritability of CVD is
currently unknown. Recent studies examining the allelic architecture of CVD using
simulated data has shed some light on this problem and have suggested that the genetic
component of CVD (and other complex diseases) may be under the influence of many more
genetic variants (or other factors) than anticipated,42,71 which could have profound
implications for risk prediction.

GWAS and the Allelic Architecture of CVD – How many SNPs explain the
genetic risk of CVD?

GWAS were designed based on the theory that the genetic architecture of complex diseases
would follow the “common disease-common variant” hypothesis that predicts that common
diseases, such as CAD, are caused by many common genetic variants, each explaining a
small portion of the variance in the risk of disease.72 Most detected genetic variants have
allele frequencies >5%, have small to very small effect sizes (i.e. relative risks of 1.1-1.3),
and each explain <1% of the variance in risk of disease. While theory posits low effect sizes
for complex disease, the very weak effect sizes and the low variance explained by recently
uncovered SNPs has been somewhat unexpected. These findings have profound implications
for risk prediction as the total number of genetic variants needed to explain the heritability
of a disease is proportional to the proportion of variance explained by each genetic variant.
It has been argued that if indeed current GWAS have detected the common SNPs that
explain the highest fraction of the genetic variance, which may be quite likely, the remaining
variants to be found will explain exponentially smaller proportions of the remaining genetic
variance.42 GWAS data for complex traits (such as diabetes and height) have been shown to
follow this pattern quite convincingly.42,73 Many prior simulations studies estimating the
total number of SNPs required to explain heritability or the number of genetic variants
required for accurate risk prediction have not considered these recent insights into the
genetic architecture of CVD (and related traits) and have frequently oversimplified the
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models by assuming fixed genetic relative risks for each genetic variant that remains to be
identified. Such simplifications would markedly underestimate the number of SNPs that
explain the heritability of CVD.

Given that the strongest common SNP associated with CAD has a relative risk of 1.3 and
other recently identified variants have relative risks of 1.1 to 1.2, the remaining
undiscovered variants are expected to have small to very small effect sizes, and therefore it
is possible that hundreds to thousands of genetic variants be needed to explain the relatively
high heritability of CVD. This may pose a challenge for risk prediction for a number of
reasons. First, to demonstrate robust disease associations with thousands of genetic variants
with weak effects would require studies with >100,000 individuals, which would be larger
than even the largest genetic consortia currently in place.74 Second, as the number of genetic
variants implicated in CVD increases, the possible combinations of risk alleles become
unmanageable such that every individual would have a unique genetic signature with little
overlap between individuals, making genetic risk prediction very challenging if not nearly
impossible. Higher risk genetic profiles requiring many hundred genetic variants would also
be exceedingly rare.75 Third, if many thousand SNPs are required to explain a substantial
proportion of the variance of CVD, it has been argued that most individuals would have
many of these “risk variants,” which could seriously hamper their usefulness for risk
prediction. As one author has said presciently: “In pointing at everything, genetics would
point at nothing”.42 To date, such dire pronouncements have rung true as genetic risk
prediction has not been successful across the spectrum of complex disease. However, a
recent study using a novel approach to genetic risk scores, has provided some evidence that
these initial concerns may be unfounded and that genetic risk prediction could still be
possible even if thousands of genetic variants are needed.76,77

Using GWAS data from the Wellcome Trust Case Control Consortium, 76 a genetic risk
score was constructed by including the top SNPs ranked by statistical significance. Instead
of limiting the genetic risk score to genome-wide significant SNPs, they lowered the
statistical threshold to include many more SNPs acknowledging that some would likely
represent false positives. In doing so they also captured many unidentified true positives
increasing the genetic variance explained. Using this genetic risk score on a validation
sample, they demonstrate that as the p-value threshold for inclusion into the risk score is
lowered, the c-statistic increased for many (but not all) common diseases, including CVD.
Despite low c-statistics (~0.70) and low levels of genetic variance explained (~3%) for risk
scores that included thousands of SNPs, they showed by simulation that as the sample size
of the discovery data set increased, the top SNPs would be enriched for true positives
compared to false positives. Using a discovery set with 10,000 cases and 10,000 controls,
the top 5% associated SNPs would be expected to explain up to 20% of the genetic variance.
This analysis is noteworthy for a number of reasons. First, it provides empirical evidence
that there may be many SNPs with weak effects that are beyond the detection limit of
current GWAS (using contemporary statistical thresholds for genome-wide significance). In
particular for CVD, even when the threshold was relaxed to as low as p<0.80, the c-statistic
continued to increase, suggesting that the genetic architecture of CVD may consist of
numerous SNPs with very weak effects that are currently undetectable. Second, this study
implies that it may be possible to construct useful genetic risk scores without actually
identifying most of the true positive associations at a genome-wide significance level.
Whether empirical evidence will confirm these findings and prove the utility of this method
remains to be seen, emphasizing the need for additional research.
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The Potential Causes of ‘Missing Heritability’ in initial GWAS
Although GWAS has uncovered many novel genetic associations in several complex
diseases, the overall genetic variance explained by these associations has been lower than
expected. For CVD, the very low variance explained by recently discovered SNPs, despite
large studies with substantial statistical power, implies that either hundreds to thousands of
genetic variants with very low effects are needed to explain most of the heritability of CVD,
as discussed above, or that other factors explain the so-called “missing heritability” (which
has been dubbed “the dark matter” of human genetics).71

Explanations for the “missing heritability” in CVD and other complex diseases include
overestimation of heritability using conventional methods, measurement imprecision of
phenotypes, gene-gene and gene-environment interactions, linkage disequilibrium of
associated SNPs with ‘true’ causal variants, existence of low penetrant variants, and the
potential contributions of structural variation, epigenetic modifications and rare genetic
variation to disease risk.71

A primary concern, prior to evaluating the missing heritability, is the accuracy of current
estimates of heritability. Heritability represents the proportion of the total variance in the
phenotype explained by genetic factors. Given that familial clustering of disease is due to
both a shared environment and shared genes, and that genetic factors are subject to much
less misclassification than environmental exposures, heritability estimates (using current
family-based methods) can be confounded by poorly measured shared environmental
factors.71,78 Recent studies in quantitative traits using novel methods to estimate heritability
suggest that current methods are likely unbiased79 and, therefore, incorrect heritability
estimates are unlikely to explain a major component of the missing heritability in complex
disease.

A large component of the missing heritability in complex disease may be due to interactions
– both gene-gene and gene-environment interactions. Interactions can be viewed
simplistically as combinations of risk predictors where the combined presence of two
predictors leads to larger (or smaller) effects than expected for either predictor alone. Failure
to incorporate interactions into GWAS has likely led to an underestimation of the true
genetic effects and reduced statistical power to identify novel genetic variants. Given that
populations may be made up of genetically “susceptible” and “null” subpopulations based
on their environmental co-exposures (so-called context-specific genetic effects) and that
genetic risk estimates are weighted averages of the risks in both sub-populations, ignoring
interactions will often bias genetic exposures to the null when they are present.80

Interactions are, however, difficult to study as they can occur at many levels and add to the
already large number of statistical tests performed in GWAS. However, larger sample sizes,
novel analytic methods and a “systems biology” approach may soon uncover important
interactions which could explain a significant portion of the heritability.81,82 Improvements
in our understanding of interactions would also be expected to improve genetic risk
prediction models.

Linkage disequilibrium of associated SNPs with true causal variants and the existence of
poorly penetrant genetic variants may also explain some additional genetic variance. Deep
resequencing efforts are ongoing in an effort to identify these causal variants.83 Copy
number variants, a form of structural genetic variation including small deletions, insertions
or inversions in the genome, have also been proposed as an additional source of missing
heritability. Fortunately, most common copy number variants are relatively well ‘tagged’ by
HapMap SNPs and are well represented in GWAS.84 In the MIGen consortium, no CNVs
were found to be associated with MI despite good coverage of common CNVs.28 Rare
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CNVs could potentially represent an important source of genomic variation that would not
be detected by GWAS, a possibility that has been recently demonstrated for obesity.85
While this may also be true for CVD, this possibility invokes an important consideration -
that most genetic variation in the genome, whether they represent SNPs or CNVs, may be
rare. If most of the genetic variation resides in rare variants not captured by HapMap SNPs,
this variation would not be detected by GWAS. Indeed, studies conducted on lipid traits
have demonstrated that a significant portion of the genomic variability was attributable to
rare variants detectable only by sequencing.86 Current efforts to sequence the genome in
large cohorts of individuals are underway.87,88 It is very likely that these strategies will
uncover many new genetic variants that are biologically linked with disease; however,
unless they identify rare variants that explain relatively large proportions of genetic variance
(i.e. with strong effects), their value for risk prediction will likely be limited. Furthermore,
because rare variants may be specific to certain groups (i.e., founder populations or families)
their impact on risk prediction in the general population may be very modest. While the
current trend of pooling samples in increasing larger consortia to maximize statistical power
for GWAS has led to some additional SNP discovery, it is likely that this approach will soon
be exhausted, and more refined approaches will need to be prioritized in future efforts
(Table 2). Several additional strategies to identify the missing heritability have recently been
suggested.71 These include assessment of analytical pooling strategies for rare variants,
targeting recent African American samples with narrow LD for resequencing efforts (to
uncover rare variants) and studies of family-based cohorts (in which susceptibility alleles/
risk variants are likely enriched).71

A final point must be made regarding the missing heritability of CVD and the phenotypes
that are currently being evaluated, which may represent “crude” representations of disease.
Disease classifications have evolved in clinical medicine by fitting similar patterns of
symptoms into categories, often organized by organ system, in order to reduce complexity
and simplify diagnosis. While this practice has been extremely helpful for managing and
treating disease, it is increasingly apparent that these crude divisions of diseases may be
suboptimal for etiologic genetic research. In CVD, it is very conceivable that MIs, like many
other diseases, could be classified by primary pathophysiological process, for example, by
increased propensity for endothelial dysfunction, accelerated atherosclerosis or for
thrombosis. MIs may represent the culmination of multiple different causal pathways, with
each pathway having its own set of genetic associations. Using new tools from the “–omics”
toolbox, disease phenotypes based on causal pathways could be extended to cellular and
molecular profiles. This concept of refining disease phenotypes to produce distinct
phenotypes of increasing homogeneity has been described as “deep phenotyping”.89 Deep
phenotyping disease could lead to improvements in the resolution of genetic signals and
provide increasingly specific genetic insights that may enhance future genetic research.

Using family history of CVD as a marker of genetic risk for CVD
A parental history of premature CVD is a well-established risk factor for incident CVD.18,19

While a portion of the familial aggregation of CVD is mediated by non-genetic factors, a
positive family history of premature CAD is thought to represent a good surrogate for an
increased genetic risk. Whereas individual genetic variants or genetic risk scores have not
yet led to significant improvements in risk prediction, the addition of family history
improves risk reclassification and has been formally added to risk prediction models.8,16,19
In a recent study incorporating over 100 CVD risk SNPs to a prediction model that includes
family history, the genetic risk score was not associated with incident CVD, but the
association with family history remained strongly associated.43 In fact, the magnitude of the
association between family history and CVD was not attenuated when the genetic variants
were added suggesting that current genetic variants explain only a very small fraction of the
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familial risk. It is possible that as additional common variants associated with CVD are
uncovered, a larger proportion of the familial risk will be explained. However, an alternative
possibility is that a significant proportion of the familial genetic risk is related to other
shared environmental factors (including behavioral and lifestyle factors) or to rare familial
genetic variants. Indeed, it possible that a significant proportion of the familial genetic risk
may, in fact, be specific to a given family (i.e. “private genetic epidemiology”90), which
could significantly hamper risk genetic risk prediction in the general population, unless a
few rare genetic variants (with large effects) explained a large portion of the familial risk (as
seen with BRCA1 and BRCA2 in breast cancer).

Although family history may currently represent the best marker for the genetic risk of
complex disease, a number of important limitations exist in using family history as a marker
of genetic risk. A major limitation stems from the fact that family history predicts the same
risk for all members of the immediate family despite the fact that 50% of the genetic
variation occurs within families. Furthermore, even under ideal conditions of complete
ascertainment of family history over 3 generations, up to 55% of CVD cases are expected to
have no family history.91 In a recent simulation study, the maximal value of AUC for family
history of CVD under such idealized conditions was only 0.71 (as compared to >0.90 for a
genetic risk score explaining 100% of the genetic variance of CVD)69. However, a complete
multigenerational family history would still explain 16% of the genetic variance of CVD
which is currently significantly better than any reported genetic risk score for CVD. This
underscores the importance and clinical utility of ascertaining family history of CVD as a
marker of genetic risk at the current time.

Translating Genetic Risk Prediction to Clinical Use
Using a combination of approaches outlined above, it is plausible that a greater portion of
the genetic variance of CVD will be explained in the near future. Whether this will lead to
genetic risk prediction that can be useful in clinical practice remains to be determined. While
high levels of prognostic performance for genetic risk prediction (i.e. discrimination,
reclassification, calibration) are important, many additional considerations exist (Table 3).

First, any new predictive model will require validation in independent cohorts. It is currently
unclear whether genetic risk scores will be transportable across ethnicities and races with
varying allele frequencies and environmental exposures92. Independent validation and
recalibration may be required for use in such populations. Second, appropriate cut-offs for
risk scores are needed to optimize false positive and false negative rates depending on their
relative importance53,59,93. Furthermore, similar to many other cardiovascular tests, genetic
risk scores will also be subject to Bayes’ theorem implying that inappropriate use of these
tests will lead to poor predictive accuracy. Reports of predictive values and likelihood ratios
for populations of varying cardiovascular risks would be needed to provide guidance as to
which patients would benefit most from screening. Whether genetic risk scores should target
only individuals with a family history of CVD or those with intermediate CVD risk (where
the prevalence of CVD and the likelihood of true positives may be higher) rather than the
general population, warrants further study.94,95 Cost will also represent an important
consideration in deciding which segments of the population should have such testing93,96.
Third, the level of evidence required for genetic risk scores prior to clinical use will need to
be robust. Clinically significant improvements in predictive performance (that are also cost-
effective) should represent the threshold for clinical utility. Marginal improvements, that
meet an arbitrary threshold for statistical significance, will not suffice for translation to
clinical use. Fourth, the type of evidence required for clinical use will also need to be
clarified. Whether genetic risk scores will require “biomarker trials” where a management
strategy using a risk score is compared to a strategy without the use of the risk score97, or
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whether a well validated risk score with good prognostic performance in prospective cohorts
will be sufficient evidence for clinical use will need to be determined. Fifth, education of
patients and clinicians on the use and interpretation of such risk scores will also be needed to
limit genetic determinism. The advantage of genetic risk scores is that they remain stable
throughout life and can predict the genetic risk of disease at any age, however their
intransience may also be a liability as it may be challenging to use them to assess efficacy of
treatment or other risk reduction strategies. In fact, it could be argued that for any genetic
variant that has a measurable product, either in blood or other accessible tissue, it would be
much more useful to track the product than to obtain a genotype, obviating the need for
genetic risk scores altogether. Whether genomic risk scores will eventually become a reality
or will be complemented or superseded by proteomic or other -omic risk models remains to
be seen.

Conclusions
At this early stage in the GWAS era, many questions remain regarding the feasibility and
utility of genetic risk prediction for CVD. While genetic information is far from ready for
clinical use in CVD prediction, genetics have made important clinical inroads in other areas,
such as pharmacogenomics for predicting efficacy and adverse events of common
cardiovascular drugs (reviewed in 98). Whether “we will get there” for genetic CVD
prediction, as we have asked in the title of our review, remains an open question.
Cardiovascular disease may represent a particularly difficult phenotype for genetic risk
prediction. Nonetheless, we hope that the many challenges faced for genetic CVD risk
prediction will not be insurmountable and that novel strategies will lead to a greater
understanding of the heritability of CVD. However, we must also appreciate the complexity
of the human genome, and the challenges inherent in achieving the goal of personalized
medicine in CVD risk prediction. At this stage, clinicians should continue to inquire about
family history for risk prediction, as this continues to represent a simple, cheap and
clinically useful risk factor for CVD which likely represents the net effect of hundreds of
genetic risk variants which have yet to be discovered. Regardless, of whether genetic
information will be used clinically in CVD risk prediction, GWAS have been a resounding
success for cardiovascular medicine by identifying many genetic variants not previously
linked with CVD that will undoubtedly provide novel mechanistic insights in the years to
come.
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Table 3

Summary of Challenges Facing Genetic CVD Risk Prediction, Their Implications and Potential Solutions

Challenges for risk
prediction Possible Issues and/or Implications Potential solutions

General considerations for
CVD prediction

Conventional risk factors explain a large proportion of the
risk for CVD

Genetic risk must be incremental to standard
factors and family history

Family history information is predictive, easily obtained
and free

Determining predictive performance of genetic information
Use of a combination of c-statistic and
reclassification measures

Biases in genetic effect
sizes from GWAS

Use of extreme case and extreme controls
GWAS for incident CVD in population-based
cohorts

Incidence-Prevalence bias

Survivor bias

Allelic architecture of
CVD

Small to very small effect sizes Larger sample sizes

Hundreds to thousands genes may underlie CVD risk

Missing heritability

Inaccurate estimates of heritability Heritability by identity-by-descent methods

Gene-gene and gene-environment studies Case-only and family-based studies

Poorly penetrant SNPs Larger sample sizes

Identifying causal variants
Sequencing, studies in population with narrow LD
(e.g. African-Americans)

Structural variants (i.e. CNVs)

Rare variants

Exome and whole genome sequencing, studies in
populations
with narrow LD, Family-based studies, Founder
populations

Imprecise phenotypes Deep phenotyping using -omics methods

Large number of genes
explain genetic risk

Unique genetic signature for each individual Larger sample sizes

High genetic risk will be rare

Translation of genetic risk
prediction to clinical
practice

External validation Cohort studies in appropriate populations

Generalizability across ethnicities Cohort studies in diverse ethnicities, re-calibration

Optimize false postive and false negative rates using
appropriate cut-offs
Assessment of predictive values and likelihood ratios
in populations with differing baseline risks

Evaluation of prediction in individuals of varying
baseline risk.

Efficacy and effectiveness (i.e. need for screening RCTs) Randomized screening trials

Cost-effectiveness Cost-effectivenes studies

Circulation. Author manuscript; available in PMC 2011 November 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Thanassoulis and Vasan Page 22

Challenges for risk
prediction Possible Issues and/or Implications Potential solutions

Clinical utility over other -omic approaches
Evaluation of genomic predictors vs other -omics
predictors
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