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Abstract

Robust high-throughput synthesis methods are needed to expand the repertoire of repetitive 

protein-polymers for different applications. To address this need, we developed a new method, 

overlap-extension rolling circle amplification (OERCA), for the highly parallel synthesis of genes 

encoding repetitive protein-polymers. OERCA involves a single PCR-type reaction for the rolling 

circle amplification of a circular DNA template and simultaneous overlap extension by thermal 

cycling. We characterized the variables that control OERCA and demonstrated its superiority over 

existing methods, its robustness, throughput and versatility by synthesizing variants of elastin-like 

polypeptides (ELPs) and protease-responsive polymers of a glucagon-like peptide-1 analog. 

Despite the GC-rich, highly repetitive sequences of ELPs, we synthesized remarkably large genes 

without recursive ligation. OERCA also enabled us to discover “smart” biopolymers that exhibit 

fully reversible thermally responsive behavior. This powerful strategy generates libraries of 

repetitive genes over a wide and tunable range of molecular weights in a “one-pot” parallel 

format.

Artificial repetitive polypeptides – also termed protein-polymers – derived from short 

peptide motifs found in elastin, collagen, silk and other structural proteins exhibit unique 

mechanical, structural and biological properties. These attributes have led to their 

application in biotechnology, tissue engineering, drug delivery, and biosensing1–5. 

Recombinant DNA technology is attractive for the synthesis of protein-polymers because it 

enables precise control of their length (number of repeats), composition and stereochemistry. 

This level of control is especially important for the in vivo applications of these 

biopolymers, because the polymer molecular weight controls their pharmacokinetics and 

biodistribution, while the amino acid sequence imparts biological activity to the biopolymer 

and affects their route, rate and mechanism of biodegradation. Recombinant DNA 

technology is also of interest for the synthesis of tandem repeats of naturally occurring 
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peptides, as a strategy for the high-yield synthesis of peptide drugs and antigens 6–10. 

Furthermore, polymerization of peptide drugs with intervening protease cleavable sequences 

has the potential to improve their pharmacokinetics and drug efficacy11,12. However, current 

methods for the polymerization of DNA suffer from one or more critical limitations: they (1) 

require numerous steps, (2) are difficult to parallelize, and (3) do not provide tunable control 

over a range of molecular weights, all of which greatly limit the ability to simultaneously 

synthesize multiple variants with a range of repeat units and compositions.

Motivated by these limitations, we report a rapid, one-step, high-throughput and robust 

method for the recombinant polymerization of “monomer” DNA sequences with tunable 

control over the number of repeats. This method, which we term overlap-extension rolling 

circle amplification (OERCA), uses rolling circle amplification (RCA) to produce linear 

repeats of a circularized gene, followed by thermally cycled overlap-extension (OE) to yield 

a library of polymers of the monomer DNA, all in a single PCR reaction.

Here we show the utility of OERCA and its advantages over existing methods by the 

synthesis of two classes of protein-polymers. First, we demonstrate the parallel synthesis of 

genes that encode elastin-like polypeptides (ELPs), a family of thermally responsive protein-

polymers derived from a recurring VPGVG pentapeptide found in elastin 13. We used 

OERCA to rapidly synthesize 9 different variants of ELPs, by substituting or inserting 

Alanine residues along the VPGVG motif. These studies revealed an unexpected degree of 

sequence promiscuity in the parent peptide motif and yielded new families of “smart” 

protein-polymers that display fully reversible thermo-responsive behavior, which will 

provide a new set of stimulus responsive motifs for biomedical and biotechnological 

applications. In a second example, we use OERCA to rapidly synthesize protease-responsive 

polymers of a glucagon-like peptide-1 (GLP-1) analog, with intervening protease sites of 

variable potency for the optimization of in vivo pharmacokinetics and release of GLP-1 from 

the polymer.

OERCA uses a circular ssDNA sequence that encodes for a “monomer” target gene. This 

ssDNA circle is then thermally cycled with primers that are complementary to the 5’- and 

3’-ends of the linear monomer. During the annealing step in the first cycle, the antisense 

primer binds to the circular ssDNA template and forms linear oligomers as the polymerase 

rolls around the circle (Fig. 1). This is the only reaction in the first cycle, and is presumably 

the predominant extension reaction that produces sense strands of variable lengths during 

the initial cycles (Supplementary Fig S1). From the second cycle onward, the sense primer 

binds to the newly synthesized linear strands to produce double-stranded products of 

variable lengths. As these products accumulate, overlap extension – in which the DNA 

strands self-prime by binding asymmetrically within the repetitive regions – begins to 

dominate the reaction, producing longer products, while residual primers simultaneously 

synthesize complementary DNA of the same or shorter size from existing templates by 

binding internally at complementary sites on the repeating sequence. The product of this 

reaction consists of a library of DNA oligomers, wherein the oligomer size range can be 

tuned by the primer concentration and number of thermal cycles (Fig. 2). As newly bound 

primers can generate products of the same or shorter length than the template strand, 

increasing the primer to template ratio in the reaction mixture generates more, albeit shorter 
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products. In contrast, as the primer to template ratio is decreased, overlap extension of 

existing strands is favored since fewer primers are available to compete with their 

hybridization, resulting in a longer product at the expense of yield.

Because this reaction is thermally cycled and uses primers that bind at the beginning and the 

end of each repeat unit, the vast majority of products have 5’- and 3’-ends that precisely 

match the target monomer sequence. Therefore, OERCA products are comprised of an 

integer number of repeats of the monomer gene and have blunt ends suitable for cloning 

directly into any blunt site. Hence, these products can be directly cloned into an expression 

vector to create an expression library. To illustrate this, Fig. 3a shows the size range of DNA 

oligomers generated by OERCA encoding for poly(AVPGVG), which were ligated to an 

expression vector linearized by a blunt restriction enzyme. We screened over 90% of ~200 

total colonies and assessed insert orientation by directional cPCR, in which one primer binds 

to the vector and the other primer binds to a defined sequence in the insert, such that 

amplification is only achieved when the insert is in the correct orientation. Due to the 

repetitive nature of the insert, the internal primer can bind at multiple sites, so that a positive 

clone is identified by the presence of a smear of DNA on an agarose gel rather than a single 

band as typically observed for diagnostic PCR (Fig. 3b). We then selected ~50 positive 

clones based on directional cPCR analysis, and performed restriction analysis and direct 

DNA sequencing to confirm sequence accuracy and determine the distribution of oligomer 

sizes among these clones (Fig. 3c). Although we observed a higher efficiency of insertion 

for relatively short DNA fragments, medium-sized inserts occurred at high frequencies, and 

large genes of up to 1.5 kbs were also successfully isolated. Despite the well-known 

challenge of amplifying GC-rich repetitive templates by PCR 14,15, and the difficulty in 

sequencing such genes, we found that less than 0.05% of the > 26,000 sequenced bases were 

erroneous (mainly missing G or C nucleotides), and only 5 clones were internally truncated 

(likely due to incomplete overlap extension or secondary structure formation). Overall, this 

single “one-pot” reaction yielded a large number of sequence verified clones comprising a 

library of 11 different gene lengths and encoding for protein-polymers as small as 10 

hexapeptides to remarkably long polypeptides over 80 hexapeptides in length, all in a single 

cloning reaction. Furthermore, we observed that the distribution of gene lengths in a library 

is readily tuned by adjusting the size range of the OERCA products prior to ligation 

(Supplementary Fig. S2).

To demonstrate the advantages of OERCA over standard methods for the synthesis of 

recombinant protein-polymer libraries, we compared the performance of OERCA, overlap 

elongation PCR (OE-PCR) and concatemerization in the synthesis of DNA oligomers 

encoding for poly(AVPGVG) (see supplementary information and Supplementary Fig. S3–

S5). The number of colonies obtained from OE-PCR (~300) was similar to that of OERCA 

(~200), while concatemerization always yielded a lower number of colonies (~50–100 for 

AVPGVG and other repetitive genes shown in Fig. S5). Colonies obtained by the three 

methods were then screened by directional cPCR and positive clones (i.e., those with inserts 

in the correct orientation) were further subjected to restriction analysis and DNA sequencing 

to verify insert size and sequence fidelity. The size distribution of the resulting clones is 

shown in Figure 3c. The number of positive clones was far lower for OE-PCR as compared 

with OERCA, and DNA sequencing revealed a high incidence of internal truncation in 
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clones generated by OE-PCR (data not shown), consistent with a previous report 16. 

Concatemerization, despite generating fewer clones, typically produced a large fraction of 

positive clones, likely due to the high proportion of small concatemers and the presence of 

5’ overhangs. Libraries constructed by OEPCR and concatemerization were mostly 

comprised of small inserts and no inserts longer than ~0.6 Kbps were observed. In contrast, 

OERCA was the only method of the three to produce long constructs in the size range of 0.8 

to 1.5 Kbp (~ 20 % of the clones) that encode for 45–85 hexapeptide repeats. Notably, 

around 50 % of all inserts obtained with OERCA were larger than 0.54 Kbp. Furthermore, 

libraries generated by OERCA and concatemerization for the GC-rich repetitive gene 

encoding for poly(VPGVA) demonstrated the inability of concatemerization to produce 

oligomers longer than 400 bp (Supplementary Fig. S5c), and affirmed the ability of OERCA 

to generate a large number of mutation-free constructs in the 400–825 bp range (upon 

screening an identical number of clones). Additionally, concatemerization resulted in an 

extremely high error rate for VPGVA (70 %) (Supplementary Fig. S5c), unlike OERCA 

(~30 %). These results, hence clearly demonstrate that OE-PCR and concatemerization are 

inferior to OERCA in ligation efficiency, size diversity of the library and sequence fidelity.

We next decided to test the robustness and high-throughput potential of OERCA by 

synthesizing libraries of structural variants of ELPs. ELPs are soluble in aqueous solution 

below their inverse transition temperature (Tt), but when the temperature is raised above 

their Tt, they undergo a sharp (~2°C range) phase transition, leading to the subsequent 

formation of an ELP-rich coacervate phase. We chose ELPs for two reasons: first they 

present a synthetic challenge, as they are comprised of highly repetitive, GC-rich sequences 
14,15. Second, the sequence requirements and constraints that govern their stimulus 

responsive behavior remain somewhat of a mystery, despite four decades of investigation. 

To date, it is unclear to what extent the generalized VPGXG motif (where X is any amino 

acid except Proline) can be altered without losing thermally responsive coacervation 

behavior, partly because methods to synthesize genes for ELPs that span a range of 

compositions and MWs are tedious and difficult to implement in parallel. Motivated by the 

large gap in our understanding of the phase behavior of ELPs and the increasing interest in 

these polymers for a wide range of applications 5,17, we used OERCA to demonstrate the 

ease of performing a systematic study of the sequence constraints that govern the phase 

transition behavior of these protein-polymers.

We generated libraries of genes that encode diverse chain lengths of 9 different Alanine (A) 

insertion and substitution mutants of poly(VPGVG), as well as the parent motif 

(Supplementary Table S1). We refer to these polypeptides as aELPs for brevity. We 

screened 96 colonies (of ~200) for each aELP motif, which typically yielded ~5 different 

gene lengths encoding protein-polymers with 10–55 repeats of the pentapeptide or 

hexapeptide motifs. We then characterized the thermally responsive behavior of this family 

of aELPs, with the exception of polypeptides with the repeat unit VAGVG, as they 

expressed poorly.

These experiments resulted in the exciting finding that the entire set of aELPs that were 

characterized display thermally responsive behavior, despite the various mutations 

introduced to the VPGVG motif (Fig. 4a). This finding is significant because it hints at the 
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existence of a large and diverse set of motifs – far larger than the canonical VPGXG motif – 

that are capable of exhibiting stimulus responsive phase behavior. In previous work by Urry 

and others 18 , non-canonical ELP motifs often failed to display fully reversible phase 

transition behavior with negligible thermal hysteresis, as observed for ELPs 19,20. In 

contrast, we demonstrate, for the first time, the existence of more complex hexapeptide 

motifs AVPGVG, VPAGVG, VPGAVG and VPGVAG capable of displaying fully reversible 

thermally triggered phase transition behavior (Fig. 4b) and environmental sensitivity to both 

solution temperature and solute concentration (Fig. 4 and Fig. 5).

The thermally-responsive behavior of canonical ELPs is easily and quantitatively tuned by 

controlling the polypeptide molecular weight 21. Therefore, we were interested in studying 

the molecular weight dependence of the thermally-responsive behavior of these novel aELP 

motifs. We harnessed the ability of OERCA to tune gene length by synthesizing a library 

encoding for aELPs with the hexapeptide motif AVPGVG. This library was assembled from 

the transformation reactions of two OERCA products, in which the reaction conditions had 

been modified to yield two different molecular weight distributions (Supplementary Fig. 

S2). This enabled the construction of a library spanning insert sizes from ~270 to ~2500 bp 

(Fig. 5). We then expressed, purified and characterized the phase transition behavior of 5 

constructs spanning the entire range of molecular weights in this library. The transition 

temperature of these polypeptides decreased in a linear fashion as a function of the 

reciprocal of the molecular weight, as previously described for canonical ELPs (Fig. 5c–d) 
21. Hence, the thermo-responsive behavior of this aELP is easily tunable by controlling 

polypeptide molecular weight. The functionality – thermal responsiveness – of this library of 

poly(AVPGVG) spanning polypeptides from ~10 KDa to ~70 KDa also serves to 

demonstrate that OERCA can be used to readily synthesize repetitive protein-polymers over 

an unprecedented wide range of sizes without the need for recursive cloning steps.

The behavior of aELPs also provided some insight into the role of hydrophobic interactions 

on the phase transition of elastin and ELPs. Despite having the same amino acid 

composition (and hence hydrophobicity) and molecular weight, the Tt of polypeptides 

composed of repeats of AVPGVG and VPAGVG that only differ in amino acid 

arrangement, are substantially different (Fig. 4a). This suggests that the overall 

hydrophobicity of these polypeptides fails to explain their propensity for coacervation (i.e., 

whether the Tt occurs at high or low temperatures), and in turn suggests that other factors 

such as their secondary structure are likely to contribute to the differences in their phase 

transition behavior. This motivated a study of the secondary structure of aELPs by circular 

dichroism (CD), which revealed that the aELPS are characterized by an ensemble of highly 

disordered structures populated by random coil, β-turns and distorted β-sheet conformations 

(Fig. 4c–d), reminiscent of the secondary structure of tropoelastin and ELPs 19,20. 

Interestingly, these studies suggest that different aELPs have different secondary structure 

propensities (Fig. 4c–d and Supplementary Fig. S6), as seen differences in their degree of 

disorder (i.e., the magnitude of the negative peak at ~197 nm) and the fraction of β-turns 

and/or distorted β-sheets (i.e., negative shoulder around 210 nm) 20. These differences may 

eventually lead to a better understanding of coacervation propensity, but we note that this 
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“conformational” promiscuity is observed even among polypeptides that display ideal fully 

reversible phase transition behavior.

We then investigated the relationship between the phase behavior and secondary structure of 

two aELPs with distinct thermally responsive behavior by concurrently measuring their 

turbidity profiles and their CD spectra at various stages of the thermally triggered 

coacervation process (CD spectra were recorded at temperatures indicated by arrows in Fig. 

4e, g). The aELP consisting of repeats of the pentapeptide motif VPAVG exhibited quasi-

irreversible phase separation with large hysteresis (Fig. 4e), and complete solubility was 

only recovered upon cooling the coacervate down to 4 °C (Supplementary Fig. S7a). In 

contrast, the aELP consisting of repeats of the hexapeptide motif VPGVAG exhibited fully 

reversible phase transition behavior as a function of solution temperature (Fig. 4g). CD 

spectroscopy illuminated the structural origins of these differences in their thermally 

triggered coacervation. Whereas both polypeptides showed significant loss of structural 

disorder as they were heated, as seen by a decrease in intensity of the negative peak at ~197 

nm, their CD spectra differed significantly in the mature coacervate stage (i.e., at 

temperatures corresponding to the maximum absorbance in Fig. 4e-, g) and upon subsequent 

cooling below the Tt. The quasi-irreversible phase behavior of poly(VPAVG) was 

accompanied by a dramatic loss of structural disorder (i.e., a nearly positive peak at 197 nm) 

that persisted to a large extent upon cooling well below the Tt (Fig. 4f), and the original 

degree of disorder was only recovered upon cooling to 4 °C, in accordance with the reversal 

of the coacervation process as assessed by turbidity data (Supplementary Fig. S7b). In 

contrast, poly(VPGVAG) exhibited significant residual disorder in the mature coacervate 

(i.e., negative peak at 197 nm) and showed complete reversal of its secondary structure upon 

cooling to 25 °C (Fig. 4h) . These results clearly suggest that residual disorder in the mature 

coacervate and recovery of conformational disorder in aELPs are the key to their thermal 

reversibility.

To further illustrate the broad applicability of OERCA, we next synthesized protein-

polymers comprised of long (e.g., 30 amino acids) peptides, as opposed to the short 5–6 

amino acids long aELP motifs. An emerging strategy for temporally sustained peptide 

delivery involves peptide polymerization with intervening protease-cleavable linkers 11. 

However, as existing designs employed protease sites that are rapidly cleaved, these 

constructs still required repeated daily injections. Others have demonstrated release of serum 

albumin-bound peptides by thrombin-cleavable linkers, enabling once-a-day injection 

regimens 22. To further prolong the sustained release of peptide drugs, we sought to generate 

protease-responsive protein-polymers of a model peptide drug, GLP-1, with intervening 

thrombin cleavable sequences of variable strengths to optimize monomer release. We used 

OERCA to create expression libraries of synthetic genes that encode protein-polymers of 

modified GLP-1 monomer sequences (Supplementary Fig. S8) with intervening thrombin 

cleavage sequences designed to be weak (GLP/W), intermediate (GLP/I) and strong 

(GLP/S) (Fig. 6a and Supplementary Table S1). We then chose a clone from each library 

that contained 6 repeats of each GLP-1 monomer, and demonstrated their sequence 

dependent protease-responsive behavior by cleavage with thrombin (Fig. 6b). Whereas the 

most thrombin-sensitive protein-polymer (GLP-1/S) was rapidly cleaved within 2 h (top 
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band in Fig. 6b), the intermediate construct GLP-1/I was cleaved less efficiently, and the 

weak GLP-1/W only produced visible fragments after a 24 h incubation. We further 

demonstrated that the sequence dependent efficiency of thrombin cleavage is biologically 

relevant, as GLP-1 polymers incubated in mouse plasma were capable of activating the 

GLP-1 receptor overexpressed by Baby Hamster Kidney (BHK) cells. Moreover, Fig. 6c 

shows that the magnitude of receptor activation was proportional to the thrombin 

responsiveness of the GLP-1 protein-polymers, with GLP-1/S showing the highest and most 

sustained receptor activation, followed by GLP-1/I and GLP-1/W, respectively.

We developed OERCA in response to the limitations of current methods available for the 

synthesis of repetitive genes, and our own interest in these biopolymers for medical 

applications. Whereas step-wise oligomerization provides deterministic control over the 

number of repeats 13, this recursive synthetic strategy is slow and tedious as it requires 

multiple cycles of laborious cloning, and uses specific restriction enzymes that must be 

carefully chosen to avoid the introduction of extraneous nucleotides at the ligation junction 
23. Concatemerization of repetitive genes, although simple and rapid, typically results in a 

low yield of inserts with more than 2–3 monomers and offers little control over molecular 

weight 23. Similarly, PCR-based methods, such as OE-PCR, have been unsuccessful in 

synthesizing high molecular weight constructs, most likely due to the high error rates 

associated with nonspecific self-priming of short overlapping sequences 24,25. Other PCR-

based strategies also suffer from poor sequence fidelity and small insert sizes 24,26,27. 

Indeed, we confirmed the poor performance of OE-PCR and concatemerization for the 

synthesis of libraries of repetitive genes (Supplementary Fig S4 and Supplementary Fig S5). 

Thermally cycled RCA, in contrast, has not received significant attention as a method for 

high fidelity synthesis of repetitive polypeptides 28, although we note its previous use in 

bioanalytical applications 29, 30.

OERCA provides a useful new molecular biology methodology for the rapid and parallel 

synthesis of protein-polymers, and will likely accelerate the discovery and development of 

new protein-polymers as shown here in the case of protease-responsive drug polymers and 

stimulus responsive protein-polymers. Ongoing work in our laboratory that uses OERCA is 

focused on the design and in vivo evaluation of protease responsive GLP-1 polymers as 

novel drug delivery vehicles for the treatment of type II diabetes, and the combinatorial 

screening of short peptide motifs in an effort to identify design principles for engineering 

new stimulus responsive polymers. We also envision the use of OERCA for the synthesis of 

repetitive immunogenic epitopes, cell adhesion protein-polymers with repetitive peptide 

motifs to modulate cellular interactions 32 and new biomaterials with useful structural and 

functional properties 33.

Materials and Methods

The reader is encouraged to review the detailed methods in the supplementary information.
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Circularization of ssDNA template

250 pmol of ssDNA template was synthesized (Supplementary Table 1) and circularized in a 

50μL reaction containing 2.5 μL Circligase, 2.5 μL MnCl2 and 2.5 μL ATP. The reaction 

was incubated at 60 °C for 2 h, column purified and incubated with 20 U Exonuclease I at 

37 °C for 1h, followed by column purification.

OERCA

The OERCA reaction consisted of 150 ng of circular ssDNA template, 10–40 pmol of sense 

and antisense DNA primers (Supplementary Table 1), 25 mM of a 70% G/C dNTP mixture 

and 1μl of Pfu polymerase in a volume of 50 μL. The reaction was incubated at 95 °C for 2 

min, followed by 30–40 cycles at 95 °C for 20 s, 52–55°C for 20 s and 72 °C for 30 s, and 

finalized at 72 °C for 5 min. The product was purified and visualized on a 1% agarose gel. 

Where indicated, the PCR product was subjected to additional PCR cycles with varying 

primer concentration and/or temperature to optimize the size range of the DNA product. For 

the synthesis of repetitive genes encoding for aELPs, the OERCA products were typically 

further extended in the absence of primers at an annealing temperature of 60 °C.

Generation of gene libraries from OERCA products

Modified pET-25b+ expression vectors (supplementary information) were used to clone 

aELPs and GLP-1 oligomers, incorporating a hexahistidine-tag or an ELP tag 34 for protein 

purification, respectively. The vector for aELPs also encoded for the N-terminal leader 

sequence SKGP in order to maximize expression levels 35. Following verification by DNA 

sequencing, 2 μg of vector was digested with 2 μl of SmaI for 2 h at room temperature 

(followed by 1 h digestion with 2 μl of AleI at 37°C for GLP-1 vector), dephosphorylated 

with 1 μl CIP for 15 min - 1 h at 37°C, and column purified. 250 ng of OERCA product was 

ligated to the vector using 5 units of T4 DNA ligase, 2 μl PEG-4000 and ~250 ng of digested 

vector. The ligation mixture was incubated at 25 °C for 3 h, and BL21 cells were 

transformed with the mixture following the manufacturer’s instructions.

Screening of gene libraries

Colonies were added to 25 μl solutions containing 12.5 μl GoTaq green master mix, 10 pmol 

T7-promotor primer and 10 pmol insert-specific reverse primer. The PCR reaction 

conditions were: 95 °C for 2 min, followed by 30 cycles at 95 °C for 30 s, 52 °C for 30 s, 

and 72 °C for 1 min. The results were visualized on a 1% agarose gel. Clones with inserts in 

the correct orientation were identified by the presence of large smears on the DNA gel. The 

selected clones were subjected to DNA restriction analysis and DNA sequencing.

Comparison of OERCA with OE-PCR and concatemerization

For OE-PCR, oligonucleotides were designed to have 50% or 100% overlapping regions. 

The OE-PCR reaction mixture consisted of 10–40 pmol of each ssDNA oligonucleotide, 10 

nmol of a dNTP mixture, 0.8 μl of Pfu polymerase, 4μl of 10X Pfu buffer, and water for a 

final volume of 40 μl, in accordance with similar OE-PCR reactions reported in the literature 

Amiram et al. Page 8

Nat Mater. Author manuscript; available in PMC 2011 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24 36. The final optimized concatemerization protocol consisted of two 1 hour 

concatemerization reactions of 1 μM gene in the presence of 400 U of T4 DNA ligase (New 

England Biolabs) and 0.1 μM of either the 5’ or 3’ adaptor followed by mixing the two 

reactions and allowing for further ligation for 2.5 h, all performed at room temperature.

Expression, purification and characterization of aELP and GLP-1 polymers

Protein-polymers were overexpressed by IPTG induction in 1 L cultures supplemented with 

100 μg/mL ampicillin. The cells were harvested 24 h after inoculation and purified by ITC 
37. To characterize the inverse transition temperature of aELPs, the optical density of aELP 

solutions (50 μM in PBS unless indicated) was monitored 34. The secondary structure of 

aELPs was studied by circular dichroism at multiple temperatures for 5 μM polypeptide 

solutions in water. In addition, the ability of anti GLP-1 antibodies to bind GLP-1 protein-

polymers was assayed by western blot analysis, using a 1:3000 dilution of mouse anti-

GLP-1 antibody.

GLP-1 monomer release study

Purified GLP-1 oligomers were conjugated to Alexa-488 and digested with 1 U thrombin for 

2, 6 and 24 h. The peptides were separated on a Tris-tricine SDS PAGE and imaged using a 

Typhoon 9410.

GLP-1 activity assay

GLP-1 activity assay was conducted using Baby Hamster Kidney (BHK) cells stably 

transfected with rat GLP-1 receptor (GLP-1R) (a gift from Prof. Drucker, University of 

Toronto). Cells were incubated with 100 μM 3-isobutyl-1-methylxanthine 38 followed by 10 

min incubation with GLP-1. Intracellular cAMP concentrations triggered by GLP-1-R 

activation were measured by ELISA (Assay Designs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of snapshots depicting the evolution of an OERCA reaction. (a) A linear 

oligonucleotide is first circularized yielding a population of circular DNA, which is enriched 

by removal of the remaining linear DNA before the start of the OERCA reaction (b–h). (b) 

The circularized oligonucleotide is added to a conventional PCR mixture containing forward 

and reverse primers. (c) After annealing of the reverse primer, extension in cycle 1 (n=1) 

occurs primarily in the form of rolling circle amplification. (d) Upon DNA denaturation in 

cycle 2, linear repeats of the original circularized sequence become available as extension 

templates. (e–f) As the reactions proceeds, primer annealing and overlap extension 

preferentially take place to amplify the linear DNA. (g–h) Upon DNA denaturation the 

repetitive single-stranded DNA is capable of priming/overlapping, which further promotes 

the extension of the original repeat unit.
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Figure 2. 
The effect of primer concentration and cycle number on the size range of the DNA product. 

The monomer gene for GLP-1 was used as a model. Lanes 1 and 2 are the products of 30 

cycles with 10 and 40 pmol primer, respectively. All PCR reactions were column purified to 

remove excess primers and recover product. Products from lanes 1–2 were then subjected to 

15 more cycles with no additional primer (lanes 3 and 5, respectively) or with 20 pmol 

primer (lanes 4 and 6). The size range of the DNA product can be further increased by 15 

additional cycles without primer (lane 7 generated from lane 3).
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Figure 3. 
Synthesis of polypeptide libraries by OERCA is simple and outperforms current synthesis 

methods. The product of an OERCA reaction (a) was ligated into a vector and positive 

colonies were screened by directional cPCR (b), wherein positive clones can be identified by 

the presence of a large DNA smear (*). Positive clones were subjected to restriction analysis 

and DNA sequencing to verify insert size and sequence fidelity (c). OERCA, unlike OE-

PCR and concatemerization, enabled the synthesis of constructs with a wide size distribution 

(0.18 −1.5 Kbp). Insert sizes larger than 0.9 Kbp were estimated by restriction analysis.
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Figure 4. 
Thermally responsive behavior of aELPs constructed by OERCA. (a) The turbidity profiles 

for all aELPs exhibit a sharp transition with temperature, characteristic of the inverse phase 

transition behavior displayed by canonical ELPs. We discovered 4 new hexapeptide motifs 

(b) that display reversible phase transition behavior. All polypeptides in (a–b) were prepared 

at a concentration of 50 μM in PBS (i.e., 0.14 M NaCl), except VAPGVG (0.64 M NaCl) 

and APGVG (2.14 M NaCl). Circular dichroism spectra at 25 °C revealed highly disordered 

conformations predominant in aELPs with both pentapeptide (c) and hexapeptide (d) motifs, 

similar to that of the canonical ELP. (e–h) The coacervation of aELPs with two distinct 

phase transition behaviors was studied by CD at various stages (arrows in e and g) of the 

coacervation process. The CD spectra and associated turbidity profiles were acquired in 

water at a polypeptide concentration of 5 μM, and θ indicates the mean residue ellipticity. 

The pentapeptide motif VPAVG (e–f) underwent quasi-irreversible phase separation (e) and 

lost its highly disordered conformers (i.e., negative peak at 197 nm) in the mature coacervate 

and upon cooling to 25 °C (f). In contrast, the hexapeptide motif VPGVAG (g–h) exhibited 

fully reversible phase transition behavior (g), highly disordered conformers were preserved 

in the mature coacervate, and the secondary structure of the polypeptide was completely 

recovered upon cooling (h). We also confirmed the reversible behavior of VPAVG upon 

cooling to 4 °C (Supplementary Fig. S7).
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Figure 5. 
Gene synthesis, expression and characterization of a library of aELPs with the repeating 

sequence AVPGVG. Turbidity profiles for 5 constructs in this library in PBS (a) and PBS 

supplemented with NaCl to 1.14 M (b). The transition temperatures calculated from (b) 

varied linearly as the reciprocal of molecular weight of the aELP as expected for canonical 

ELP sequences (c). The wide distribution of molecular weights in this library synthesized by 

OERCA is illustrated at both the DNA and polypeptide level, which demonstrates the ability 

of OERCA to readily generate both low and large molecular weight protein-polymers (d).
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Figure 6. 
Characterization of protease mediated cleavage of GLP-1 protein-polymers with variable 

thrombin recognition sequences. (a) Schematic illustration of GLP-1 polymers with variable 

protease cleavable sequences. Thrombin cleaves C-terminal to the Arginine (R), and in vivo 

the enzyme DPPIV can then cleave the “GA” dipeptide to leave a free N-terminal Histidine 

(H), the first amino acid in active GLP-1. (b) SDS-PAGE analysis of Alexa-488 labeled 

constructs incubated with 1 U thrombin for 2, 6 and 24 hours. (c) Differential activation of 

GLP-1 protein-polymers by incubation with mouse plasma demonstrated by cAMP 

production following GLP-1 binding to the GLP-1R in Baby Hamster Kidney cells.
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