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Projection-Specific Neuromodulation of Medial Prefrontal
Cortex Neurons

Nikolai C. Dembrow, Raymond A. Chitwood, and Daniel Johnston
Center for Learning and Memory, The University of Texas at Austin, Austin, Texas 78712

Mnemonic persistent activity in the prefrontal cortex (PFC) constitutes the neural basis of working memory. To understand how neuro-
modulators contribute to the generation of persistent activity, it is necessary to identify the intrinsic properties of the layer V pyramidal
neurons that transfer this information to downstream networks. Here we show that the somatic dynamic and integrative properties of
layer V pyramidal neurons in the rat medial PFC depend on whether they project subcortically to the pons [corticopontine (CPn)] or to the
contralateral cortex [commissural (COM)]. CPn neurons display low temporal summation and accelerate in firing frequency when
depolarized, whereas COM neurons have high temporal summation and display spike frequency accommodation. In response to dynamic
stimuli, COM neurons act as low-pass filters, whereas CPn neurons act as bandpass filters, resonating in the theta frequency range (3- 6
Hz). The disparate subthreshold properties of COM and CPn neurons can be accounted for by differences in the hyperpolarization-
activated cyclic nucleotide gated cation h-current. Interestingly, neuromodulators hypothesized to enhance mnemonic persistent activ-
ity affect COM and CPn neurons distinctly. Adrenergic modulation shifts the dynamic properties of CPn but not COM neurons and
increases the excitability of CPn neurons significantly more than COM neurons. In response to cholinergic modulation, CPn neurons were
much more likely to display activity-dependent intrinsic persistent firing than COM neurons. Together, these data suggest that the two
categories of projection neurons may subserve separate functions in PFC and may be engaged differently during working memory

processes.

Introduction

During higher-order executive tasks that engage working
memory, the prefrontal cortex (PFC) exerts top-down con-
trol, coordinating activity in downstream networks via exten-
sive connections to cortical and subcortical targets (Miller,
2000; Narayanan and Laubach, 2006; Arnsten, 2007). PEC dys-
function contributes to cognitive and behavioral impairments
associated with Tourette’s syndrome, posttraumatic stress disor-
der, attention-deficit hyperactivity disorder, and schizophrenia
(Bremner etal., 1999; Shin et al., 2004; Casey et al., 2007; Marsh et
al., 2007; Bonilha et al., 2008; Lewis and Gonzalez-Burgos, 2008).
Neuromodulatory regulation of PFC function is a target of both
the pathology and treatment of these disorders (Hyde and Crook,
2001; Bymaster and Felder, 2002; Kapur, 2003; Arnsten, 2004,
2006; Ikonomovic et al., 2007; Strawn and Geracioti, 2008; Dop-
heide and Pliszka, 2009; Scahill, 2009). Within animal models,
task performance and mnemonic persistent activity of PFC are
also sensitive to neuromodulation (Herremans et al., 1997; Wall
et al., 2001; Chudasama et al., 2004; Vijayraghavan et al., 2007;
Wang et al., 2007). Elucidating how neuromodulation affects
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mnemonic activity in PFC may require understanding how it
modifies the communication of PFC to downstream networks.

A primary source of output from the PFC occurs via layer V
pyramidal neurons. Neuromodulation of synaptic inputs to these
neurons (Law-Tho et al., 1993; Couey et al., 2007; Wang et al.,
2008; Kruse et al., 2009) and their intrinsic properties have been
characterized, with some conflicting results (McCormick and
Prince, 1985; Haj-Dahmane and Andrade, 1996, 1998, 1999;
Yang and Seamans, 1996; Gulledge and Jaffe, 1998, 2001;
Gulledge and Stuart, 2003; Carr et al., 2007; Carr and Surmeier,
2007; Gulledge et al., 2007). One potential explanation for these
discrepancies may be the diversity of layer V pyramidal neuron
types. In several neocortical regions, including the rat dorsal me-
dial PFC (mPFC), layer V pyramidal neurons have distinct inter-
connectivity, morphology, and firing patterns depending on
their long-range projection targets (Molnar and Cheung, 2006;
Morishima and Kawaguchi, 2006; Otsuka and Kawaguchi, 2008;
Brown and Hestrin, 2009). Comparing the neuromodulatory re-
sponses of mPFC neurons with distinct projection targets re-
mains unexplored.

Here we report that the subthreshold and suprathreshold in-
tegration of layer V pyramidal neurons in the rat ventral mPFC
depend on their long-range projection targets. The distinct re-
sponses of neurons that project to the pons [corticopontine
(CPn)] and neurons that project to the contralateral cortex
[commissural (COM)] to dynamic subthreshold stimuli can
be abolished by blocking the hyperpolarization-activated
cyclic nucleotide-gated cation h-current. Consequently, a2-
adrenergic and cholinergic modulation, which modify h-currents
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(Carr et al., 2007; Wang et al., 2007; Barth et al., 2008; Heys et al.,
2010), alter the dynamic and integrative properties of CPn but
not COM neurons. Additionally, intrinsic properties not ac-
counted for by the h-current were also unique between COM and
CPn neurons. CPn, but not COM, neurons reliably display
activity-dependent persistent firing in the presence of cholinergic
agonists. With such disparate integrative properties and re-
sponses to neuromodulation, CPn and COM neurons may con-
tribute in different ways to mnemonic persistent activity.

Materials and Methods

Bead infusions. All surgical methods were approved by The University of
Texas at Austin Institutional Animal Care and Use Committee. Male
Sprague Dawley rats 4—8 weeks old were anesthetized with a ketamine
(90 mg/kg)/xylazine (10 mg/kg) mixture. Retrogradely transported fluo-
rescently labeled microspheres (Red or Green Retrobeads; Lumafluor)
were infused stereotaxically into either the contralateral PFC (3.0 mm
anterior to bregma, 1.0 mm lateral to bregma, 4.0 mm ventral to bregma)
or into the ipsilateral (left) pontine nuclei and surrounding pyramidal
tracts (6.8—7.2 mm posterior to bregma, 2.0 mm lateral to bregma, 9-9.8
mm ventral to bregma). Infusions were performed using 33 gauge infu-
sion cannula that extended 1.2 mm and was held in place by 26 gauge
stainless-steel guide cannula (Plastics One), connected to a 10 ul Ham-
ilton syringe driven by an automated injector system (model MD-1001;
Bioanalytical Systems) and electronic pump (model MD-1020) infused
at the rate of 0.05 wl/min. After infusion of 0.5-1 wl, the infusion rate was
slowed to 0.005 wl/min for 10 min before removing the cannulae. Ani-
mals were allowed to recover a minimum of 2 d before use in physiology
experiments.

Slice preparation. Male Sprague Dawley rats 5-16 weeks old were anes-
thetized with a ketamine (160 mg/kg)/xylazine (16 mg/kg) mixture and
intracardially perfused with ice-cold, artificial CSF (aCSF) consisting of
the following (in mm): 2.5 KCl, 1.25 NaH,PO,, 25 NaHCOs, 0.5 CaCl,, 7
MgCl,, 7 dextrose, 205 sucrose, 1.3 ascorbic acid, and 3 sodium pyruvate
(bubbled with 95% O,/5% CO, to maintain a pH of ~7.4). Brains were
removed, and a blocking cut was made at approximately —2.5 mm pos-
terior to bregma near coronally to maximize the dendritic projections of
the left hemisphere within the plane of the slice. The front half of the
brain was mounted on the cut surface, rostral end up with the dorsal side
toward the blade and sliced on a vibrating tissue slicer (Vibratome 3000;
Vibratome Inc.). Coronal slices were cut 300 wm thick and held for ~30
min at 37°C in a holding chamber of aCSF solution containing the fol-
lowing (in mm): 125 NaCl, 2.5 KCl, 1.25 NaH,PO,, 25 NaHCO;, 2 CaCl,,
1 MgCl,, 10 dextrose, 1.3 ascorbic acid, and 3 sodium pyruvate (bubbled
with 95% O,/5% CO,). Afterward, slices were stored at room tempera-
ture (~22°C) until time of recording.

Whole-cell recordings. Whole-cell current-clamp recordings were per-
formed on slices submerged in a chamber filled with aCSF heated to
32-34°C flowing at a rate of 1-2 ml/min in recording solution, which was
identical to the holding solution but with the addition of the following (in
mu): 0.5 KCl, 0.01 CNQX, 0.05 APV, 0.01 bicuculline, 0.01 picrotoxin.
In some experiments, 0.02 mM DNQX was substituted for CNQX, and
0.02 mm gabazine was substituted for bicuculline and picrotoxin. Neu-
rons were visualized using either a standard upright microscope (Carl
Zeiss FS-1) fitted with differential interference contrast optics using in-
frared illumination (Stuart et al., 1993) or a two-photon laser scanning
microscope (Leica SP5-RS) using Dodt contrast (Dodt and Zieglgin-
sberger, 1990). Bead-labeled neurons were identified using either the
two-photon excitation at 840 nm or excited via a mercury lamp filtered
through a 540 nm/605 nm excitation/emission filter. Patch pipettes (4—7
M(Q) were pulled from capillary glass of external diameter 1.65 mm
(World Precision Instruments) using a Flaming/Brown micropipette
puller (model P-97, Sutter Instruments) and filled with an internal solu-
tion containing the following (in mm): 120 K-gluconate, 20 KCl, 10
HEPES, 4-8 NaCl, 7 K,-phosphocreatine, 0.3 Na-GTP, and 4 Mg-ATP.
Neurobiotin (Vector Laboratories) was included (0.1-0.2%) for subse-
quent histological processing. Data were acquired with either a Multi-
clamp 700B amplifier (Molecular Devices) and Axograph 6.0 (AxoGraph
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Figure 1.  Heterogeneity in the dynamic properties of mPFC neurons. A, Somatic recordings
of layer V mPFC neurons were conducted within ventral mPFC, including prelimbic and infral-
imbic cortex. Left, A schematic of an mPFC neuron and the somatic recording location. Right,
Recording locations overlaid with a modified version of a coronal diagram from a rat brain atlas
(Paxinos and Watson, 1993). B, In response to a 10 s chirp stimulus at their resting membrane
potential, different mPFC neurons resonated across a range (1— 6 Hz) of frequencies. , D, In addition
to exhibiting different resonance profiles, neurons were diverse in both steady-state input resistance
(€) and resting membrane potential (D) (n = 38 neurons). Gray dashed lines represent the linear fit of
the data, with correlation values listed. PL, Prelimbic; IL, infralimbic; Cg1, anterior cingulate; M2,
secondary motor cortices.

Scientific) acquisition software or a Dagan BVC-700 amplifier with
custom-written acquisition software in the IgorPro environment (Wavem-
etrics). All data were acquired at 20—-50 kHz using an ITC-18 (InstruTech)
and filtered at 5-20 kHz. All drugs were made up as 1000 X stock solutions
in water, equivalent NaOH, or DMSO (final concentration of DMSO
=0.1%). Five to 10 min were allowed for solutions to wash in before
taking measurements. Pipette capacitance was compensated for, and the
bridge was balanced before each recording. Voltages are not corrected for
liquid junction potential, which is 7-8 mV based on previous results
(Rosenkranz and Johnston, 2007; Narayanan and Johnston, 2008). Series
resistance was 8 —25 M() for all recordings, and experiments were termi-
nated if this range was exceeded.

Reconstructions. Slices were fixed in 3% glutaraldehyde in 0.1 m phos-
phate buffer, pH 7.4, and stored at 4°C for up to 3 months. Slices were
processed using an avidin—-HRP system activated by diaminobenzidine
(DAB) (Vector Laboratorties). DAB-processed slices were mounted in
glycerol and viewed with a compound (Leitz Diaplan) microscope. So-
matic locations of neurons (Fig. 1 A) were measured relative to the inter-
section of the midline and the apex of dorsal surface using Neurolucida
6.0 imaging software (MicroBrightField). Neurons were reconstructed
using a 40X objective with a computer-controlled indexing system run-
ning Neurolucida. Cell morphology measurements, including dendritic
length, surface area and volume, and Sholl analyses (Sholl, 1953), were
measured using Neurolucida Explorer.

Data analysis. Input resistance was calculated as the slope of the linear
fit of the voltage—current plot generated from a family of current injec-
tions. The membrane time constant was calculated as the slow compo-
nent of a double-exponential fit of the average voltage decay resulting
from alternating depolarizing and hyperpolarizing current injections
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(400 pA, 1 ms). Single action potentials (APs) were analyzed for AP
threshold, maximum dv/dt (millivolts per milliseconds), AP peak, AP
amplitude, and AP half-width. Threshold was defined as the voltage at
the time corresponding to the first maximum of the third derivative of
the voltage response. Action potential amplitude was measured from
threshold to peak, with the half-width measured at half this distance. The
sag ratio was calculated as the proportional difference between maxi-
mum and steady-state voltage transients resulting from hyperpolarizing
current injections. Rebound was measured as the slope of the rebound
potential amplitude as a function of the steady-state voltage. Resonance
was measured using a sinusoidal current injection of constant amplitude
and linearly spanning 0—10 Hz in 10 s, 0-15 Hz in 15 s, or 0-20 Hz in
20 s, and the impedance amplitude profile (ZAP) was determined by
taking the ratio of the fast Fourier transform of the voltage response to
the fast Fourier transform of the stimulus (Puil et al., 1986; Narayanan
and Johnston, 2007). Resonance frequency was defined as the peak of the
ZAP and resonance strength the ratio of the peak impedance to the
impedance at 1 Hz.

Statistical analyses. Discriminant cluster analysis was performed to
identify whether neuron types could be sorted by different electrophysi-
ological parameters. Differences were assessed using either Student’s ¢
test or in cases with more than one group ANOVA, followed by Student’s
t tests with Bonferroni’s correction to account for within-group effects.
For paired data, repeated-measures ANOVA or two-factor mixed
ANOVA were performed, as specified. When SDs across groups were
significantly different according to Bartlett’s test, a Dunn-corrected,
nonparametric ANOVA (Kruskal-Wallis) test was used instead. Statisti-
cal analyses were performed in JMP (SAS Institute), InStat (GraphPad
Software), or Excel (Microsoft). Data are reported as mean * SE.

Results

Both dynamic and steady-state properties of layer V mPFC
neurons depend on their long-range projection targets

One proposed means by which the PFC exerts top-down control
over downstream networks is via coherence in the oscillatory
dynamics of PFC and its various targets (Engel et al.,, 2001;
Klimesch et al., 2010). The oscillatory dynamics of network ac-
tivity depend on the dynamic properties of constituent neurons
within the network (Marder et al., 1996; Hutcheon and Yarom,
2000). Individual neurons will respond to inputs in a frequency-
dependent manner depending on the combination of various
voltage-gated conductances they express, but in particular the
expression of the h-current and M-type K™ current (Hutcheon
and Yarom, 2000; Hu et al., 2002, 2007, 2009; Narayanan and
Johnston, 2007, 2008). Thus, the membrane voltage will resonate
with inputs of a particular frequency domain, while filtering out
inputs at other frequencies. Despite their importance, the dy-
namic integrative properties of the layer V pyramidal neurons
that provide output from the PFC remain uncharacterized.

We observed considerable heterogeneity in the both the dy-
namic and steady-state intrinsic properties of layer V pyramidal
neurons in mPFC. Neurons (n = 38) displayed a wide range of
both resting membrane potential (RMP) (—60.5 to —77.6 mV)
and steady-state input resistance (Ry) (34.2-180.6 M()). To ex-
amine subthreshold dynamic properties in mPFC neurons, we
injected a sinusoidal current with constant amplitude that lin-
early increased in frequency (chirp stimulus) into the soma (Fig.
1A,B). Calculating the ZAP in response to the chirp stimulus
revealed the varied filtering properties of individual neurons (Fig.
1C). The resonance frequency, f; (determined by the peak of the
ZAP) ranged from 1.0 to 5.6 Hz, with a resonance strength ( Q) of
1.0-1.21. Some neurons acted as low-pass filters, with the largest
voltage response occurring at lowest input frequencies. Others
exhibited resonance at higher frequencies, acting as bandpass
filters with resonance frequencies as high as 5.6 Hz. In general,
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resonance frequency was correlated with steady-state input resis-
tance (r* = 0.45, p < 0.001) but not with resting membrane
potential (r* = 0.05, p = 0.1875) (Fig. 1C,D).

What might account for the heterogeneity in the intrinsic
properties of the mPFC layer V pyramidal neurons? One expla-
nation may be the long-range projection targets of the individual
neurons. In several cortical regions, including more caudal/dor-
sal aspects of mPFC, neurons that project subcortically to the
pons have distinct morphology and firing properties relative to
those that project across the corpus callosum to the contralateral
cortex (Wang and McCormick, 1993; Morishima and Kawaguchi,
2006; Hattox and Nelson, 2007; Otsuka and Kawaguchi, 2008;
Brown and Hestrin, 2009). This is of particular interest in the
context of mnemonic persistent activity because the mPFC pro-
jections subcortically to the pons drive activity necessary to facil-
itate learning in trace eyelid conditioning, which is likely to use
delay cell activity in mPFC to associate stimuli separated in time
(Kalmbach etal., 2009, 2010). To test whether the dynamic prop-
erties of layer V pyramidal neurons in the mPFC might correlate
with their long-range projection target, we infused vital retro-
grade tracers (Lumafluor beads) into either: (1) the contralateral
cortex or (2) the ipsilateral pons (Fig. 2A). In a subset of rats (n =
2), we compared the distribution of neurons that projected to
each target by infusing green fluorescent beads in the pons and
red fluorescent beads into the contralateral cortex in the same
animal. Neurons projecting to the contralateral cortex through
the corpus callosum (COM; red) were distributed throughout
both the superficial (II-1II) and deep (V-VI) layers. Neurons
projecting subcortically to the pons (CPn; green) were exclusively
in the deep layers (V=VI) of mPFC (Fig. 2 B). For the purposes of
this study, we focused exclusively on layer V projection neurons.
In layer V, the COM and CPn neurons were in close proximity to
one another (<20 um) (Fig. 2 B). However, we failed to detect
neurons labeled by both tracers, suggesting that, although they
overlapped spatially within the mPFC, the two neuronal popula-
tions were nevertheless distinct.

Next, we examined whether the layer V neurons in mPFC had
distinct intrinsic properties depending on their projection target.
CPn neurons had on average a lower steady-state Ry compared
with COM neurons (CPn, n = 38, 50.06 = 2.86 MQ); COM, n =
29,105.63 = 7.01 M{); Student’s unpaired f test, p < 0.001). CPn
neurons exhibited membrane resonance in response to a chirp
stimulus (fz = 3.81 £ 0.11 Hz, Q = 1.087 = 0.007), whereas
COM neurons were nonresonant (f = 1.01 = 0.08 Hz, Q =
1.015 = .009; Student’s unpaired ¢ test, p < 0.001) (Fig. 2C,D).
CPn and COM neurons were not significantly different in resting
membrane potential (COM, —68.9 = 0.8 mV; CPn, —67.3 * 0.3;
Student’s  test p = 0.06). Among CPn neurons, resonance fre-
quency was still correlated with steady-state input resistance, al-
beit more weakly (r? = 0.24, p < 0.05), but not the resting
membrane potential (r* = 0.13, p = 0.08). COM neurons exhib-
ited no correlation between resonance frequency and input resis-
tance or membrane potential (Ry and fy, 7> = 0.06, p = 0.42; Ry
and RMP, r* = 0.01, p < 0.72). Performing discriminant cluster
analysis using resting membrane potential, input resistance, and
resonance frequency (Fig. 2E,F) revealed that the two neuronal
populations were best distinguished by their resonance frequency
(F ratios from multivariate ANOVA: f, = 122.24, R = 2.43,
RMP = 0.02). In a subset of experiments, we recorded from
neurons that were not retrogradely labeled from injections in the
pons but were within 50 wm of labeled CPn neurons (n = 5). The
intrinsic properties of the unlabeled neurons varied. Some fit
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Figure 2.  Dynamics of mPFC neurons depend on their long-range projection targets. 4,
Schematic of dual infusion strategy. Retrograde beads were infused into contralateral mPFC
and/or the ipsilateral pyramidal tracts/pons. A1, Coronal slice, 300 wm thick, containing the
contralateral mPFCinfusion site. A2, Ipsilateral pyramidal tract infusion site in a 50 ,m coronal
section. B, Distribution of COM and CPn neurons. COM and CPn neurons are two nonoverlapping
populations. CPn neurons (green) form a band at the upper parts of layer V (LV). COM neurons
(red) are interspersed throughout layer V in close proximity to CPn neurons as well as in more
superficial layers. Scale bar, 50 wm. €, In response to a 15 s, 15 Hz chirp stimulus, CPn neurons
(green) resonate at a much higher frequency than COM neurons (red). D, A comparison of the
ZAP of COM versus CPn neurons. E, F, Overlay of the resonance profiles plotted against mem-
brane potential (E) and input resistance (F). Neurons were labeled by the pyramidal tract/
pontine infusion (green), neurons did not get labeled by the pontine pyramidal tract/pontine
infusion (gold), or COM neurons labeled from the contralateral infusion (red). For comparison,
unlabeled neurons from Figure 1, Cand D, are shown in gray. Cluster boundaries (solid lines)
were found using mean cluster analysis and represent the SD around each cluster.

within the cluster of COM neurons (3 of 5), one within the cluster
of CPn neurons (1 of 5), and one outside either cluster (1 of 5).
In other brain regions, neurons that project subcortically to
the pons are morphologically distinct from those that project
across the corpus callosum (Kasper et al., 1994a,b; Morishima
and Kawaguchi, 2006; Hattox and Nelson, 2007; Le Bé et al., 2007;
Otsuka and Kawaguchi, 2008). To test whether there were also
morphological differences of CPn and COM neurons in ventral
mPFC, our electrophysiological measurements were made with
Neurobiotin, permitting histological processing and subsequent
reconstruction (Fig. 3) (n = 5 each group). The somata of CPn
neurons were not significantly larger than COM neurons (soma
perimeters: CPn, 75.36 = 4.92 vs COM, 68.22 * 449 um, p =
0.2648; soma area: 330.04 * 31.68 vs 259.23 * 21.97 um?, p =
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Figure 3.  Representative morphologies of mPFC COM and CPn neurons. A, Representative
reconstructions from Neurobiotin filled and subsequently DAB processed identified COM (red)
and CPn (Green) neurons. B, C, Sholl analysis (grouped into 30 wm segments) illustrates the
distinct morphology of COM (n = 5) versus CPn (n = 5) neurons in the apical tuft region. D-F,
Dendritic lengths (D), surface area (E), and volume (F) from the two neuron types. *p < 0.05.

0.0741; n = 5 each group). Similar to dorsal PFC, most COM
neurons had a simpler dendritic tuft than CPn neurons, although
some were qualitatively similar to CPn neurons (Morishima and
Kawaguchi, 2006). The origin of the tuft had a tendency to be
more proximal to the soma in COM neurons (334 * 53 um) than
in CPn neurons (500.4 = 58 wm), but this difference was not
statistically significant (¢ test, p = 0.68). Sholl analysis revealed
that differences in the two neuron types were greater at the end of
the apical tuft (ANOVA, F = 30.06, p < 0.05). Additionally, the
total summed apical dendritic length (CPn, 8.58 = 0.66 mm;
COM, 4.05 = 0.77 mm; p < 0.05), surface area (CPu, 29.02 *
2.94 mm? COM, 11.533 * 3.29 mm?), and volume (CPn,
10.02 = 1.87 mm?; COM, 3.13 = 1.11 mm?; p < 0.05) of CPn
neurons were all significantly larger than COM neurons.

Distinct subthreshold properties of CPn and COM neurons
are dependent on differences in h-current

Neurons resonate as the result of a combination of inductive and
amplifying voltage-sensitive conductances active at rest (Hutcheon
and Yarom, 2000). Because CPn and COM neurons had unique
resonant properties (Fig. 2), we sought to further examine which
voltage sensitive conductances might account for their resonance
profiles. To perform more accurate comparisons between neu-
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Figure4.

slightly more depolarized than COM neurons, although not significantly. For the purpose of comparison, neurons were held at

rons, measurements were performed at the same membrane po-
tential. At —65 mV, CPn neurons had a lower steady-state input
resistance than COM neurons (Fig. 4) (CPn, 52.23 * 3.68 M();
COM, 109.93 = 5.20 M€); p < 0.05). The functional membrane
time constant of CPn neurons was significantly faster than COM
neurons (Fig. 4D) (CPn, 19.99 * 0.88 ms depolarizing, 19.36 =
0.88 ms hyperpolarizing; COM, 34.45 * 2.04 ms depolarizing,
33.55 * 1.94 ms hyperpolarizing). The f, and Ry of CPn and
COM neurons suggested that they may have differences in their
h-currents. In agreement with this, we found that CPn neurons
had a greater “voltage sag” in response to hyperpolarization (Fig.
4C) (CPn, 21.55 * 0.82%; COM, 3.89 = 0.68%; p < 0.001).
Another h-current sensitive measure is the slope of the rebound
potential plotted as a function of the steady-state voltage poten-
tial from a hyperpolarizing current step. In corroboration with
other h-current-sensitive measures, CPn neurons expressed a
greater rebound slope after release from hyperpolarization
than COM neurons (Fig. 4E) (CPn, —0.1807 = 0.007; COM,
—0.0773 = 0.014; p < 0.001). Some rebound was evident even
with very brief (1 ms) current injections used to measure the
functional membrane time constant (Fig. 4D). Differences in
h-current should affect subthreshold integration. To test this, we
injected «EPSCs into the soma. COM neurons displayed consid-
erably more temporal summation than CPn neurons (Fig. 4F)
(fifth EPSP/first EPSP; CPn, 2.12 = 0.09, n = 7; COM, 2.91 =
0.07,n=11; p <0.01).

To elucidate how voltage-sensitive conductances contribute
to the distinct properties of COM and CPn neurons, we measured
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both their dynamic (resonance frequency) and steady-state prop-
erties across a range of voltages (Fig. 5) (—60 to —80 mV). CPn
neurons had a lower input resistance, higher resonance fre-
quency, and higher resonance strength than COM neurons at all
these voltages. The dynamic responses of CPn neurons were volt-
age dependent. Both resonance frequency (Fig. 5C) and reso-
nance strength (Q: —80 mV, 1.07 = 0.02; =75 mV, 1.06 = 0.03;
—70mV, 1.14 = 0.03; —65 mV, 1.08 £ 0.01; —60 mV, 1.05 =
0.01) were lower at more depolarized potentials. COM neurons
exhibited little or no resonance, even at the most hyperpolarized
potentials. In both neuron types, input resistance was voltage
dependent (Fig. 5E).

The combination of resonance, sag, Ry, rebound slope, and
temporal summation suggested that h-currents might contribute
differently to the subthreshold properties of CPn and COM neu-
rons. To test this, we recorded from CPn and COM neurons and
bath applied the h-channel blocker ZD7288 (4-ethylphenyl-
amino-1,2-dimethyl-6-methylaminopyrimidinium chloride) (20
um) (Fig. 5A—F). Both CPn and COM neurons were significantly
hyperpolarized from their resting membrane potential in
ZD7288 (Fig. 5G) (p < 0.01; CPn, n = 8; COM, n = 7). The
functional membrane time constant of both CPn and COM neu-
rons from —65 mV were significantly increased by ZD7288 (Fig.
5F) (p<0.01;CPn,n = 8; COM, n = 7). Furthermore, both CPn
and COM neurons exhibited higher R across membrane volt-
ages with ZD7288 (Fig. 5E) ( p < 0.01; CPn, n = 8 COM, n = 7),
suggesting that h-currents contributed to the steady-state prop-
erties of both neuron types. Similar results were obtained with
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Figure 5. Differences in h-conductance contribute to distinct dynamic and steady-state
properties. A, B, COM (red) and CPn (green) neurons were given 155, 15 Hz chirp stimuli across
arange of membrane potentials (C; —80 to —60 mV) before and after bath application of 20
M ZD7288, eliminating membrane resonance in CPn neurons. Representative ZAPs at —70
mV. A, B, Steady-state properties were affected in both groups. D, Representative traces of a
single current step (—100 pA) in CPn (green) and COM (red) neurons before and after the
addition of ZD7288 (black). E, Input resistance measured as the slope of the linear fit from a
family of currentinjectionsin CPn (green) and COM (red) neurons before (open circles) and after
(filled circles) the addition of ZD7288. F, G, 207288 (filled circles) changes both the functional
membrane time constant at —65 mV (F) and the resting membrane potential (G) in both CPn
(green) and COM (red) neurons. *p << 0.05.

CPn neurons when slices were preincubated with 50 um ZD7288
and subsequently recorded from with 20 um ZD7288 in the pi-
pette (n = 7). Blocking h-currents abolished differences in the
dynamic responses of CPn and COM neurons. In ZD7288, reso-
nance in CPn was abolished across all membrane potentials (Fig.
5C) (—80to —60 mV; fr = 1.0; Q = 1.0). Thus, it appears that the
distinct static and dynamic properties of CPn and COM neurons
may be attributable (at least) to differences in their h-currents.
In addition to resonance caused by the h-current, neurons can
also exhibit resonance at more depolarized membrane potentials
driven by the m-current (Hu et al., 2002, 2007, 2009). The ratio-
nale for these experiments was to establish whether m-current or
h-current contributes to the resonance observed near resting
membrane. These experiments were intended to address which
currents contribute to resonance at rest, not the differences
between cell types. As such, they were performed on unlabeled
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mV, whereas resonance at —65 mV was unaffected. *p << 0.05.

neurons. To test whether mPFC neurons generally exhibited
m-resonance, we injected chirp stimuli at more depolarized volt-
age potentials (—60 to —15 mV) in the presence of sodium and
calcium channel blockers (TTX, 0.001 mm; Ni%*, 3 mm) in unla-
beled neurons (Fig. 6). In contrast to some previous work in
hippocampus (Hu et al., 2002, 2009), we did not observe much
resonance until very depolarized potentials (more than —35
mV). All mPFC neurons exhibited m-resonance at very depolar-
ized membrane potentials (at —35mV: f; = 2.87 = 0.95Hz; Q =
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of spikes elicited across a range of current injections (60 —300 pA). €, Ratio of the first ISI to the last ISI. D, Representative traces of the first action potential in COM and CPn neurons with sufficient
current to trigger four action potentials in 750 ms. Action potentials in CPn neurons were typically followed by a fast afterhyperpolarization and fast ADP. E-G, Threshold, rate of rise (max dv/dt), and
AP half-widths of COM and CPn neurons. H, COM neurons exhibit spike frequency adaptation, whereas CPn neurons exhibit spike acceleration. Representative traces of a 10 s current injection that
elicits 5 Hz firing frequency in the first second. /=M, Changes in firing frequency, max dv/dt, interspike interval, spike width, and threshold over the course of a 10 s current injection. *p << 0.05.

1.10 * 0.04) regardless of whether they were resonant at —65 mV
(Fig. 6A) (Kruskal-Wallis with Dunn’s multiple comparisons
test, p < 0.05 at —65 mV, p > 0.05 at all other potentials). We
then tested whether the m-current blocker XE991 [10,10-bis(4-
pyridinylmethyl)-9(10 H)-anthracenone] affected resonance near
the resting membrane potential, as well as at depolarized poten-
tials (—25 mV). The addition of the m-current blocker XE991
selectively reduced the f;; at a depolarized potential (Fig. 6C,D)
(=25 mV; n = 4; p < 0.05) but not hyperpolarized potentials
(n = 3). This further suggested that the distinct subthreshold
dynamic properties of CPn and COM neurons are the result of
differences in the h-current.

CPn and COM neurons express unique firing properties

Having established the projection-specific subthreshold dynamic
and integrative properties of CPn and COM neurons, we exam-
ined whether the neuron types were also distinct in their firing
properties. To test this, we adjusted holding current such that the
membrane potential was —65 mV and injected a range of depo-
larizing currents (60—-300 pA in 20 pA increments) for 750 ms. As
expected given their higher input resistance, COM neurons re-
quired less current to be driven to fire action potentials (Fig.

7A,B,H). The minimum amount of current necessary to elicit an
action potential with a 750 ms current injection in COM neurons
was 96 = 7 pA (n = 8), whereas the minimum amount in CPn
neurons was 191 = 20 pA (n = 7).

CPn and COM neurons were distinct in several AP character-
istics (Fig. 7D-G). CPn neurons exhibited a more hyperpolarized
AP threshold (CPn, —42.66 * 0.58 mV; COM, —38.58 *+ 1.99
mV; Student’s ¢ test, p < 0.05), faster rate of rise (max dv/dt CPn,
255.77 = 12.00 mV/ms; COM, 214.12 = 13.27 mV/ms; p < 0.05)
and shorter AP half-width (CPn, 1.31 = 0.26 ms; COM, 1.67 *=
0.42 ms; Student’s t test, p < 0.05). Application of ZD7288 did
not affect any of the action potential parameters measured (data
not shown).

Neurons in other cortical regions have distinct firing patterns
depending on their projection targets (Wang and McCormick,
1993; Morishima and Kawaguchi, 2006; Otsuka and Kawaguchi,
2008). This was also the case for CPn and COM neurons in
mPFC. Although COM neurons fired action potentials more
readily, they displayed spike adaptation that increased with
greater current injections (Fig. 7C). Both CPn and COM neurons
could fire a doublet [interspike interval (ISI) < 15 ms] with suf-
ficient current injection. However, in CPn neurons, the ISI fol-
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lowing this doublet was longer, whereas in COM neurons the ISIs
progressively increased (Fig. 7C). To examine spike adaptation
and acceleration more carefully, we injected current that resulted
in four action potentials over 750 ms (CPn, 209 *+ 22 pA; COM,
124 * 7 pA) for an extended duration (10 s) (Fig. 7H ). Although
both neuron types initially fired at the same rate (5.3 Hz), CPn
neurons progressively increased in firing frequency over time,
whereas COM neurons accommodated, firing slightly less (4.0
Hz). The acceleration in CPn neuron output occurred with no
significant change in max dv/dt, action potential threshold, or
spike widths (Fig. 7J-M).

Noradrenergic modulation of prefrontal cortical neurons
depends on their projection targets

Noradrenergic modulation of mPFC neurons through a2A re-
ceptors enhances working memory in rodents and monkey, an
effect occluded by reduction in the h-current (Wang et al., 2007).
Several studies have demonstrated that bath application of the a2
receptor agonist clonidine modulates the intrinsic properties of
layer V mPFC neurons (Carr et al., 2007; Barth et al., 2008). Given
the different contributions of h-current to COM versus CPn neu-
rons (Figs. 4, 5), we sought to examine whether the effects of
adrenergic modulation on mPFC neurons depended on their
long-range projection targets.

Adrenergic modulation of subthreshold properties was
greater in CPn neurons than COM neurons. Clonidine (100 um)
caused both COM and CPn neurons to hyperpolarize, but the
effect on CPn neurons was significantly larger (COM, —2.51 =
0.33 mV, n = 5, paired Student’s ¢ test, p < 0.05; CPn, —6.37 =
0.79 mV, n = 5, paired Student’s ¢ test, p < 0.05). With this
hyperpolarization, both neurons displayed a small but significant
increase in Ry (COM, 9.1 * 2.2%, n = 5, paired Student’s  test,
p < 0.05; CPn, 5.6 = 2.0%, n = 5, paired Student’s t test, p <
0.05). When compared at the same membrane potential (Fig. 8),
both neuron types increased in input resistance (Fig. 8A,B) (n =
5, Student’s paired ¢ test, p < 0.05). Notably, CPn neurons in-
creased significantly more than COM neurons (Fig. 8C) (CPn,
39.08 = 7.17%; COM, 17.57 £ 4.96%; Student’s t test, p < 0.05).
The sag ratio of CPn neurons (but not COM neurons) was sig-
nificantly reduced (Fig. 8 D). Interestingly, the subset of COM
neurons (two of five) that expressed some sag (>5%) were re-
duced in sag ratio. Adrenergic modulation significantly increased
the functional membrane time constant of CPn neurons (Fig.
8 E-G) (repeated-measures ANOVA, F = 21.741, Bonferroni’s
multiple comparisons; n = 6; p < 0.001). In COM neurons, the
functional membrane time constant was not significantly af-
fected (n = 5; repeated-measures ANOVA, F = 2.974, p = 0.07),
although the time constant from hyperpolarizing pulses did in-
crease somewhat (7.9 = 5.6%; n = 5).

Adrenergic modulation altered the dynamic properties of
CPn but not COM neurons. In the presence of clonidine, CPn
neurons became nonresonant ( fz, 3.7 = 0.3 to 1.0 Hz; Q, 1.15 =
0.02 to 1.02 £ 0.01; both n = 5; Student’s paired ¢ test, p < 0.05),
making them not significantly different from COM neurons (Fig.
8H,I). No effect of clonidine was observed on the impedance
profiles of COM neurons. Summation of aEPSPs was drastically
increased in CPn but not COM neurons (Fig. 8],K). In the pres-
ence of clonidine, current injections that previously produced a
10 mV depolarization in CPn neurons now summated suffi-
ciently to trigger an action potential (n = 4). In contrast in COM
neurons, a much smaller increase in «EPSP occurred, never with
an action potential (n = 5). To compare changes in summation,
we reduced the initial current amplitude to produce an equiva-
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lent 10 mV depolarization. Under these conditions, temporal
summation in CPn neurons increased (21.91 *= 4.17%; n = 5;
paired Student’s  test, p < 0.01). Although temporal summation
in COM neurons did increase slightly, this increase was not sig-
nificant (5.26 * 2.00% increase; n = 5; paired Student’s ¢ test, p =
0.058) and was significantly less than CPn neurons (Student’s ¢
test, p < 0.01).

Because adrenergic modulation increased the likelihood of
summed «EPSPs producing an action potential, we further ex-
amined the effect of clonidine on neuronal excitability. To test
this, we examined whether clonidine also increased the number
of action potentials from a step current depolarization (Fig. 9). In
response to the same current depolarization that had triggered
four action potentials before clonidine, both neurons fired signif-
icantly more action potentials, although the effect in CPn neu-
rons was greater (COM, 6.4 = 0.24 spikes, n = 5, Student’s paired
t test, p < 0.05; CPn, 9.4 = 0.68 spikes, n = 5, Student’s paired ¢
test, p < 0.05). AP threshold was decreased in both neuron types
(Fig. 9C) (CPn, —2.69 * 0.23 mV; COM, —3.99 * 0.16 mV;
Student’s paired t test, p < 0.05). The AP amplitude (threshold to
peak) was reduced in CPn neurons but not COM neurons (Fig.
9D) (Student’s paired t test, p << 0.05). The AP rate of rise and the
AP half-width were not significantly changed (Fig. 9E,F). The
number of action potentials elicited with depolarization in-
creased in clonidine for both neuron types, with shorter ISIs (Fig.
9G). After the initial ISI, CPn neurons continued to exhibit a
small decrease in the ISI, whereas COM neurons did not.

Cholinergic modulation of prefrontal cortical neurons
depends on their projection targets

Increases in acetylcholine occur in the PFC during cue detection
and working memory-like tasks (Parikh et al., 2007). Similar to
the activation of a2-adrenergic receptors, modulation via mus-
carinic receptors in PFC enhances working memory task perfor-
mance (Herremans et al., 1997; Wall et al., 2001; Chudasama et
al., 2004). The mechanism(s) underlying this enhancement re-
main unclear. One possible target may be the h-current, because
muscarinic modulation reduces the dynamic response of ento-
rhinal grid cells (Heys et al., 2010). Therefore, we tested whether
the subthreshold properties of mPFC neurons are modulated by
acetylcholine as well.

First, we examined changes in the intrinsic properties with
bath application of carbachol (CCh) (20 uMm). During wash-in of
CCh, both neuron types showed a transient decrease in steady-
state input resistance (measured from a single hyperpolarizing 50
pA step: COM, —15.15 * 3.73%, n = 9, Student’s paired  test,
p < 0.05; CPn, —28.89 = 3.68%, n = 12, Student’s paired  test,
p < 0.01). In conjunction with this decrease in input resistance,
both neuron types hyperpolarized slightly, although in COM
neurons this was not significant (COM, —2.17 mV = 1.05 mV,
n =9, Student’s paired f test, p < 0.05; CPn, —3.15 £ 0.71 mV,
n = 12, Student’s paired ¢ test, p = 0.07). Within minutes after
this hyperpolarization and decrease in Ry, both neurons depo-
larized such that there was no significant difference in the resting
membrane potential compared with control conditions (COM,
—0.15 * 1.22mV,n =9, p = 0.91, Student’s paired ¢ test; CPn,
+1.25 = 0.67, n = 12, p = 0.09, Student’s paired ¢ test).

After the transient effect of CCh subsided, cholinergic modu-
lation did not consistently modify the steady-state properties of
either neuron type (Fig. 10). Both Ry (as measured from a family
of current injections) and the effective membrane time constant
measured at —65 mV were not significantly different from con-
trol (Fig. 10A-D) (CPn,n = 7,p = 0.52; COM, n = 11, p = 0.54,
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Student’s paired ¢ test). Although the
steady-state properties of the neurons
were unchanged, there was a small but sig-
nificant change in the response of CPn
neurons to dynamic stimuli with cholin-
ergic modulation (Fig. 10). With CCh, the
voltage sag in response to hyperpolarizing
steps was significantly reduced (Fig. 10C)
(pre, 16.3 £ 0.3%; in CCh, 12.6 = 0.2%;
n = 7; Student’s ¢ test, p < 0.01). Simi-
larly, there was a small but significant re-
duction in the resonance frequency and
resonance strength in the presence of CCh
(Fig. 10E,F) (Q at —65 mV, 1.13 = 0.03
to 1.06 = 0.02; n = 10; Student’s paired ¢
test, p < 0.05). This shift in the resonance
frequency reversed with washout of CCh
(Fig. 10G) (n = 6) and was blocked by the
muscarinic antagonist pirenzepine (data
not shown) (n = 3). Next, we tested the
effects of CCh on resonance and steady-
state input resistance from —85 to —60
mV in both neuron types (Fig. 10H-]).
Across a range of membrane potentials,
steady-state input resistance increased
slightly in both neuron types, but this
change was not significant. In COM neu-
rons, we observed no change in the reso-
nance frequency, whereas in CPn neurons,
CCh changed resonance in a voltage-
dependent manner. Significant reductions
in fi (Fig. 10I) occurred at —60 through
—75 mV but not at more hyperpolarized
potentials. Similarly, CCh-induced changes
in resonance strength occurred only from
—70 to —65 mV. Together, these data sug-
gested that CCh induced a subtle shift in the
dynamic but not the steady-state responses
of CPn neurons.

Activity-dependent intrinsic

persistent firing in layer V neurons

is projection-target dependent
Cholinergic modulation altered the sub-
threshold dynamic responses of CPn but
not COM neurons (Fig. 10). Next, we
sought to determine whether cholinergic
modulation altered the response of the
neurons to suprathreshold stimulation.
Cholinergic modulation enables neurons
in PFC and other brain regions to fire
persistently in response to transient su-
prathreshold stimulation (Andrade, 1991;
Haj-Dahmane and Andrade, 1996, 1998,
1999; Egorov et al., 2002, 2006; Fransén et
al., 2006; Gulledge et al., 2009; Zhang and
Seguela, 2010). In many cases, this per-
sistent activity is hypothesized to occur
independent of network reverberations
because it is sustained in the present of
synaptic blockers. Such single-neuron
persistent activity has been proposed to
increase the robustness of the mnemonic
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current injection and triggered repeatedly

124 — with subsequent depolarization (data not
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escent at the end of the current injection
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COM and CPn neurons. G, Changes in the interspike interval of both COM and CPn neurons. *p << 0.05 (significant difference  with larger depolarizing current injections

between COM and CPN in control conditions); **p << 0.05 (significant difference between CPn contr
p < 0.05 (significant difference between COM control and COM clonidine).

activity underlying working memory (Wang, 2001). However,
whether cholinergic modulation enables neurons to display
this activity-dependent single-neuron persistent firing de-
pends on their long-range projection targets remains
uncharacterized.

To test whether mPFC neurons were capable of single-cell
persistent activity, we injected the amount of current sufficient to
trigger four action potentials in 750 ms for an extended duration
(10 s; 1 = 24). In the absence of modulators, both COM and CPn
neurons were quiescent after removal of the current injection,
even when two times (1 = 19) and three times (n = 14) this
depolarizing current was injected (Fig. 11 A, B). In the presence of
the CCh, however, CPn neurons became persistently active be-
yond the depolarizing current injection (Fig. 11 B). This persis-
tent activity could be reversed with a large hyperpolarizing

ol and CPn clonidine); triangle, (Fig. 11A).
As was the case in the absence of mod-
ulators, long current injections in CPn but
not COM neurons produced an acceleration in firing frequency
over time (two-factor ANOVA with repeated measures; CPn,
Floes) = 5.16, p < 0.05; COM, Frg99) = 0.56, p = 0.82) (Fig.
11 D). Furthermore, spikes in COM neurons were attenuated in
amplitude and rate of rise with CCh. Although CCh increased the
excitability of both COM and CPn neurons, changes in several AP
parameters suggested a decrease in the ability of the neurons to
elicit spikes (Fig. 11 E-H ). In both CPn and COM neurons, the
AP threshold increased (CPn, F, ;) = 22.108, p < 0.005; COM,
F111) = 5.94, p < 0.05) (Fig. 11E), the AP rate of rise decreased
(CPn, F, ) = 31.24, p < 0.001; COM, F,, ,,, = 19.89, p < 0.001)
(Fig. 11 F), the AP amplitude decreased (CPn, F(, ;) = 6.57, p <
0.05; COM, F, ;,, = 30.17, p < 0.001) (Fig. 11H), and the AP
width increased (CPn, F(, ;, = 44.49, p < 0.001; COM, F, ,,, =
26.35, p < 0.001) (Fig. 11G). Together, these CCh-induced
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changes appeared unlikely to be responsi- A cpn

ble for the persistent activity. However, — Control = Control 1805
the effect of CCh on AP rate of rise, AP = +CCh = +CCh 160

height, and AP width were all significantly

e
greater in COM neurons than CPn neu- r'—' % 120

rons (two-factor mixed ANOVA; AP rate

of rise, F 15 = 10.81, p < 0.005; AP =
height, F, 5 = 30.36, p < 0.001; AP
width, F(; 14y = 60.35, p < 0.001). The fact
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only one COM neuron that fired persis-
tently once did so with subsequent test in-
jections (1 of 4 tested). In summary, CPn

Figure 10.  Cholinergic modulation of subthreshold properties in mPFC neurons. A, Representative traces current injections in COM
(red) and CPn (green) neurons. Overlays are with the addition of 20 wum the cholinergic agonist CCh (gray). B-D, Changes in steady-state

neurons still had a greater propensity to input resistance (B), sag ratio (€), and membrane time constant (D) elicited by CCh. E~G, CCh reduced the resonance frequency of CPn
fire than COM neurons, even when the  neyronsinareversible manner. H, 1, Inputresistance (H) and resonance frequency (/) before (open circles) and in the presence of 20 um (Ch
number of action potentials triggering (filled circles) in both COM (red) and CPn (green) neurons at holding potentials from — 85 to —60 mV. *p << 0.05.

persistently activity was the same.

Persistent activity is hypothesized to be
driven by a calcium activated nonselective cation (CAN) current
(Haj-Dahmane and Andrade, 1999; Egorov et al., 2002, 2006;
Fransén et al., 2006; Zhang and Seguela, 2010). This CAN cur-
rent, which is present in layer V pyramidal neurons in the PFC
(Haj-Dahmane and Andrade, 1999), can be revealed by a brief

depolarizing current injection, which results in a large afterdepo-
larizing potential (ADP). Therefore, we compared the size of the
ADP of COM and CPn neurons (Fig. 12D, E). In control condi-
tions, both neuron types exhibited a small slow ADP of similar
magnitude (COM, 0.77 £ 0.1 mV, n = 5; CPn, 0.71 = 0.13 mV,
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neurons are depolarized for 10 s with one, two, and three times the amount of current sufficient to drive 5 Hz firing frequency for
the initial second. With the addition of the cholinergic agonist (CCh, 20 wm), COM neurons exhibit a slight afterdepolarizing
potential but no persistent activity. B, CPn neurons depolarized in the same manner fire persistently only with the addition of CCh
with one time the current injection. C, A greater proportion of CPn (green) neurons could be triggered to fire persistently in the
presence of CCh by 10 s depolarization than COM neurons (red). D-1, Spiking characteristics of COM (red) and CPn (green) neurons
before (open circles) and with the addition of 20 m CCh (filled circles). *p << 0.05 (significant difference between control and CCh
condition); #p < 0.05 (significant difference in the effect of CCh on COM vs CPn neurons).

n = 6). However, with the application of CCh, the size of the ADP

was increased sixfold in CPn neurons but only slightly in most
COM neurons (with CCh: COM, 2.75 * 1.24 mV; CPn, 5.98 *+
1.05 mV). This modulation was specific for CCh and indepen-
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dent of h-channels, because the presence
of clonidine or ZD7288 did not induce an
ADP in either neuron type (data not
shown), nor did clonidine trigger persis-
tent activity (0 of 4 COM neurons and 0 of
2 CPn neurons) (data not shown).

Discussion

Here we show that, within rat mPFC,
there is considerable heterogeneity in the
intrinsic properties of layer V pyramidal
neurons in the absence of modulation.
Neurons that project to the contralateral
cortex (COM) are nonresonant and have
a high input resistance, slow membrane
time constant, and high temporal sum-
mation. Neurons that project subcorti-
cally to the pons (CPn) resonate within
the theta frequency range (3—6 Hz) and
have a low input resistance, fast mem-
brane time constant, and low temporal
summation. h-current blockade with
ZD7288 eliminates the distinct subthresh-
old properties of COM and CPn neurons.
COM and CPn neurons also have unique
suprathreshold properties independent of
h-currents. As a result of their distinct in-
trinsic properties, adrenergic and cholin-
ergic modulation does not affect COM
and CPn neurons equally. Both muscarinic
and o2-adrenergic modulation changed the
dynamic properties of CPn but not COM
neurons. Furthermore, in response to mus-
carinic modulation, CPn neurons had a
much greater propensity toward single-cell
persistent activity than COM neurons.

Pyramidal neurons with different
long-range projection targets have been
shown to have distinct morphology and
physiology in several neocortical regions
(Wang and McCormick, 1993; Kasper et
al., 1994a,b; Christophe et al., 2005; Mol-
nar and Cheung, 2006; Morishima and
Kawaguchi, 2006; Hattox and Nelson,
2007; Le Bé et al., 2007; Otsuka and
Kawaguchi, 2008; Brown and Hestrin,
2009). The findings of this study expand
this pattern to the rostroventral rat mPFC,
which is known to contribute to working
memory-like tasks, pattern recognition,
motor preparation, and fear acquisition/
extinction in these animals (Dalley et al.,
2004; Burgos-Robles et al., 2007; Fujisawa
et al., 2008).

Although differences in the firing prop-
erties or their interconnectivity have been
the focus of previous studies of projection
neurons, in mPFC their subthreshold in-
trinsic properties and responses to dy-
namic stimuli are distinct. COM neurons

act as low-pass filters; they do not resonate in response to chirp
stimuli (Figs. 2, 5). In contrast, CPn neurons act as bandpass
filters; they resonate preferentially in the theta frequency range
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trains. A, CPn neurons are driven to fire 5, 10, or 15 action potentials with T ms, 20 Hz trains of
depolarizing current from either —65 or —60 mV. In the presence of 20 m CCh, these trains
are sufficient to cause CPn neurons to persistently fire. B, COM neurons cannot be driven to fire
persistently in the presence of CCh even with 50 APs delivered in the same manner. C, Counts of
COM (red) and CPn (green) neurons that fire persistently using trains of spikes. D, E, In both COM
(light red, inset) and CPn (light green, inset) neurons, a 1 nA, 10 ms depolarizing current
injection does result in a small (0—1.5 mV) ADP. With the addition of 20 pm CCh, most COM
neurons (4 of 5) exhibit a slight increase in the ADP (dark red, inset). In 1 of 5 COM neurons, a
large ADP occurred with CCh (arrow). In CPn neurons (dark green, inset), a much larger ADP is
elicited in the presence of CCh.

(3—-6 Hz). During rapid eye movement sleep and exploratory
behavior, the hippocampus entrains mPFC in the theta frequency
range (Jones and Wilson, 2005; Siapas et al., 2005). Correlation of
activity in the theta frequency range between hippocampus and
PEC is associated with learning consolidation and is impaired in
a mouse model of schizophrenia (Paz et al., 2008; Sigurdsson et
al.,, 2010). Hippocampal afferents from CAl and subiculum
project to mPFC, in which they make monosynaptic connections
to pyramidal neurons (Jay and Witter, 1991; Verwer et al., 1997;
Thierry et al., 2000; Delatour and Witter, 2002; Hoover and
Vertes, 2007). Whether hippocampal afferents into PFC directly
synapse on CPn and/or COM neurons is unknown. Nevertheless,
the filtering properties of CPn neurons suggest they may be more
sensitive to theta entrainment.

Differences in h-currents may account for subthreshold
differences between neuron types

Measured somatically, the subthreshold responses of CPn and
COM neurons suggested that they express different h-currents.
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CPn neurons have a faster membrane time constant and lower
input resistance than COM neurons. CPn neurons also exhibited
more resonance, voltage sag, and rebound and less «EPSP summa-
tion. Pharmacological blockade of h-currents with ZD7288 abol-
ishes differences in these parameters (Fig. 5). Importantly, ZD7288
did have a significant effect on the input resistance and membrane
time constant of COM neurons (Fig. 5D-G). These data suggest that,
although COM neurons do not express many of the dynamic prop-
erties typical of h-currents that have been described in other neurons
(Hutcheon et al., 1996; Hu et al., 2002; Ulrich, 2002; Nolan et al.,
2004; Wang et al., 2006; Narayanan and Johnston, 2007; Zemankov-
ics et al., 2010), they nevertheless do express h-current.

The contribution of h-currents to the dynamic properties of
COM and CPn neurons may be distinct for several reasons. Prop-
erties of the h-currents COM and CPn neurons may be distinct.
The simplest interpretation of these data is that the perisomatic
h-currents are sufficient in magnitude in CPn neurons to cause
them to resonate, whereas perisomatic h-currents in COM neu-
rons are not. However, the effect of the h-current blocker ZD7288
on the input resistance and membrane potential of CPn and
COM neurons was similar. Differences in the h-current may not
be solely in magnitude but rather its composition. h-currents
comprise different HCN subunits (Santoro et al., 2000; Chen et
al,, 2001; Ulens and Tytgat, 2001). All four HCN1-HCN4 sub-
units are expressed in mPFC, although cortical pyramidal neu-
rons tend to primarily express HCN1 and HCN2 (Notomi and
Shigemoto, 2004; Day et al., 2005). Sensitivity to ZD7288, gating
kinetics, and voltage dependence of heterologously expressed
h-channels vary depending on subunit composition (Santoro et
al., 2000; Chen et al., 2001; Ulens and Tytgat, 2001; Cheng et al.,
2007). Projection-specific expression of h-currents reported in
other cortical regions have equivalent HCN1 and HCN2 mRNA
levels (Christophe et al., 2005), suggesting that h-currents in COM
and CPn neurons may be distinct as a result of posttranslational
modifications. Finally, the differences in the dynamic properties of
COM and CPn neurons measured somatically may be attributable
to the distribution of h-currents along dendrites. It is important to
note that, in this study, all of our recordings were somatic. h-currents
are typically dendritically enriched in pyramidal neurons (Magee,
1998; Williams and Stuart, 2000; Berger et al., 2001, 2003; Lorincz et
al.,, 2002; Kole et al., 2006). Furthermore, dynamic measurements
such as resonance are highly sensitive to attenuation along dendrites
(Narayanan and Johnston, 2008; Williams and Mitchell, 2008). As
such, we cannot exclude the possibility that the differences in the
dynamic properties of COM and CPn neurons that we observed may
be limited to the perisomatic region. The dendritic distribution of
h-channels in these different projection neurons remains an impor-
tant question for future studies.

Efferent-dependent neuromodulation

Neuromodulation in the PFC contributes to its changes in neural
activity during learning and memory (Wang et al., 2007; Santini
et al., 2008; Sidiropoulou et al., 2009). However, to understand
the effects of neuromodulators on PFC function, its anatomical
connections with other brain regions must be taken into account.
Enhanced mnemonic persistent activity during the delay period
of working memory tasks may be the result of the recruitment of
specific populations of projection neurons.

Noradrenergic modulation through a2A receptors enhances
delay activity in PFC and working memory task performance
(Wang et al., 2007). This modulation is occluded by infusion of
low concentrations of ZD7288 in the prefrontal cortex. In vitro,
adrenergic modulation has been shown to enhance both somatic



Dembrow et al. ® Projection-Specific Neuromodulation of mPFC Neurons

and dendritic excitability (Carr et al., 2007; Barth et al., 2008) of
PFC neurons. Neuromodulation does not affect all layer V pyra-
midal neurons equally. The subthreshold responses to dynamic
stimuli were changed in CPn but not COM neurons. Further-
more, the excitability of CPn neurons was increased significantly
more than COM neurons.

The ability of cholinergic modulation to make neurons fire
persistently was also dependent on their projection target. CPn
neurons were more likely to fire persistently than COM neurons.
This persistent activity was maintained in the presence of synap-
tic blockers, indicating that it functions independently of any
network reverberations. Thus, it appears that neurons projecting
subcortically to the pons can be more readily switched into a
“persistent” mode, whereas intracortically projecting neurons
have a lower propensity to do so. Of course, we cannot exclude
the possibility that more intense cholinergic activation or other
neuromodulators may be able to drive COM neurons to fire
persistently.

In summary, the differing integrative properties of COM and
CPn neurons suggest that they process incoming information in
very distinct manners and thus may represent parallel processing
of information within the PFC. The distinct responses of COM
and CPn neurons to neuromodulation suggest that they may
subserve disparate functions. COM neurons transfer informa-
tion intracortically between the two hemispheres. The emphasis
of this information transfer may be on reliability, making COM
neurons integrate and fire faithfully with very little subthreshold
filtering of inputs. Although noradrenergic and ACh modulation
cause the excitability of COM neurons to increase slightly, they
do not fire persistently beyond the depolarizing inputs they re-
ceive, thus minimizing the risk of runaway excitation in PFC. In
contrast, CPn neurons may act as gates for transferring informa-
tion. The pons generally serves as a relay station by which cortical
information is transferred to the cerebellum (Brodal and Bjaalie,
1992). For example, during trace eyelid conditioning, activity in
the pons is both necessary and sufficient to facilitate the associa-
tion between conditioned and unconditioned stimuli that occur
at time intervals too distant for the cerebellum to manage alone
(Kalmbach et al., 2009, 2010). In the absence of neuromodula-
tion, CPn neurons integrate inputs with a great deal of subthresh-
old filtering. However, with the addition of neuromodulators,
the integration of CPn neurons becomes similar to COM neu-
rons. Furthermore, cholinergic modulation makes them able to
fire persistently beyond their stimulus input, making them well
poised to contribute to mnemonic persistent activity that occurs
during the delay period of working memory-like tasks.
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