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Abstract:
Background and aim: The current study utilized a carbon tetrachloride (CCl4)-induced liver fibrosis model to measure levels of the 
MMP9-mediated collagen type III degradation fragment CO3-610 (site of cleavage: KNGETGPQGP), during disease progression and 
regression, and to investigate a potential prognostic role of the biomarker.
Materials and methods: 72 female Sprague-Dawley rats aged 6 months old were injected with CCl4 twice a week over different periods 
of time to induce varying degrees of liver fibrosis. After 4, 6 and 8 weeks of treatment, administration of CCl4 was stopped. The 6- and 
8-week treatment groups were left to regress for a further 6 or 12 weeks at which point they were sacrificed and livers removed and 
sectioned. Liver fibrosis was quantified using Visiopharm software to analyse Sirius red-stained sections. Serum levels of CO3-610 were 
measured in all animals using an ELISA assay as described by Barascuk et al.1

Results: Quantitative histology revealed total collagen deposition in the liver increased as fibrosis progressed. In animals treated with 
CCl4 for 4 weeks, collagen comprised on average 4.94% of the total tissue in liver sections, while after 6 weeks the mean was 8.25%, and 
after 8 weeks, 9.11%. During the regression phase, the total collagen deposition gradually decreased to a mean of 6.9% and 5.09% for 
animals regressing 6 and 12  weeks respectively after 6  weeks treatment, and 6.27% for animals regressed 12  weeks after 8  weeks 
treatment. CO3-610 values increased progressively in rats treated for 4 weeks (by a mean of 55.0 ng/ml), 6 weeks (mean 61.1 ng/ml) and 
8  weeks (mean 70.2  ng/ml). During the regression phase, CO3-610 values rapidly decreased by a mean of 28.9  ng/ml at 6  weeks 
and 21.6 ng/ml at 12 weeks in animals previously treated for 6 weeks, and by a mean of 19.52 ng/ml in animals treated for 8 weeks and 
regressed for 12 weeks. CO3-610 levels were statistically significantly correlated with total collagen during disease progression (r = 0.5701, 
P , 0.0001). No statistically significant correlation was observed during regression (r = 0.2081, P = 0.1138).
Conclusion: Levels of the MMP-9 generated fragment of collagen type III, CO3-610, correlated with the degree of liver fibrosis in rats dur-
ing the progression phase, but were not correlated with total collagen levels during regression. CO3-610 seems to be produced only under the 
CCL4 stimulus, and signifies CO3-610 as a potential marker of progression rather than regression. The corresponding steep elevations in levels 
of CO3-610 total collagen and collagen type III during liver fibrosis progression underline a potential prognostic capacity of the biomarker.
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Introduction
In liver fibrosis, the extensive formation within the 
organ of scars composed mainly of collagen and 
proteoglycans,1 which are both extracellular matrix 
(ECM) proteins, leads to chronic hepatic damage.2 
Under normal physiological conditions, the ECM is 
degraded and reformed in a balanced way to maintain 
healthy tissue, but in fibrotic diseases, cancer and 
inflammation, an imbalance occurs in which ECM 
formation, particularly with collagen types I, III 
and IV, outstrips degradation. In fibrotic livers, for 
example, collagen levels have been found to be 6 times 
higher than in a healthy organ.2 ECM constituents 
accumulate as a result of the interaction between dif-
ferent receptors and mainly through integrins and lip-
ids, and in the process activate hematopoietic stem 
cells (HSC), leading to fibrosis.3,4 Hepatic myofibro-
blasts (MF) also contribute to collagen deposition, 
mainly of collagen type I and III. However MFs seem 
to posses distinct and different properties in response 
to apoptotic stimuli and injury5,6 than HSC. Both MF 
and HSC generate metalloproteinases (MMPs) and 
tissue inhibitor of metalloproteinase I (TIMP-1) which 
can restrain collagenases and have anti-apoptotic 
activity on both MF and HSC. In addition, MF seem 
to play a role in liver regeneration.7 The end result of 
the collective MF and HSC action during sustained 
chronic injury is the deposition of increased amounts 
of scar tissue which in turn upsets the architecture, 
development and ultimately the function of liver.8

Collagens and other ECM molecules are degraded 
by MMPs, the expression of which may be increased 
in local, pathologically affected areas.9 MMP degra-
dation of the ECM proteins generates specific cleav-
age fragments which in turn produce new epitopes. 
These neoepitopes may have potential utility as bio-
markers of unbalanced ECM remodelling in a specific 
organ or in a specific disease. Collagen type III has 
been shown to be of particular value as a marker of 
collagen turnover10 with significance not only for 
liver fibrosis but other fibrosis-related diseases.11 
Specifically, the N terminal propeptide (PIINP) of 
collagen type III has been proposed as a potentially 
valuable marker in liver fibrogenesis.12

Histopathological examination of biopsies is the 
traditional gold standard for diagnosing and staging 
fibrosis.13 Biopsy, however, has significant drawbacks. 

It is invasive and prone to sampling error due to 
variation in the length and size of the tissue specimen, 
which subsequently leads to low reproducibility and 
high intra-patient variation. Neoepitope-based bio-
chemical markers found in urine and serum are 
receiving increased attention due to their promising 
diagnostic and prognostic potential.9 In slowly pro-
gressing diseases, such as osteoporosis and osteoar-
thritis, bone resorption and cartilage degradation 
markers in particular have been studied extensively.14

The aim of the current study was to measure levels 
of the MMP9-generated collagen type III degradation 
fragment, CO3-610, described by Barascuk,1,15 during 
both progression and regression of liver fibrosis and 
to investigate a potential prognostic role of the bio-
marker. We used a reversible model involving initial 
administration of carbon tetrachloride (CCl4), a hepa-
totoxin that causes acute liver injury and, when given 
repetitively at a low dose, induces liver fibrosis. 
This reversible model has been widely used in recent 
years to investigate liver regeneration after injury. 
A key benefit of the above model is its standardisation 
and increased reproducibility as it is not relying on an 
invasive surgical procedure such as the bile duct liga-
tion model.

Materials and Methods
Animals
125 female Sprague-Dawley rats aged 6  months 
began the experiment and were housed in standard 
type III H cages with bedding and nest material at the 
animal research facilities at Nordic Bioscience, 
Beijing, China. The animals were kept in a 12-hour 
light/dark cycle, at a temperature of 22 °C ± 2 °C with 
relative humidity 50% ± 20%, and ventilated with fil-
tered non-recycled air. Their diet consisted of stan-
dard food pellets and MilliQ water ad libitum for the 
entire test period. Experiments were performed 
according to the European Standard for Good Clini-
cal Practice (2008/561-1450).

Study design
In 97 Sprague-Dawley rats, liver fibrosis was induced 
by i.p. administration twice a week of 0.5 mL/kg of a 
solution containing equal parts of CCl4 and intralipid. 
A further 28 animals were injected with intralipid 
alone (0.5  mL/kg, twice a week) and served as 
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controls. The animals were divided into 4 groups: the 
vehicle group (n = 28); a group in which CCl4 treat-
ment was continued until 8 weeks (n = 53); a third 
group in which CCl4 treatment was stopped after 
6 weeks (n = 29) and the effects of regression were 
assessed 6 and 12 weeks later; and a final group in 
which CCl4 treatment was stopped after 8  weeks 
(n = 15) and animals regressed for 12 weeks. On com-
pletion of each study period, and following 14 hours 
of fasting, the animals were asphyxiated by carbon 
dioxide and sacrificed by exsanguinations.

Urine and serum sampling
Urine and serum samples were taken from animals 
which had fasted for at least the previous 14  hours 
overnight. Samples were collected at baseline and on 
the day of termination. Blood samples were taken 
from the retro-orbital sinus of the animals under light 
CO2/O2 anesthesia. Blood was collected in plain tubes 
and left at room temperature for 30 minutes to clot, 
then centrifuged at 1500 g for 10 minutes. All clot-free 
liquid was transferred to a new Eppendorf tube and 
centrifuged at 1500 g for 10 minutes. Serum was then 
transferred to a clean Eppendorf. Urine and serum 
were stored at −80 °C in labeled Eppendorf tubes.

Tissue handling
Immediately after termination, livers were carefully 
removed, weighed, fixed in 4% formaldehyde for a 
minimum of 24 hours, cut into slices and embedded in 
paraffin. 5 µm slices were cut, mounted on glass slides 
and stained with a combination of Sirius red and Alcian 
blue, according to the manufacturer’s instructions. 
A portion of each liver and lung was excised and stored 
at −80 °C for the extraction of protein.

Immunohistochemistry
The stained liver and lung samples were retained for an 
hour at 60 °C, then deparaffinized in toluene and rinsed 
twice in 99% ethanol for 5 minutes each. Samples were 
then blocked in a peroxidase block (1.05% H2O2 in 
99% ethanol) for 10 minutes and rehydrated in 96% 
ethanol, then 70% ethanol, and tap water. This was fol-
lowed by two cycles of immersion in a citrate buffer 
(pH 6) and heating for 5 minutes each time at 800 W in 
a microwave, after which the material was left to cool 
to room temperature. The samples were then washed in 

0.1% Triton X-100 (Sigma Aldrich, T8787, St. Louis, 
Missouri, USA) twice for 5 minutes each and incu-
bated for half an hour with 150–200  µL antibodies 
against collagen III (ab6310, Abcam, UK) diluted in 
1% bovine serum albumin. Samples were again 
washed in 0.1% Triton X-100 (2  ×  5  minutes) and 
incubated with 150–200  µL of Super Enhancer 
(BioGener) for 20 minutes. This was followed by a fur-
ther washing step in 0.1% Triton X-100 (2 × 5 minutes), 
after which samples were left to incubate for half an 
hour with 150–200  µL SS Label (polymer HRP—
BioGener). Samples were subjected to further washing 
with Triton X-100 (2 × 5 minutes) and incubation under 
a cover in AEC (100  mL MilliQ water, 100  mL 
sodium-acetate buffer, 10 mL AEC stock, and 100 µL 
30% H2O2) followed by rinsing in tap water for 
5 minutes. Samples were finally counterstained with 
Mayer’s haematoxylin for 1 minute, rinsed in tap water 
for another 5 minutes, mounted with Kaiser’s glycer-
ine jelly, covered and left to dry. All the incubations 
were performed in humid chambers.

Protein extractions
Liver tissue was pulverized in liquid nitrogen in a steel 
mortar. Tissue samples were transferred into a 1.5 ml 
Eppendorf tube and left shaking overnight at 4 °C in a 
0.5 M acetic acid solution containing a protease inhib-
itor cocktail (Roche Diagnostics, Basel, Switzerland). 
The samples were then sonicated using 5 pulses at 
60% amplitude (U50 control, IKA Labortechnik, 
Staufen, Germany), left for 2 hours gently shaking at 
4 °C and centrifuged for 5 minutes at 13,000 rpm. The 
supernatant was carefully removed, transferred to a 
new labelled Eppendorf tube and stored at −80 °C.

Densitometry
Densitometry measurements were performed using 
UN-SCAN-IT Version 6.1 from Silk Scientific (Orem, 
Utah 84059, USA), according to the manufacturer’s 
guidelines.

Histology image analysis
Histology sections stained with Sirius Red were anal-
ysed using Visiopharm software Version 3.2.8.0 
(Visiopharm, Hørsholm, Denmark). Images were 
acquired using Pixelink PL-A623C microscope digi-
tal camera (Pixelink, Ottawa, Canada).
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SDS PAGE and Western blots
20 µg of tissue extract was mixed with loading buffer 
(Invitrogen LDS 4x, NP0007, Carlsbad, California, 
USA), containing reducing agent (NP0004, Invitrogen). 
Samples were loaded into 4%–12% Bis-Tris gradient 
gel (NP0332BOX, Invitrogen) and subjected to an 
electric current of 200 V for 52 minutes. Proteins were 
transferred onto a nitrocellulose membrane using the 
i-Blot transfer system (Invitrogen) and blocked with 
5% skimmed milk in Tris buffered saline (TTBS) over-
night at 4 °C. Beta-Actin antibody (AbCam ab8229, 
Cambridge, UK) was used as a loading control, 
collagen III (Abcam ab6310, UK) and CO3-610.

Elisa co3-610 serum assay
Coating and assay buffers were equilibrated to room 
temperature. 100  µl of Bio CO3-610 (2.5  ng/ml) in 
47 mM PBS-BTE was used to coat 96-well streptavi-
din plates (cat number 11940279, Roche Diagnostics, 
Hvidovre, Denmark) for 30  minutes at 20 °C on a 
300 rpm shaker. Excess coater was removed by wash-
ing 5 times in standard washing buffer. 20 µl of each 
serum sample was diluted 8-fold in incubation buffer 
(50 mM TRIS-BTB). CO3-610 antibody was diluted 
1:80 in incubation buffer, and 100 µl of the antibody 
solution was added to each well. Each well was sealed 
with tape and the plate incubated for 1 hour at 20 °C 
with shaking at 300 rpm. The plate was washed 
5  times in washing buffer. 100  µl of TMB buffer 
(cat number 4380-100-125, Kem-En-Tec, Taastrup, 
Denmark) was then added, sealed with tape and incu-
bated for 15  minutes in the dark, with shaking at 
300 rpm. 100 µl of stopping solution was then added 
and the plate read in an ELISA reader (Molecular 
Devices, SpectraMax M, CA. USA) at 450 nm with 
650 nm as reference.

Buffers used for elisa
Buffer used for dissolving the coating peptide con-
tained 47 mM PBS-BTE, 1 g KH2PO4, 14.5 g Na2HPO4, 
0.2  g KCl, 8  g NaCl, 10  g BSA, 9.3  g EDTA, 
1 g Tween-20, 100 g Sorbitol, 1000 ml Milli Q water. 
The incubation buffer comprised 6.055 g Trizma, 10 g 
BSA, 0.56 g Tween 20, 3.6 mL Bronidox, 30 mg Phe-
nol red, 1000  ml Milli Q. The washing buffer con-
sisted of 154.4 g Trizma, 149 g NaCl, 16.7 g Bronidox, 
56.2  g Tween 20, 1000  ml Milli Q. The reaction-
stopping buffer was composed of 0.1% H2SO4.

Standards
Standard curves were obtained from serial dilutions of 
biotinylated CO3-610 for the urine assay. Standard con-
centrations were 0, 0.33, 1, 3, 9, 27, 81 and 162 ng/ml.

Statistical analysis
Mean values and standard error of the mean (SEM) 
were calculated using GraphPad Prism (GraphPad Soft-
ware, San Diego, CA, USA) and compared by Student’s 
two-tailed paired t-test (α = 0.05) or by Mann-Whitney 
two-tailed non-parametric test, whenever appropriate. 
One-way analysis of variance (ANOVA) was also used 
for group analysis across time points. The coefficient of 
correlation (R2) and the corresponding P-value was 
determined by linear regression. A P-value of 0.05 was 
considered statistically significant. CCl4-treated groups 
were compared with intralipid-treated groups at each 
termination time point.

Results
Available population for analysis
Due to several animals dying prior to scheduled ter-
mination points, the number included in the data anal-
ysis was reduced to 91 out of the original 125 animals. 
It was decided to stop CCL4 treatment after a maxi-
mum of 8 weeks in the group originally intended to 
undergo 12  weeks of treatment. Surviving animals 
from this group were redirected to other groups to 
provide adequate numbers for meaningful statistical 
analysis and to reduce mortalities (Table 1).

Histology image analysis
Liver sections stained with Sirius red revealed a sig-
nificant increase in the presence of total collagen in 
animals treated with CCl4 (Fig. 1). Quantitative his-
tology revealed that the proportion of total collagen 
contained in liver sections progressed from a mean of 
4.94% at 4 weeks of treatment to a peak of 9.119% 
after 8 weeks of treatment. The mean proportion of 
total collagen in liver sections from intralipid-treated, 
control animals was 2.76%. Total collagen expressed 
as a percentage of the whole tissue sections did not 
decrease to a statistically significant degree between 
animals left to regress for 6 or 12 weeks.

Changes in co3-610 levels
ELISA analysis of serum showed CCL4-treated rats 
had statistically significantly (P , 0.05) higher levels 
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of the MMP9- generated fragment of type III colla-
gen, CO3-610, than the corresponding intralipid- 
treated groups at the same time points during 
progression of liver fibrosis (Fig. 2). During the dis-
ease regression phase, CO3-610 levels declined rap-
idly, reaching the same levels as intralipid-treated 
animals from as early as 6 weeks of regression, with 
no statistically significant difference in CO3-610 lev-
els being found between CCl4-treated and control 
groups at termination. A statistically significant 
decrease in mean CO3-610 levels was found at all 
regression points for animals treated for both 6 and 
8 weeks (P , 0.05).

Western blot and densitometry
The above pattern was also observed in the densitom-
etry data retrieved from Western blot. CO3-610 levels 
gradually increased from a mean value of 32.9 aver-
age pixel intensity (API) after 4 weeks ‘treatment to 
41.6API (6 weeks’ treatment) to a final 47.6API after 
8  weeks (Fig.  3A). During the regression phase, 
CO3-610 levels were significantly lowered. Animals 
left to regress for 6 (mean API 22.0, P = 0.0006) and 
12 (mean API, 16.53, P = 0.0006) weeks after 6 weeks 

of CCl4 treatment had statistically significantly higher 
CO3-610 levels than values measured at the end of 
6  weeks’ treatment. Animals left to regress for 
12 weeks after 8 weeks of CCl4 treatment showed a 
statistically significant decrease in CO3-610 levels 
(mean API 29.3, P = 0.0012) (Fig. 3B).

Similarly, mean collagen type III levels assessed 
by Western blot were found to increase statistically 
significantly during the fibrosis progression phase of 
up to 8 weeks of CCl4 treatment (P , 0.05). Animals 
left to regress for 12  weeks after 8  weeks of CCl4 
treatment showed a decrease in collagen III levels 
(mean API 29.3) which was also found to be statisti-
cally significant (P = 0.0016) compared with the API 
value at the end of 8  weeks’ treatment (Fig.  4A). 
Western blot densitometry analysis also revealed a 
non-statistically significant decrease in collagen III 
levels for all regression points (P . 0.05) (Fig. 4B).

Correlation during progression  
and regression
A statistically significant correlation (P  ,  0.0001) 
was detected during disease progression between lev-
els of CO3-610 and total collagen (Fig.  5A) while 

Table 1. Study design outline. Final numbers per group were reduced due to mortalities.

CCl4 treatment
0 4 6 8

Vehicle

12 (weeks)

0 4 6 8

0 6

0 8

12

12 (weeks)

18 (weeks)

20 (weeks)

n = 8*

n = 6*n = 9*

Regression

Regression

n = 5*n = 6*n = 6*n = 7*

n = 8*n = 11*n = 12*

CCl4 treatment
until week 6

Stop CCl4
treatment

Stop CCl4
treatment

CCl4 treatment
until week 8

Note: *Termination point.
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Figure 1. Total collagen increase during fibrosis progression and regression. 
The mean extent of total collagen found in liver sections, stained with Sirius red, from control, intralipid-treated animals (A); in CCl4-treated animals 
after 4 weeks of treatment (B); in CCl4-treated animals after 6 weeks of treatment (C); and CCl4-treated animals after 8 weeks of treatment (D). Quan-
tification by Visiopharm software of the amount of total collagen expressed as a % of whole tissue in liver sections, showed a statistically significant 
increase in CCL4-treated rats compared with intralipid-treated animals at the same time of termination, for 4 weeks of treatment (P = 0.0100), 6 weeks 
(mean 8.25%, P = 0.0025), 8 weeks (P = 0.0007). Animals treated with CCl4 for 6 weeks and left to regress for another 6 showed a significant increase 
during regression in the total collagen content in the liver compared with the equivalent intralipid-treated animals at the same time of termination 
(P = 0.0079). Equally significantly increased levels of collagen were seen in both the groups undergoing 12 weeks regression after 6 weeks treatment 
(P = 0.0087), and 12 weeks’ regression after 8 weeks’ treatment (P = 0.0117). Quantitative histology revealed increased total collagen deposition during 
disease progression for animals treated with CCl4 for 4 weeks (mean 4.94% presence), 6 weeks (mean 8.25% presence) and 8 weeks (mean 9.11% 
presence). During regression, the total collagen deposition was gradually decreased to a mean of 6.9% (P = 0.0010) and 5.09% (P = 0.0117) for ani-
mals regressing for 6 and 12 weeks respectively after 6 weeks’ treatment and to a mean of 6.27% (P = 0.0083) in animals regressed for 12 weeks after 
8 weeks treatment (E).
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during regression, there was no correlation between 
the two (P = 0.1138) (Fig. 5B).

Discussion
The most abundant molecules in the ECM are various 
collagens, in particular types I and III, as well as a 
range of proteoglycans. During fibrogenesis, levels of 
ECM components, particularly collagens, increase 
significantly. Thus, a marker of the excessive turn-
over of collagens could be a potential biomarker not 
only of liver fibrosis but also of other diseases such as 
cancer, in which ECM remodelling is unbalanced.

Collagen type I (CO1) is the predominant form of 
collagen and could be an attractive biomarker target. 
However, CO1 is degraded during bone resorption as 
well as in the fibrotic liver and thus it would be diffi-
cult to distinguish the source when measuring CO1 
levels in serum or urine.16–20

The present study demonstrates a potential alterna-
tive to CO1 as a biomarker of fibrosis. We showed that 
increased levels of the MMP9-mediated collagen III 
(CO3) degradation fragment, CO3-610, are found in 
rats while undergoing treatment with the liver fibrosis-
inducer, CCl4. Increasing CO3-610 levels as detected 
by ELISA analysis of serum and Western blot, showed 
statistically significant correlations with increasing 
levels of total collagen detected by Sirius red staining.

The main limitations of the study include the high 
mortality which reduced the initially planned number 
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of animals and the statistical power of the analysis. 
It also deprived the study of the 12-week CCl4 treat-
ment group, which could have provided additional 
information about CO3-610, total collagen and col-
lagen type III levels during progression and regression. 

Furthermore, a longer period of regression without 
treatment could potentially have allowed for more 
informative monitoring of ECM remodelling, and 
correlating stage of the disease with CO3-610 and 
collagens, once the chemical stimulus was removed. 
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Mean collagen type III levels assessed by Western blot (Fig. 4A). Collagen III levels at treatment and regression points (Fig. 4B).
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Weekly administration of CCl4, instead of twice a 
week, could reduce mortalities and thus enable 
longer-term data over 12 weeks, for example, to be 
collected.

In conclusion, we provide additional evidence that 
the MMP9-cleaved collagen III degradation frag-
ment, CO3-610, is a promising marker for non-
invasive monitoring of liver fibrosis progression. 
The steep elevation of CO3-610 levels, from as early 
as 4  weeks of treatment with the fibrosis-inducing 
CCL4, and the corresponding progressive increase in 
total collagen and collagen type III levels, underline 
the potential prognostic capacity of the biomarker to 
monitor liver fibrosis and other manifestations of 
ECM remodelling in internal organs such as the liver. 
The above findings further strengthen our view of 
active role that increased ECM remodelling plays, in 
which includes collagens as active participants in the 
continuous tissue alteration process during fibrotic 
related pathology. We also provide further evidence 
of the different role of the collagen subgroups during 
fibrotic events and their promising informational 
capacity and utilisation as biomarkers. Additional 
research in well-controlled clinical settings is needed 
to further investigate this finding.
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