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Abstract
The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming
and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed,
there is no definitive answer as to whether or not a better result with more consistently retrieved
phases can still be obtained. We show here that the first step in data analysis, the assembly of two-
dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining
reconstructions of highest possible consistency. We have developed software that automates this
process and results in consistently accurate diffraction patterns. We have furthermore derived
some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the
phase retrieval transfer function, and suggest a modified version that has improved utility for
judging reconstruction quality.

1. Introduction
X-ray diffraction microscopy (XDM; also called coherent diffraction imaging or CDI)
provides an alternative approach to more conventional forms of lens-based x-ray microscopy
in that it does not rely on inefficient optics and thus helps reduce the radiation dose
administered to the sample [1]. This is especially important with regards to biological
imaging where radiation dose is limiting the maximum achievable resolution [2]. The idea
of phase retrieval from recorded diffraction intensities alone was first conceived by Sayre in
1952 [3]. The first experimental demonstration of XDM was achieved by Miao et al. in 1999
on a fabricated test pattern [4]. Since then the technique has been successfully applied in 2D
to biological [5–7] and material science samples [8], and in 3D to test structures [9], material
science [10,11] and biological [12] samples.

A typical experimental setup involves recording the far-field diffraction pattern of a plane
wave incident on an isolated object. Since the detector, usually a CCD, only records
intensities, the phases need to be retrieved computationally using a reconstruction algorithm.
The first algorithm to successfully retrieve phases from far-field intensity measurements was
demonstrated by Fienup in 1978 [13]. Several generalizations have since been developed
[14,15], all of which are based on iteratively enforcing constraints in real and Fourier space.
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In Fourier space, the present guess of the complex amplitude is adjusted towards the
measured Fourier magntiudes. In real space, the present guess of the object wavefield is
adjusted to enforce a finite support constraint, so that pixels outside the support (the array
subspace within which the object is supposed to lie) are assumed to produce no scattering.
The support guess is periodically updated (either by hand or in an automated fashion using
the shrinkwrap algorithm [16]) until a support is found that tightly fits the actual object.

The far-field diffraction geometry has certain advantages in experimental simplicity (no
nanofocusing optics or nanopositioning stages are required), and in insensitivity to certain
errors such as small shifts in the transverse position of the object (the shift theorem of
Fourier transforms shows that such shifts produce only linear phase ramps in Fourier space
which are not encoded in the Fourier plane intensities). At the same time, alternative
experimental geometries have been developed with different tradeoffs. By using curved
wavefront illumination in a near-field or Fresnel scheme [17,18] one gains more rapid and
robust reconstruction convergence, while ptychographic [19–22] and keyhole [23] methods
limit the illumination footprint and thus overcome the need for the object to be constrained
inside a finite support. Because these other methods still involve the use of Fourier plane
intensities and iterative algorithms for reconstruction, improvements to the data handling
and object reconstruction of far-field methods can often be of benefit in these other
techniques.

We describe here three improvements to the processing and iterative reconstruction of
images from measured far-field intensities. In Sec. 2, we describe an algorithmic and
automated procedure for improved merging of multiple Fourier plane intensity recordings.
In Sec. 3, we show that incorporation of a Wiener filter into the phase retrieval transfer
function (PRTF) improves the PRTF’s interpretability and utility for judging reconstruction
validity. In Sec. 4, we examine different approaches for iterate averaging [6,24] and their
impact on reconstruction validity. The collective improvement on reconstructed image
quality is illustrated using recent experimental data from beamline 9.0.1 at the Advanced
Light Source at Lawrence Berkeley Laboratory that yielded 13 nm resolution images of
specifically-labeled freeze-dried yeast cells [25].

2. Automated Merging Program (AMP) for Fourier intensities
When recording far-field diffraction intensities, one must be mindful of the experience in
small-angle scattering that intensity I tends to drop off with spatial frequency as I(f) ∝ f−m,
where f = θ/λ is the spatial frequency and m = 3–4 with m = 4 suggested by Porod’s law.
Since data is usually recorded over at least two orders of magnitude range in spatial
frequency, this means that the Fourier plane intensity tends to span six or more orders of
magnitude. This can present challenges for many pixelated x-ray detectors; for example, in
using direct detection on CCDs one generates several hundred electron-hole pairs per soft x-
ray photon absorbed, which when coupled with a full-well charge capacity of 105–106

electrons means that a dynamic range of only something over three orders of magnitude can
be achieved in a single recording. (Pixel array detectors are beginning to overcome these
limitations, but high pixel number detectors with good sensitivity for soft x rays are not yet
widely available). As a result, a common experimental strategy is to to use an adjustable
beamstop to block various parts of the strong, low spatial frequency signal while adjusting
the exposure time to collect the weaker, high spatial frequency signals. These various
intensity recordings must then be combined to yield a merged measurement of the Fourier
plane intensities. These merged intensities must satisfy some key conditions. There should
be no scaling errors between regions recorded with different exposure times. Saturated
pixels should be removed before merging the raw data; as well as anomalously high pixel
values due to cosmic rays incident on the CCD. Finally, noise in the raw data should be
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suppressed; this is especially important in the high spatial frequency regime, where the
scattering signal is weak.

In previous work, we have been been merging multiple Fourier plane intensity recordings by
using a per-dataset procedure based on manual adjustments of noise thresholds and
requested exposure times. Besides being tedious, this has produced slight user-dependent
variations in the assembled Fourier intensities. We have therefore developed an Automated
Merging Program AMP to perform this task which we now describe, with its final results
illustrated in Fig. 1.

2.1. Data assembly: previous practice
In a typical per-dataset assembly, the following procedure is performed for each beamstop
position. Saturated pixels (where the full-well capacity of the CCD had been reached) are
first removed. Next, pixels with anomalously high values due to large charge deposition by
cosmic ray events are found and removed, as are pixels with anomalous values due to either
manufacturing flaws or radiation-induced damage. Individual recordings are then
normalized to the synchrotron beam current, after which images with the same exposure
time are averaged and a noise threshold floor is applied. The area behind the beamstop is
then masked. Beam-normalized averages from the different exposure times are then scaled
and averaged, taking care to include only those pixels with non-zero signal. We refer to the
result as a “hand-assembled” data set.

2.2. Automated assembly: improvements provided by AMP
The assembly performed by AMP improves upon this basic assembly protocol in several key
areas. The first difference is a quantitative analysis of the CCD chip. Given a series of dark
current images at different exposure times, AMP will calculate an average dark current and
the variation in dark current either as an average for all pixels in the chip, or (if enough
redundant dark current files are present) on a per-pixel basis. The variance in each pixel
corresponds to the total CCD noise comprised of thermal noise and readout noise. From
these data the scaling of average dark current and CCD noise with exposure time is
determined from a linear fit. This dark current information is used twice: first to subtract an
average dark current signal from each recorded image, and second to calculate an error value
for each pixel. The latter is determined by the square root sum of CCD noise and noise due
to initial photon statistics; this error array is kept throughout the entire assembly process and
updated according to the rules of error propagation. It is a crucial ingredient to two other
improvements that AMP introduces: weighted averages and weighted normalizations.

During the assembly process, arrays are frequently normalized with respect to some constant
(such as exposure time or ring current) and subsequently averaged such that in the end there
is only one data set containing all the information from all initially recorded images. Even
though the arrays are normalized, problems may arise from insufficient knowledge of the
normalization constants. We have found for instance that our shutter timing (which
ultimately determines the exposure time) is not very accurate at short exposure times. This
will lead to scaling errors between different regions of the final assembled array. To
overcome this problem, AMP calculates a normalization correction based on pixels that are
common to the two arrays about to be averaged. This correction is applied just after the
“regular” normalization (i.e. with respect to beam current or exposure time), before the
arrays are averaged. For both the calculation of the normalization correction and the
averaging of two arrays, AMP makes use of their error arrays by weighting each pixel’s
influence on the result with its respective error. This is justified as we want pixels with
smaller error to contribute more to the final result than pixels with higher uncertainties.
Given two previously normalized arrays 1 and 2 with intensity values at the k-th pixel of Ik,1
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and Ik,2 respectively, the normalization correction c is calculated from the minimum of the
goodness-of-fit parameter

(1)

where σk is the effective total error for the k-th pixel. To calculate σk we express the intensity

at the k-th pixel of the i-th array Ik,i as the sum of true signal  and error σk,i. With this,
Eq. (1) becomes

(2)

Rearranging the left hand side to

(3)

and assuming c ≈ 1, we arrive at

(4)

(5)

where we have assumed that the errors are uncorrelated, i.e. Σσk,1 σk,2 = 0. Now we can go
back to the original idea and calculate the normalization constant by taking the derivative of
Eq. (1) with respect to c

(6)

Performing the derivation and solving for c, we end up with

(7)
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Note that the sum above is performed over pixels that are defined (i.e. greater than some
threshold or zero and not saturated) in both arrays. The implementation of the weighted
normalization in software is illustrated in pseudocode in the Appendix (Algorithm 1). After
normalizing the arrays in the pre-described manner, we can average them. As with the
normalization, we have to make sure that we give more weight to pixels with little
uncertainty than to pixels with high uncertainty. Therefore AMP calculates for each pixel k
the weighted average  over all arrays i = 0,….,N as

(8)

where σi,k is the previously normalized error of the k-th pixel in the i-th image. The new
error σk for each pixel can then be calculated as the square root sum of all errors of pixels
that were averaged, or

(9)

which can be used in subsequent analysis. The implementation of the weighted averaging in
software is illustrated in pseudocode in the Appendix (Algorithm 2).

Apart from providing a more rigorous defined and consistent assembly of the data, AMP
was also written to facilitate and speed up the process of assembling a 2D diffraction
pattern. A simple script file indicating the names of the raw data files to be assembled is
sufficient to start AMP. Given such a basic script file, AMP will attempt to infer all
information it needs directly from the data; for all else, it prompts the user for input. As the
assembly progresses, AMP will write important data-set-specific parameters it determined to
the script file for future reference. It also automatically saves information that can be reused
for a subsequent assembly of the same data and even for other data sets if applicable, such as
if the same dark current parameters can be used for data sets recorded with the same CCD,
or the same beamstop mask pattern for data sets that were recorded using the same
beamstop. Finally, AMP will save the final assembled diffraction intensities along with meta
data important for reconstruction into a custom defined file format based on the widely
available, platform independent HDF5 standard. Automating these steps is especially
important for data intensive three-dimensional x-ray diffraction microscopy [9,26], where
2D diffraction patterns are recorded over a wide angular range with small angular steps prior
to mapping the resulting Ewald spheres into a 3D data cube. A flowchart of our software
implementation of the program is shown in Fig. 8 of the Appendix. The software is also
available through Concurrent Versioning System upon request. The 2D Fourier plane data
assembled by the above automated procedure is referred to as “AMP-assembled” data in
what follows.

Figure 1 illustrates some advantages AMP-assembled data has over hand-assembled data.
Subsections of the assembled diffraction intensities for both AMP-assembled data (black)
and hand-assembled data (red) on a logarithmic intensity scale are shown on the left. The x-
axis spatial frequency range in each case is from 0 to ≈ 48 μm−1. The insets show a zoomed
in view of the highest spatial frequencies on a false color linear scale. While the AMP-
assembled array shows speckle with good contrast, the hand-assembled array is dominated
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by noise at these spatial frequencies. Scaling issues are present in the hand-assembled array
but not in the AMP-assembled array. This is illustrated by the plot of the power spectral
densities (PSD) for each array, shown on the right on a log-log scale. While the PSD of
AMP-assembled data (in black) follows a straight line as would be expected for most
objects, the PSD of hand-assembled data (red) changes its slope at a spatial frequency of
around 10 μm−1 suggesting that low and high spatial frequency data have not been properly
scaled. Another prominent difference is the occurrence of a sharp peak at ≈ 40 μm−1 in the
PSD of the hand-assembled data. This peak, presumably due to a cosmic ray incident on our
CCD at the time of data collection, is found in one single exposure of the recorded raw data.
Due to the large standard deviation of the affected pixels it is filtered out by weighted
averaging early on in the AMP assembly process. This is not true for the hand-assembled
data where the peak ends up in the final assembled array, as is indicated by the white arrow
in the image of the merged intensities of the hand-assembled data. We note that while a
more careful assembly by hand is possible, it would be considerably more time consuming
and its steps would have to be readjusted for each new data set.

2.3. Automated assembly: evaluation from reconstructed images
The ultimate judgement of the quality of data assembly comes from seeing the quality of the
reconstructed image. In this section we compare images reconstructed from AMP-assembled
versus hand-assembled diffraction data.

Iterative phase retrieval in the far-field geometry works by finding a complex wavefield
which satisfies real-space constraints such as the imposition of a finite support (and possibly
others such as a limit on maximum phase variation), and the Fourier-space constraint of
adjustment towards the measured diffraction magnitudes. Because reciprocal plane and real
space information are related by a complex-valued Fourier transform, one can start the
algorithm with random phases and converge to a solution. Since the real-space constraints
are not known perfectly, and since random and systematic errors are possible in the
measurement of the Fourier plane magnitudes, one cannot find a single, numerically unique
solution to the complex wavefield (though in “good” reconstructions the variations between
different possible solutions are small). As a result, various iterate averaging procedures have
been adopted [6,9,24], based on the idea that consistent phases add coherently, while
inconsistent phases add incoherently. This averaging is applied in the Fourier plane, where
the magnitudes were measured but the phases were not. While Sec. 4 below involves a
comparison between different iterate averaging procedures, in this section we used a
variation of an already-demonstrated averaging procedure [24].

We first carried out a reconstruction where the object’s support mask was found first from
the autocorrelation of the diffraction pattern, then by application of the shrinkwrap algorithm
[16] with occasional by-hand adjustment. This support mask was then used in 10 separate
reconstructions with different random starting phases [27]. In each reconstruction, the
difference map algorithm [15] was used with a positivity constraint on the imaginary part of
the object’s exit wave (this corresponds to a maximum phase shift of π as induced by 1.5 μm
of solid dry protein for X-rays of wavelength 1.65 nm), and a linear phase ramp was
continuously removed (thus constraining the object to be centered in the real space array). In
each of these separate reconstructions, every 50th iterate from iterations 5,000 to 10,000 was
set aside; the global or zero-spatial-frequency phase of each real-space iterate was adjusted
to a common value [9], and the complex iterates were then averaged together. Finally, the 10
separate reconstructions were averaged together, again with the global phase adjusted to a
common value (the global phase has no effect on diffraction intensities and thus is
unconstrained by measured data). This procedure yields a reconstruction with minimal
sensitivity to those phases that are poorly constrained by the data.
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The images reconstructed using the above procedure on both hand-assembled and AMP-
assembled data are shown in Fig. 2. Magnitude is displayed as brightness, and phase as hue
with a color bar illustrating the phase–hue relationship. (Note that because the global or
zero-spatial-frequency phase is unknown, the color bar serves only as an indicator for
relative phase differences). Both reconstructions agree in key features; however, the AMP-
assembled reconstruction shows less phase variation at low spatial frequencies. This is in
better agreement with what would be expected from less-dense areas of the yeast cell which
should have greater uniformity of projected thickness. It is also similar to the goal of
maximum-entropy methods of image reconstruction, which seek to find the image with the
least variation yet which is still consistent with the measured constraints. If we assume that
the hand-assembled Fourier magnitudes have variations associated with erroneous assembly
rather than with scattering properties of the specimen, then we would expect the
reconstruction from hand-assembled magnitudes to give rise to more, but erroneous, contrast
in the reconstructed image.

3. Wiener-filtered phase retrieval transfer function (wPRTF)
The first papers [4,5] in x-ray diffraction microscopy used the presence of measured
diffraction signal as a function of spatial frequency (the power spectral density or PSD of the
diffraction pattern) to estimate the resolution achieved in the reconstruction. However, the
simple presence of signal is only part of the story: one must consider the presence of noise,
partial coherence in the beam, and the possible presence of small scatterers outside of the
assumed support constraint. Taken together, these effects can lead to a decrease in the
consistency of the estimated phases, and Fourier plane pixels which cannot be reliably
retrieved will not contribute useful and reproducible information to the reconstructed image.
The iterative averaging procedure described in Sec. 2.3 above provides a measure of the
reproducibility of Fourier plane phasing through a phase retrieval transfer function (PRTF)
[9] of

(10)

which is essentially the square root of a similar measure called the intensity ratio [6,24].
Measurement of the spatial frequency at which the PRTF has suffered a significant decline
can be used to provide an estimate of the spatial resolution of the reconstructed image
[6,9,24], since of course a PRTF value of 1 indicates perfectly reproducible phases while a
value of 0 indicates completely random phases. Unfortunately no consensus has emerged on
what PRTF value should be used to judge reconstructed image resolution, with various
authors using values of about 0.4 [6], 0.1 [28], “close to zero” [29], or unspecified values
[12] as their criteria. These various criteria can be evaluated by examination of Fig. 3, which
shows the relationship between σθ in Gaussian-distributed random phases, and the
magnitude obtained by averaging unit-magnitude and random phase vectors.

The PRTF can also be difficult to interpret. The shaded “Not filtered” curves shown at left in
Fig. 4 show the PRTF for the reconstructions of both the hand-assembled (in red) and AMP-
assembled (in black) Fourier plane intensities. The PRTF for the AMP-assembled data
shows a steady decrease, with a “knee” at about 40 μm−1 corresponding to a real space half-
period of 13 nm; this is consistent with the resolution estimated from examining real-space
features [25]. The PRTF for the hand-assembled reconstruction is more difficult to interpret,
in that it decreases steadily to a spatial frequency of about 25 μm, but it then increases. This
pathological behavior can result from a too-small support constraint, or from errors in
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measurement of the Fourier plane intensity, or from noise which might place consistent but
erroneous structure within the support constraint.

What is needed is a way to combine the PRTF’s measure of reconstruction consistency with
a measure of data quality. We propose that a Wiener filter [30] provides such a measure.
The Wiener filter is designed to optimally remove noise from a measured signal. It is
applied in inverse space and suppresses the Fourier components of the measured signal that
are dominated by noise. Here we will apply it to the PRTF to remove artifacts that are
associated with noise in the reconstruction. If one can estimate the spatial frequency
dependent trend S(f) of the true signal, and the trend N(f) in noise, the Wiener filter W (f) is
formed from

(11)

so that it varies smoothly between 1 for signal dominated and 0 for noise dominated spatial
frequencies. Since many noise sources (such as photon statistical noise, and thermal charge
fluctuations in CCD detectors) are uncorrelated pixel-to-pixel, the power spectral density
PSD of noise usually follows the form of the Fourier transform of a delta function: namely, a
“flat” power spectrum consisting of a constant value at all spatial frequencies. The
diffraction signal is much different; as was noted at the start of Sec. 2, it tends to decline as I
∝ f−m with m ≃ 3–4. We can therefore follow a straightforward procedure to generate a
Wiener filter from the power spectral density of a measured diffraction pattern: If we
assume the measured signal C(f) to consist of true signal S(f) plus frequency independent
noise N, such that its power spectral density is given by

(12)

then the trend of |C(f)|2 can be found from a straight line fit in a log-log plot, while the
square of the spatial frequency independent noise floor |N| can be found from where the
power spectral density rolls off to a constant at high spatial frequencies. From these two
quantities, we can extrapolate the square of the true signal as |S(f)|2 = |C(f)|2 − |N|2 and use
this to determine the Wiener filter according to Eq. (11). This procedure is illustrated at right
in Fig. 4; it has been used with success for image deconvolution [31] and phase contrast
Fourier filtering [32] in lens-based x-ray microscopy.

Application of the Wiener filter to the phase retrieval transfer function [wPRTF(f) = W
(f)PRTF(f)] provides an improved measure of the reconstructed image (here abbreviated as
wPRTF). In Fig. 4, we show the wPRTF for the AMP-assembled and hand-assembled
reconstructed images of Fig. 2. While the non-filtered PRTF of the hand-assembled data has
a pathological increase at higher spatial frequencies, the wPRTF shows a sharp decrease. In
addition, the wPRTF of the hand-assembled data is now below that of the AMP-assembled
data, which is consistent with the improved visual impression of the reconstructed images in
Fig. 2.

3.1. wPRTF and varied specimen exposures
To make sure that Wiener-filtered PRTFs are a reliable tool to assess the quality of
reconstructions of a wide variety of diffraction data, we reconstructed diffraction data from a
simulated object at various different incident photons per pixel values. The simulated object
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was designed to approximate a pair of frozen-hydrated biological cells in a 5123 array with
15 nm pixel size, similar to simulated cells we have used in other computational studies [1].
The larger cell has an outer diameter of 2.1 μm while the smaller cell has an outer diameter
of 1.27 μm. Together they are embedded in a 30 nm thin layer of ice. Both cells have a 45
nm thick double-layer cell membrane made from 50/50 protein and lipid, and are filled with
a 10:1 ice and protein mixture. Several lipid balls of 60 nm diameter are distributed
throughout the volume of both cells. Each cell also has a cell nucleus (assumed to be filled
with chromatin) with a 15 nm thin single layer cell membrane made from the same
composition as the outer cell membrane. Finally, each cell has a vacuole that is filled with
ice and has a 15 nm thin lipid membrane. The values of the refractive index are calculated
according to tabulated data of Henke et al. [33] assuming a stoichiometric composition of
H48.6C32.9N8.9O8.9S0.3 and density of ρ = 1.35 g/cm3 for protein, H62.5C31.5O6.3 with ρ =
1.0 g/cm3 for lipid [34], and H49.95C24.64N8.66O15.57P1.07S0.03 and ρ = 1.527 g/cm3 for
chromatin [35]. Assuming an x-ray energy within the “water window” [36,37] of 520 eV, an
exit wave leaving the object was calculated using a multislice propagation process [24,38]
and then propagated to the far-field. Diffraction patterns were simulated for 11 different
exposures with photons per pixel values ranging from 101 to 106, with simulated Poisson
noise included [1]. The power spectral density of the highest exposure diffraction pattern
shown in the grey curve at left in Fig. 5 indicates that the simulated cell showed strong
scattering out to a spatial frequency of about 13 μm−1. Each data set was reconstructed
similar to what has been described above for the experimental data, except that averaging
was applied to every 10th iterate starting at 2,000 iterations up until a total of 10,000
iterations had been run.

Results from these simulations are shown at right in Fig. 5. As expected [1], lower
exposures lead to poorer signal-to-noise values in the final reconstructions and thus poorer
resolution. We took the spatial frequency at which the filtered PRTF curve falls below 0.5 as
a measure of the effective resolution of the reconstruction at each photon exposure value.
These values are plotted as red + marks at left in Fig. 5; plotting the values against the
simulated photons per pixel values results in a power-law fit with an exponent of 3.68 ± 0.36
(after excluding resolution measures above the 13 μm−1 spatial frequency at which there
was little signal present in the simulated object; these are shown as red × marks). Also
shown in Fig. 5 is a fit to the power spectral density of the highest exposure diffraction
pattern; this gave a slope of −3.59 ± 0.04. The magnitude of both exponents agree within
error; this is as expected, since one needs signal at a spatial frequency to see structure over
the corresponding length scale, so that achievable resolution should follow the same spatial
frequency trend with exposure as the spatial frequency content of the object does [1]. The
fact that the Wiener-filtered PRTF provides such a straightforward illustration of this result
of this confirms the utility of the wPRTF measure.

4. Iterate averaging procedures
Iterate averaging provides a way to improve image reproducibility, and to measure the
resolution via the Wiener-filtered phase retrieval transfer function (wPRTF). In this section
we consider how many iterates should be averaged, and at what frequency the iterates
should be sampled. Sufficient averaging supresses the contribution of poorly-phased Fourier
scattering to the real-space image, since phases which are not reliably retrieved will add up
incoherently. A lack of sufficient averaging will lead to artificially high PRTF values, since
not enough potentially inconsistent phases will have been sampled. Averaging procedures
can be implemented in Fourier or real space; here we consider the averaging of real space
iterates.
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How frequently should one sample particular iterates for averaging? To address this
question, we reconstructed both the AMP-assembled experimental data, and the simulated
data set described above, for 5,000 iterations of the difference map algorithm. We then ran
the algorithm further, but averaged over a total of 100 iterates taken every ith iteration (i ∈
{1,5,10,20,30,40,60,70,80,90,100,200}) to obtain the final result. The resulting wPRTF
curves shown in Fig. 6 are nearly identical for all different averaging intervals. This suggests
that the frequency at which iterates are sampled is unimportant.

How many iterates should be averaged? One would expect that the result would depend on
the quality of the data, since data with systematic errors should show more fluctuations in
the reconstructed phase. Rather than plot a series of individual wPRTF curves as in Fig. 6, in
this case we decided to measure the RMS residual change in the wPRTF as one went from i
to i + 1 averages:

(13)

where the sum extends over all N spatial frequencies up to the spatial frequency where the
PSD rolls off to a steady noise floor for a given reconstruction. We calculated the RMS
residual according to the above equation for the set of reconstructions with 12 different
averaging frequencies that were already used for the analysis leading to Fig. 6. Since this
analysis showed that the consistency in phase retrieval as measured by the w PRTF does not
depend on the averaging frequency, we can assume only statistical differences between these
reconstructions and calculate the mean of all RMS residuals and their standard deviation as a
function of number of iterates averaged. Based on examination of the resulting average
RMS residual on a linear-log plot, we then fitted the average RMS residual to a function of
the form y(x) = axb + c in order to characterize the residual trend.

Figure 7 shows graphs of this analysis for reconstructions of A) the AMP-assembled data
set, B) the hand-assembled data set, and C) the simulated data set. The calculated means of
all 12 reconstructions with different iterate averaging frequencies are plotted as crosses with
error bars indicating their standard deviation. The fitted function is plotted in red and its fit
parameters are indicated for each respective graph. An arbitrary threshold of 0.001 RMS
residual was chosen to define convergence of the wPRTF; it is marked in the graph by a
horizontal dashed line. The number of iterates at which the fitted function falls below the
threshold (i.e., the number of averages at which we declare the wPRTF to have converged)
is indicated for each data set by a vertical dotted line. The reconstructions of both the AMP-
assembled and the simulated data set converge after ≈ 30 averaged iterates, while the
reconstruction of the hand-assembled data set converges only after about 50 averaged
iterates. This result confirms that a AMP-assembly leads to data sets that have fewer
systematic errors in the Fourier plane intensities. It also gives an estimate as to how many
iterates need to be averaged for the PRTF to be a valid representation of the consistency in
phase retrieval of a reconstruction.

5. Conclusion
We have developed an automated merging program, dubbed AMP, with a simple text file
driven user interface that determines parameters relevant for the assembly directly from the
raw data and thus speeds up the assembly process. This results in higher quality
reconstructions compared to a standard hand assembly protocol, and it also aids 3D
reconstructions where a large number of 2D diffraction projections need to be processed.
We have looked in greater detail at the properties of the phase retrieval transfer function
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(PRTF), showing that the frequency of iterate averaging is not important and that averaging
over 50 iterates should be sufficient for data with some degree of systematic error in the
Fourier plane intensities. Finally, we propose that the PRTF be combined with a Wiener
filter in a wPRTF for more reliable interpretation and estimation of the resolution of a
reconstructed image. Taken together, these developments give us a more systematic
understanding of the properties of finite support iterative phase retrieval of far-field
diffraction data.

In summary, our studies indicate that in order to obtain high quality reconstructions one has
to carefully assemble the raw data into a 2D diffraction pattern. In particular, one should
perform weighted averaging and calculate a weighted normalization factor from commonly
defined pixels. To evaluate both reconstruction consistency and maximum information
transfer, one should use a Wiener-filtered PRTF, where the Wiener filter is determined from
the PSD of the reconstructed image. This measurement will be valid if at least 50 iterates
have been averaged to obtain the final result.
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A. Software implementation of the Automated Merging Program (AMP)
Algorithm 1

Weighted normalization

Require: SIZE(arrays) = SIZE(errors) = [n,nx,ny]{n arrays to be normalized with errors}

 for i = 0 to n −1 do

  for j = 0 to n −1; j ≠ i do

   indicesi j ←WHERE((arrays[i,*,*] AND arrays[j,*,*]) > threshold)

  end for

  alli ← union of all indicesi*

  stddev[i,*,*] ← errors[i,*,*] · arrays[i,*,*]

 end for

 arrays[k,*,*]; where allk has the most elements nall {Find reference array}

 if nall > 100 then

  for i = 0 to n −1; i ≠ k do

   using indices allk, calculate σ using Eq. (5) and c for arrays[i] and arrays[k] using Eq. (7)

   arrays[i] *= c

  end for

 else {normalizing in pairs instead}

  ni j ← number of elements of indicesi j

  p,q ← indices of maxval(ni j)

  for l = 0 to n − 2 do

   calculate total error σ from stddev[p] and stddev[q] using Eq. (5)

   using indicespq, calculate c for arrays[p] and arrays[q] according to Eq. (7)

   arrays[p] *= c

   p̄,q̄ ← p,q

   np̄q̄ ← 0

   p,q ← indices of maxval(np̄*, n*q̄)

  end for

 end if
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Algorithm 2

Weighted averaging

Require: SIZE(arrays) = SIZE(errors) = [n,nx,ny]{n arrays to be averaged with errors}

 for i = 0 to n − 1 do

  indices ← WHERE(arrays[i,*,*] > threshold)

  stddev[i,*,*] ← errors[i,*,*] · arrays[i,*,*] {calculate average according to Eq. (8)}

  numerator[indices] += arrays[i,indices]/stddev[i,indices]2

  enominator[indices] + = 1/stddev[i,indices]2 {calculate new errors according to Eq. (8)}

  newerror[indices] += 1/stddev[i,indices]2

 end for

 average ← numerator/denominator

 newerror ← 1/(newerror ·average)
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Fig. 8.
Flowchart of AMP. The processes in red involve weighted normalization and weighted
averaging as described in Sec. 2.2 and outlined in pseudocode in Algorithm 1 and Algorithm
2, respectively.
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Fig. 1.
Assembled diffraction intensities of data collected on a freeze-dried labeled yeast cell. On
the left, the same quadrant of the entire array is shown on a false color logarithmic scale for
both AMP-assembled data (in black) and data assembled by hand (in red). An inset shows
the highest spatial frequencies of the merged intensities on a false color linear scale. The
AMP-assembled intensities show good contrast for speckles all the way to highest spatial
frequencies where the hand assembled intensities are dominated by noise. On the right, the
power spectral densities for both arrays are plotted on a log-log scale. The hand-assembled
data does not follow a straight power law indicating scaling errors between low and high
spatial frequency data. The peak at 40 μm−1 in the PSD of the hand-assembled data is due to
a cosmic ray; its location is indicated by the white arrow.
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Fig. 2.
Final averaged reconstructions of both AMP-assembled diffraction intensities and hand-
assembled diffraction intensities obtained in experiments on gold-labeled freeze-dried yeast
[25]. Magnitude is represented as brightness and phase as hue according to the inset color
bar. The hand-assembled reconstruction shows streaks and other variations in intensity that
would not be expected in the cell; the AMP-assembled reconstruction provides an improved
visual appearance.
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Fig. 3.
The magnitude resulting from a sum of random phases with Gaussian phase distribution
characterized by σθ, calculated for a range of values of σθ. Since the phase retrieval transfer
function or PRTF measures the magnitude (at a particular spatial frequency) of the average
of many iterates, this figure provides insight into the range of phase variations between the
iterates.
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Fig. 4.
The use of a Wiener filter provides an improved measure of reconstructed image quality.
This figure shows the phase retrieval transfer function (PRTF; shown in thick shaded lines at
left) and power spectral density (PSD; right) curves corresponding to the reconstructions of
Fig. 2. In the PSD curves, the square of the spatial-frequency-independent noise floor value |
N|2 is shown by a dashed line, and a linear fit to the square of the high spatial frequency
trend of the measured signal |C(f)|2 is shown with a thick shaded line. A Wiener filter
function was then calculated according to Eqs. 11 and 12 and applied to the PRTF curve,
leading to the Wiener-filtered PRTF curve or wPRTF curve which is shown in thin, non-
shaded lines at left. Applying the Wiener-filter suppresses the artificially high PRTF-values
of the hand-assembled reconstructed data (red) above a spatial frequency of about 25 μm−1

and underlines the higher quality of the reconstruction of the AMP-assembled data.
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Fig. 5.
The Wiener-filtered phase retrieval transfer function (wPRTF) provides a good measure of
reconstructed image quality over a wide range of photon exposures. Shown at right are a
series of wPRTF curves for reconstructions of simulated data with several different photons
per pixel values and simulated Poisson noise. The spatial frequency at which the wPRTF
crosses the dashed 0.5 line is taken as effective resolution for each data set. On left, a power
law fit to the power spectral density (PSD) of the data set with the highest photons per pixel
value (black) is compared to a power law fit to the dose–resolution data (red) derived from
the figure on the right. The magnitudes of both slopes agree within their error, indicating
that the degree to which scattering decreases with spatial frequency in an object is equal to
the degree at which reconstructed image resolution falls off with decreasing exposure [1].
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Fig. 6.
Illustration of the effect of choosing different iterate averaging frequencies. For both the
AMP-assembled experimental data at left, and the simulated data set at right, the difference
map algorithm was first run for 5,000 iterations. Next, 100 iterates were taken every ith
iteration (i ∈ {1,5,10,20,30,40,60,70,80,90,100,200}) to obtain a final result. Wiener-filtered
phase retrieval transfer function (wPRTF) curves are plotted for each of the iterate averaging
frequencies. An example reconstructed image is shown as an inset. As judged by the
wPRTF, all iterate sampling frequencies give essentially the same result.
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Fig. 7.
Changes in the wPRTF as a function of number of iterates averaged for A) AMP-assembled
experimental data, B) hand-assembled experimental data, and C) simulated data. The RMS
residual changes in the wPRTF (calculated using Eq. (13)) as one goes from i to i + 1
iterates averaged were then fitted to a function of the form y(x) = axb + c, plotted in red. The
error bars indicate the standard deviation between 12 different averaging frequencies. A
horizontal dashed line marks a value of RMS residual of 0.001 selected to compare the
results for the three different data sets. Not surprisingly, the simulated data with no
systematic errors converges most quickly with only 29 iterates averaged, while the higher
quality AMP-assembled experimental data requires 31 iterates averaged and the hand-
assembled experimental data requires 53 iterates averaged.
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