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Abstract
Molecular imaging is a new discipline that makes possible the noninvasive visualization of
cellular and molecular processes in living subjects. In the field of cardiovascular regenerative
therapy, imaging cell fate after transplantation is a high priority in both basic research and clinical
translation. For cell-based therapy to truly succeed, we must be able to track the locations of
delivered cells, the duration of cell survival, and any potential adverse effects. The insights
gathered from basic research imaging studies will yield valuable insights into better designs for
clinical trials. This review highlights the different types of stem cells used for cardiovascular
repair, the development of various imaging modalities to track their fate in vivo, and the
challenges of clinical translation of cardiac stem cell imaging in the future.
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Coronary artery disease is a progressive disease with high morbidity and mortality rates in
the Western world. After myocardial infarction, the limited ability of the surviving cardiac
cells to proliferate renders the damaged heart susceptible to unfavorable remodeling
processes and morbid sequelae such as heart failure. For now, heart transplantation is the
only viable treatment option for patients with end-stage heart failure. Given the persistent
shortage of donor heart organs, stem cell therapy has emerged as a promising candidate for
treating ischemic heart disease because it provides a virtually unlimited source of
cardiomyocytes, endothelial cells, and other differentiated cell types to be used in all stages
of cardiac repair (1,2). Despite the potential of stem cells, several fundamental questions
remain unanswered in the field of cardiac stem cell therapy. For instance, what is the long-
term fate of the transplanted cells—do they integrate, proliferate, and differentiate? What are
the optimal cell type, cell dosage, delivery route, and timing of injection? Thus, the
successful introduction of potentially therapeutic stem cells into patients requires concurrent
techniques that provide noninvasive assessment of the survival, distribution, and
pharmacokinetics of these cells. This review will present an overview of the different stem
cells currently being investigated, the different imaging modalities available to track stem
cells, the hurdles facing the field, and some perspectives on the future of stem cell imaging.
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DIFFERENT TYPES OF STEM CELLS
There are many potential stem cell sources for myocardial repair. The 3 main types of cells
are adult stem cells, embryonic stem cells (ESCs), and induced pluripotent stem (iPS) cells.
At present, the most clinically applicable cell type is adult stem cells, which include skeletal
myoblasts (3,4), bone marrow stem cells (5–7), mesenchymal stem cells (8), endothelial
progenitor cells (9), and cardiac progenitor cells (10–14). Autologous skeletal myoblasts
were the first cell type to be used clinically for cell-based cardiac repair (3). Skeletal
myoblasts are attractive candidates because they can be cultured and expanded ex vivo from
muscle biopsies, and they survive well after transplantation because of their strong
resistance to ischemia. Skeletal myoblast transplantation has been shown to provide
functional benefit in animal models of infarction (15), but a recent large placebo-controlled,
randomized trial in humans did not demonstrate sustained efficacy as defined by the primary
endpoint of global ejection fraction (16). Transplantation of bone marrow stem cells has
been shown to improve heart function in animal studies (5,17), and no serious complications
have been reported in clinical trials to date, but long-term benefit has not been demonstrated
consistently (18). Further, the mechanisms by which these stem cells exert their effects
remain poorly characterized (1). In particular, the reported capacity for bone marrow stem
cells to transdifferentiate into cardiomyocytes and thereby regenerate functional
myocardium remains controversial (5,17,19–21). Mesenchymal stem cells are another
attractive therapeutic candidate because they are capable of multilineage differentiation (22)
as well as possessing reported immunoprivilege status (23). In large-animal models,
allogeneic porcine mesenchymal stem cells have been shown to reduce infarct size, increase
ejection fraction, and improve myocardial blood flow (24). There are ongoing clinical trials
using both autologous and allogeneic mesenchymal stem cell transplantation for myocardial
regeneration (25). Endothelial progenitor cells are typically defined as cells that show
endothelial characteristics, including uptake of Dil-acetylated low-density lipoprotein, and
the expression of typical endothelial marker proteins including vascular endothelial growth
factor receptor-2 (VEGFR-2/KDR), endoglin (CD105), von Willebrand factor, and platelet
endothelial cell adhesion molecule-1 (CD31). Endothelial progenitor cells have also been
used in clinical trials involving patients with chronic left ventricular dysfunction, although
the beneficial effect was less than that for bone marrow stem cells (26). More recently,
several studies have confirmed the presence of resident cardiac progenitor cells in the
myocardium (10–14). These cardiac progenitor cells can be isolated and expanded ex vivo
and can also differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells
under the appropriate culturing conditions. Clinical trials involving cardiac progenitor cells
began in 2009.

Besides adult stem cells, another potential source of therapeutic cells is ESCs. ESCs are
capable of pluripotent differentiation into all 3 germ layers (ectoderm, mesoderm, and
ectoderm), whereas most adult stem cells are capable only of multipotent or unipotent
differentiation (27). ESCs are also capable of unlimited self-renewal, whereas most adult
stem cells have a limited capacity to divide and eventually become senescent—a
phenomenon commonly known at the Hayflick limit (28). ESC-derived cardiomyocytes
(29,30) and ESC-derived endothelial cells (31,32) have been shown to improve cardiac
function after transplantation in rodent models of myocardial infarction. However,
significant hurdles must be overcome before future clinical trials can take place, because of
the issues of potential immunogenicity (33,34) and tumorigenicity (35,36), not to mention
the ethical and political controversies associated with ESC research in the United States.

Unlike ESCs, iPS cells avoid the ethical and political problems because they are derived
from the patient’s own autologous cell source (37). iPS cells can be reprogrammed from
human fibroblasts into an ESC-like phenotype using different transcription factors such as
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Oct 4, Sox 2, Nanog, Klf4, Lin 28, and c-Myc as originally described independently by
Yamanaka (38) and Thomson (39). Besides the patient’s skin cells, other starting cell
sources can be keratinocytes (40), blood (41), or fat stromal cells (42). Similar to ESC-
derived cardiomyocytes, iPS cells have been differentiated into cardiomyocytes (43), and
injections of human iPS cells into immunocompetent mice (44) with myocardial infarction
have been shown to improve cardiac function. In summary, several cell types exist with
potential for cardiovascular repair. Molecular imaging will likely play an important role in
improving our understanding of their safety and efficacy under a preclinical model and
eventually in clinical settings in the future.

IMAGING TECHNOLOGIES FOR TRACKING STEM CELLS
Two primary methods have emerged for stem cell labeling using noninvasive imaging.
Direct labeling strategies using radioactive tracers and iron particles have been the most
widely adapted for radionuclide imaging and MRI, respectively (45–52). Fewer reports have
been published using nanoparticles such as quantum dots (53,54). The second major method
of stem cell labeling uses the transfection of stem cells to express a protein, receptor, or
enzyme that can be detected by noninvasive reporter gene imaging. That technique has been
performed primarily using SPECT (55) and PET (56–61). However, a few examples using
MRI (62,63), ultrasound (64), and other imaging modalities (65–67) have been used in
preclinical studies. The primary advantage of direct labeling techniques is the simplicity and
therefore the minimal manipulation of the cells that is required. The primary disadvantage of
direct labeling techniques is that the label can become physically decoupled from the stem
cell such that the detection of the label may no longer represent engrafted stem cells. In
contrast, the primary advantage of reporter gene techniques is that the reporter gene is
usually detected only in living cells. In addition, if the cells are rapidly dividing, the reporter
gene should be imparted to the daughter cells such that the stem cells can still be detected
over time in later generations. However, transfection of the cells with reporter genes is a
more arduous process than direct labeling methods.

Each imaging modality has specific advantages and disadvantages with respect to delivery
and tracking of stem cells for cardiovascular applications (Fig. 1). Radionuclide imaging
techniques excel at detecting small numbers of cells because they lack background signals.
However, both anatomic imaging and interactivity are poor with radionuclide. Optical
imaging techniques are well suited for reporter gene techniques in small animals but suffer
from the inability to detect cells deep within the body, limiting their clinical applicability.
MRI provides superb anatomic detail of soft tissue but lacks the sensitivity to detect small
numbers of cells. Interventional techniques with MRI are still in the developmental stages
because of the need to create MRI-compatible devices. Nevertheless, the lack of ionizing
radiation with MRI is another advantage over conventional radiographic and radionuclide
techniques.

Although echocardiography provides a safe, noninvasive, and inexpensive method to rapidly
evaluate cardiac function, methods to label stem cells for tracking are only now being
explored. Contrast-enhanced ultrasound techniques using site-specific microbubbles have
been applied for imaging angiogenesis and more recently for imaging cell engraftment as
well (68). In a recent study, Kuliszewski et al. transfected bone marrow-derived endothelial
progenitor cells to express a unique marker protein (H-2Kk) on the cell surface (64).
Through attachment of the monoclonal antibody against H-2Kk onto the outer surface of
microbubbles, endothelial progenitor cell–targeted microbubbles were created. In vivo
contrast-enhanced ultrasound imaging of endothelial progenitor cells engrafted into the
vasculature within Matrigel (BD Biosciences) plugs was demonstrated. The real-time
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interactivity of echocardiography and lack of ionizing radiation favor the development of
this imaging modality for stem cell delivery and tracking.

Similarly, the real-time interactivity of x-ray angiography has made it the method of choice
for minimally invasive cardiovascular stem cell therapeutic trials. But the high toxicity of
most radiopaque contrast agents has limited the feasibility of stem cell tracking. New
emerging strategies may be able to overcome these problems. However, at present, other
imaging modalities as described above have been more extensively developed both for
potential translation to the clinical realm and for optimizing stem cell therapeutic regimes.

IMAGING ADULT STEM CELLS: OPPORTUNITIES AND CHALLENGES
In all studies of adult stem cell transplantation, the gain in cardiac function, when identified,
has been modest, with reported increases of left ventricular ejection fraction versus placebo
usually being about 5% (26,69–71). Possible reasons for the marginal benefit are low
transplanted cell engraftment and low levels of differentiation into functioning cardiac
myocytes. Augmenting transplanted cell engraftment could improve long-term functional
benefit by increased differentiation of stem cells into cardiac myocytes, increased
recruitment of endogenous stem cells, and beneficial effects on surviving cardiac myocytes
via paracrine mechanisms. A combination of fundamental work on the determinants of cell
engraftment in the acute and chronic infarct settings, and molecular imaging techniques that
provide information about cell fate, cardiac function, and infarct size, is needed to maximize
cardiac regeneration and minimize the risk of complications such as ventricular arrhythmias
(16,72–75). In vitro studies indicate that cell type, cell number, and the underlying
architecture are important determinants of arrhythmogenesis (76,77). Hence, quantification
and localization of cell engraftment using molecular imaging techniques would be useful in
minimizing adverse events in clinical studies of cell transplantation.

Although MRI, bioluminescence, and nuclear imaging have been used to track adult stem
cells in vivo after transplantation, only nuclear and bioluminescence imaging allow
quantification of engraftment. Recently, preclinical bioluminescence imaging studies have
been performed for assessment of important clinical questions such as the optimal timing of
stem cell delivery (78), direct comparison of various stem cell types (79–81), and
determination of the temporal kinetics of bone marrow stem cell homing after systemic
delivery (67). Bioluminescence imaging, however, is limited to small animals. PET of 18F-
FDG–labeled stem cells is an attractive option because PET permits quantification of
engraftment in vivo as well as translation into large-animal models and humans. However,
because the half-life of 18F is about 110 min, this technique can be used only to interrogate
acute biodistribution and cell retention after transplantation. Studies using a variety of
techniques, including direct cell radiolabeling, genetic labeling with reporter genes, and real-
time quantitative polymerase chain reaction, have revealed that acute myocardial cell
retention was less than 10% with 48 h irrespective of the cell type and delivery route
(45,46,49,72,82–84). An improved understanding of the determinants and functional
consequences of varying acute cell retention is needed to design new, effective cell delivery
strategies.

In a recent study, PET of 18F-FDG–labeled cardiac stem cells (Fig. 2) in a rat model of
myocardial infarction revealed that large numbers of intramyocardially injected cells were
trapped in the lungs acutely, an effect that was more pronounced during ischemia–
reperfusion (85). Another study using the same animal model indicated that acute
myocardial cell retention could be doubled by decreasing the ventricular rate with adenosine
administration or by epicardial application of fibrin glue (86). Together, these results
suggest that the coronary microvasculature and contractility play an important role in acute
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cell retention even after intramyocardial cell injections. Future studies incorporating
advances in tissue engineering and PET have the potential of greatly improving transplanted
cell retention and possibly the functional consequences of cell therapy.

Important insights into in vivo stem cell biology can be gleaned from longitudinal
interrogation of cell fate after transplantation. A recent study in a rat model of cell
transplantation used the human sodium-iodide symporter gene as a reporter gene for
longitudinal stem cell tracking by SPECT and PET (Fig. 2B) (84). Sodium-iodide symporter
transports iodine in conjunction with sodium ions into cells and is highly expressed in the
thyroid, salivary gland, choroid plexus, stomach, and lactating mammary gland (87) but is
not expressed in the heart, thus permitting detection of transplanted cells expressing this
gene by PET or SPECT, after intravenous administration of iodine or pertechnetate (99mTc).
The main significance of this study lies in the potential for clinical translation because
pertechnetate SPECT is a widely available, clinically approved imaging modality. The
principal downside of using this reporter gene for cell tracking is low signal in the acute
setting after cell transplantation, which could be related to edema at the injection site or
impaired energetics in the injected cells.

IMAGING EMBRYONIC STEM CELLS: OPPORTUNITIES AND CHALLENGES
As stated previously, pluripotent stem cells (e.g., ESCs and iPS cells) have generated
significant interest because of their self-renewing capacity and pluripotent potential. In
general, the 3 stages of cardiac development can be broadly categorized as undifferentiated
ESCs, differentiated beating embryoid bodies, and differentiated ESC-derived
cardiomyocytes. In 2006, the initial proof-of-principle study used undifferentiated murine
ESCs stably expressing a triplefusion reporter gene construct with firefly luciferase (Fluc;
bioluminescence), monomeric red fluorescent protein (mRFP; fluorescence), and herpes
simplex virus truncated thymidine kinase (HSVttk; PET reporter gene) to track cell fate in
vivo (56). Both bioluminescence and PET imaging showed that undifferentiated ESCs are
capable of causing both intracardiac and extracardiac teratomas (i.e., tumors consisting of all
3 germ layers), which can be ablated by treatment with ganciclovir that targets HSVttk-
expressing cells (Fig. 3). A follow-up study has shown that injection of mouse ESC-derived
beating embryoid bodies can also lead to teratoma formation with delayed onset (88).
Indeed, intramyocardial injections of as few as 100,000 human ESCs have been shown to
cause teratoma formation in immunodeficient mice (36).

Together, these studies indicate that highly purified ESC-derived cardiomyocytes are
required to minimize the risk of tumor formation for cell-based treatment of myocardial
dysfunction. Several studies have shown that transplantation of ESC-derived
cardiomyocytes can lead to improved cardiac function (29,30,89). However, analysis with
bioluminescence imaging indicates that about 90% of cells die within the first 3 wk of
delivery, which may be one reason why only short-term improvement of cardiac function
was observed (Fig. 4) (29). Similarly, limited long-term survival of ESC-derived endothelial
cells was seen after injections into both the heart (31) and skeletal muscles (90). Thus, the
problem of donor cell death is particularly troublesome and may limit the overall efficacy of
stem cell–based therapy, making continuing investigations into cell fate monitoring with
new imaging technologies essential.

Another hurdle facing clinical transplantation of human ESCs is the potential immunologic
barrier (91). The immune response generated after transplantation is directed toward
alloantigens, which are antigens presenting on the cell surface that are considered nonself by
the recipient immune system (27). Solutions that reduce or eliminate the potential
immunologic response to transplanted allogeneic human ESCs are needed and are reviewed
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elsewhere (92). Possible strategies to minimize rejection of human ESC transplants include
forming human leukocyte antigen isotype human ESC-line banks and creating a universal
donor cell by genetic modification. In the meantime, immunosuppressive drugs will be
needed. Indeed, the first proposed clinical trial of human ESC therapy involving injections
of differentiated neuronal cells into patients with acute spinal cord injury will also involve
immunosuppression. However, using longitudinal bioluminescence imaging analysis,
Swijnenburg et al. have reported that the single-drug regimen with mycophenolate mofetil,
sirolimus, or tacrolimus was not effective in preventing rejection of human ESCs in
immunocompetent mice (34). The combination of tacrolimus and sirolimus was found to
prolong human ESC survival modestly to about 4 wk. Thus, further investigations are
clearly needed in this area, along with the development of iPS cells, which in theory should
avoid the immunogenicity problem because the cells are derived from the patients
themselves (37).

CHALLENGES IN CLINICAL TRANSLATION
To date, most academic centers have focused on developing new methodologies for stem
cell labeling and tracking and may lack the resources to make good-manufacturing-practice
products or perform extensive safety and efficacy testing. The U.S. Food and Drug
Administration (FDA) has developed a framework for the regulation of stem cells (93).
Many techniques are being developed using clinically approved radiotracers or contrast
agents for labeling stem cells. However, because the cellular product that will be labeled is
typically different from the FDA-approved application (e.g., 111In-oxine of lymphocytes), or
the route of administration (e.g., intracoronary) may be different, the regulatory hurdles can
be quite complex. To obtain an investigational new drug application, one would have to seek
approval for the stem cell product and also meet the guidelines for radiopharmaceuticals or
contrast agents. Reporter gene transfection of cells is similarly covered by relevant FDA
guidelines that must be met.

Beyond adherence to FDA guidelines, there are other major hurdles to clinical translation.
Frequently, stem cells for cardiovascular applications are administered directly to the
myocardium either using a minimally invasive transendocardial approach or during coronary
artery bypass surgery. Both techniques could potentially use new devices to inject the stem
cells. Although devices for gene therapy applications including stem cell delivery have been
developed by several small companies, the lack of preclinical studies showing high efficacy
has tempered the enthusiasm of major vendors to foster development of such devices. In
particular, the complexity and cost of device development can be prohibitive for new
methods such as MRI guidance or electromechanical mapping.

In addition to the device and stem cell approval process by the FDA, there is the question of
which stem cell products are to be used in preclinical animal studies to demonstrate efficacy.
Because the final product that will be used in patients will presumably be of human origin,
should the animal studies be performed using autologous or allogeneic stem cells? Should
human stem cells be used in an immunosuppressed animal, and if so, which specific regimen
of drugs should be used? It is possible that immunosuppressed animals could yield different
results from those in immunocompetent animals. Furthermore, so far most cardiac stem cell
trials have used interventional techniques for stem cell delivery, that is, intracoronary or
transmyocardial routes (7,71,94–97). Thus, whether preclinical work using labeled stem
cells should focus on animals large enough to replicate these preferred delivery methods
must also be determined.

To this end, a hybrid technique has exploited microencapsulation techniques that provide
immunoprotection of transplanted donor cells (98) with x-ray–based delivery methods for
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cell tracking. Radiopaque agents can be added to the microcapsule to enable visualization by
x-ray fluoroscopic and CT imaging (99,100). The incorporation of high concentrations of
radiopaque agent in the microcapsule without inducing toxicity or detrimental effects to the
porous microcapsule is an advantage of the system. X-ray–visible microcapsules can then be
used to deliver stem cells during cardiovascular interventions (Figs. 5 and 6) (101,102). Like
direct labeling techniques, microcapsule tracking does not indicate whether the stem cells
remain viable. Such a technique could be used in combination with reporter gene
transfection of stem cells to deliver stem cells using conventional x-ray imaging platforms
with follow-up examination by PET/CT or SPECT/CT (Fig. 7) (103).

CONCLUSION
Although current imaging tools have illuminated different facets of stem cell biology in
vivo, further efforts are needed by stem cell biologists and imaging experts to develop,
validate, and accelerate progress in this field. Stem cell tracking requires high sensitivity and
high spatial resolution; at present, no single imaging modality is perfect in all aspects.
Future efforts should continue focusing on the development of multimodality imaging
approaches capable of answering biologically relevant questions and clinical translation.
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FIGURE 1.
Schematic for noninvasive imaging of stem cell fate in myocardium. Four different
techniques include magnetic particle labeling, radionuclide labeling, quantum dot labeling,
and reporter gene labeling. First 3 techniques are considered physical labeling, whereas last
technique is considered genetic labeling. SPIO = superparamagnetic iron oxide; IFP = iron
fluorescent particles. (Reprinted with permission of (45).)

Wu et al. Page 13

J Nucl Med. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 2.
(A–C) Detection of 18F-FDG–labeled cardiac-derived stem cells (CDCs) in rat heart by
small-animal PET/CT. CDCs were labeled with 74 kBq of 18F-FDG per milliliter and
injected intramyocardially after ligation of mid left anterior descending coronary artery. PET
was performed immediately after cell transplantation. Myocardium (green) was delineated
by intravenous injection of 37 MBq of 13N-NH3. Cells (red) were visualized within
perfusion deficit by PET. Transverse (A), coronal (B), and sagittal (C) image orientations
are shown. (D–F) SPECT/CT of sodium-iodide symporter-transduced CDCs in rat heart.
CDCs were transduced with lentivirus expressing sodium-iodide symporter driven by
constitutively active promoter, cytomegalovirus, and injected intramyocardially after
ligation of mid left anterior descending coronary artery. SPECT/CT dual-isotope imaging
was performed 24 h after cell transplantation. Myocardium (green) was delineated by
intravenous injection of 201Tl. Transplanted cells (red) were identified within perfusion
deficit by SPECT after intravenous injection of 99mTc. Transverse (D), coronal (E), and
sagittal (F) image orientations are shown.
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FIGURE 3.
Ablation of teratoma formation with HSVttk as both PET reporter gene and suicide gene.
(A) Immunodeficient animals were injected with undifferentiated mouse ESCs stably
expressing triple-fusion reporter gene construct (Fluc-mRFP-HSVttk). Treatment of control
animals with saline resulted in formation of multiple teratomas by week 5. (B) In contrast,
study animals treated with ganciclovir (50 mg/kg of body weight) for 2 wk showed
abrogation of both bioluminescence and PET signals. (Reprinted with permission of (56).)
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FIGURE 4.
Imaging fate of transplanted ESC-derived cardiomyocytes and ESC-derived endothelial
cells. (A) Human ESC-derived cardiomyocytes stably expressing Fluc-eGFP double-fusion
reporter gene were injected into ischemic myocardium of immunodeficient SCID mice.
Longitudinal bioluminescence imaging showed that signal activity fell drastically within
first 3 wk of transplantation and remained stable thereafter, with no evidence of
tumorigenesis. (Reprinted with permission of (29).) (B) Mouse ESC-derived endothelial
cells stably expressing Fluc-eGFP double fusion reporter gene were injected into ischemic
myocardium of syngeneic SV129 mice. Longitudinal bioluminescence imaging showed
similar pattern of acute donor cell loss, with about 1% signal intensity (relative to day 2) at 8
wk. Control animals injected with phosphate-buffered saline showed no imaging signals, as
expected. (Reprinted with permission of (31).) CM = cardiomyocyte; EC = endothelial cell.
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FIGURE 5.
Bioluminescence imaging after intramuscular injection in medial thigh of rabbit model of
peripheral arterial disease provides ability to assess cell viability in vivo in x-ray–visible
encapsulated mesenchymal stem cells, similar to nonencapsulated mesenchymal stem cells.
(Reprinted with permission of (101).)
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FIGURE 6.
X-ray angiogram of peripheral hind limb of rabbit before intervention (left) and after
creation of femoral artery occlusion via platinum coil (black arrow). X-ray–visible
microencapsulated stem cells injected intramuscularly in medial thigh appear as
radiopacities (white arrows). Quarter (Q) is used for reference measurements. (Reprinted
with permission of (102).)
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FIGURE 7.
PET/CT reporter gene imaging of mesenchymal stem cells in porcine heart. Mesenchymal
stem cells were transduced with adenovirus containing cytomegalovirus promoter driving
HSVtk reporter gene in vitro, followed by transplantation into porcine myocardium through
left thoracotomy. Cells could then be visualized after 9-(4-18F-fluoro-3-
[hydroxymethyl]butyl)-guanine injection, seen in this reconstructed image of left ventricle
taken 4 h after intravenous administration of PET reporter probe. Arrows show localization
of cells at injection site in heart. %ID = percentage injected dose; LV = left ventricle; T =
thoracotomy site. (Reprinted with permission of (103).)

Wu et al. Page 19

J Nucl Med. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


