
Role of interleukin-1β during pain and inflammation

Ke Rena and Richard Torresb,*
aDepartment of Neural and Pain Sciences, Dental School & Program in Neuroscience, University
of Maryland, Baltimore, MD 21201-1586, USA
bRegeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591-6707, USA

Abstract
The cytokine cascade in pain and inflammatory processes is a tremendously complex system,
involving glial, immune, and neuronal cell interactions. IL-1β is a pro-inflammatory cytokine that
has been implicated in pain, inflammation and autoimmune conditions. This review will focus on
studies that shed light on the critical role of IL-1β in various pain states, including the role of the
intracellular complex, the inflammasome, which regulates IL-1β production. Evidence will be
presented demonstrating the importance of IL-1β in both the induction of pain and in the
maintenance of pain in chronic states, such as after nerve injury. Additionally, the involvement of
IL-1β as a key mediator in the interaction between glia and neurons in pain states will be
discussed. Taken together, the evidence presented in the current review showing the importance of
IL-1β in animal and human pain states, suggests that blockade of IL-1β be considered as a
therapeutic opportunity.

1. Interleukin-1
Interleukin-1 α and β are prototypic proinflammatory cytokines that exert pleiotrophic
effects on a variety of cells and play key roles in acute and chronic inflammatory and
autoimmune disorders. There are two IL-1 receptors, IL-1 type 1 receptor (IL-1RI) and IL-1
type 2 receptor (IL-1 RII). IL-1α and IL-1β signal through IL-1RI. Binding to IL-1RII does
not lead to cell signaling and it is therefore considered a decoy receptor. Upon binding of
IL-1 to IL-1RI, a second receptor termed IL1 receptor accessory protein (IL-1RAcP) gets
recruited at the cell membrane to form a high affinity binding receptor complex leading to
intracellular signaling. A third IL-1 family member, IL-1 receptor antagonist (IL-1ra), binds
to IL-1 receptors and prevents the interaction of IL-1 with its receptors, acting as a natural
IL-1 inhibitor (reviewed in Dinarello, 1996 and Braddock and Quinn, 2004) This review will
focus on the role of IL-1β in painful and inflammatory conditions.

IL-1β has important homeostatic functions in the normal organism, such as in the regulation
of feeding, sleep, and temperature (reviewed in Dinarello, 1996). However, overproduction
of IL-1β is implicated in the pathophysiological changes that occur during different disease
states, such as rheumatoid arthritis, neuropathic pain, inflammatory bowel disease,
osteoarthritis, vascular disease, multiple sclerosis, and Alzheimer's disease (reviewed in
Dinarello, 1996; Braddock and Quinn, 2004, and Dinarello, 2004). IL-1β can be released
from keratinocytes, fibroblasts, synoviocytes, endothelial, neuronal, immune cells such as
macrophages and mast cells, and glial cells such as Schwann cells, microglia and astrocytes
(Watkins et al., 1995; Copray et al., 2001; Shamash et al., 2002; Sommer and Kress, 2004;
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Perrin et al., 2005; Clark et al., 2006; Guo et al., 2007; Thacker et al., 2007). One area of
research that has shed new light into IL-1β's role in inflammation and pain during disease
state is the processing of IL-1β by Caspase-1 via the inflammasome.

2. Inflammasome
The inflammasome is an intracellular multi-protein complex that is emerging as an
important regulator of inflammation (Fig. 1). The inflammasome acts as an activating
scaffold for proinflammatory Caspases. One such Caspase, Caspase 1, cleaves and activates
pro-IL-1β and pro-IL-18 (reviewed in Martinon and Tschopp, 2007). IL-33 has also been
shown to be a possible Caspase 1 substrate (Schmitz et al., 2005). Inflammasomes play
important roles in the innate immunity pathway and are active players in inflammatory
disorders. As shown below, there is also evidence that they are involved in painful
conditions.

Inflammasomes contain NOD-like receptor (NLR) proteins, and are named based on which
NLR protein is present. The NLRP3, also known as NALP3 or CIAS1, inflammasome is
probably the best studied (reviewed in Tschopp et al., 2003 and Mariathasan and Monack,
2007). The NLRP3 protein contains four distinct domains, a Pyrin domain (PYD) at the N-
terminus, followed by a NACHT domain (named after NAIP, CIITA, HET-E, and TP1), a
NACHT-associated domain (NAD) and a Leucine-rich repeats (LRR) domain at the C-
terminus (Reviewed in Church et al., 2008). It is thought that NLRP3 acts as a sensor for
cell injury and microbial components and once activated it binds through the PYD region to
the ASC (apoptosis-associated speck-like protein containing a CARD domain) adaptor
protein, which contains a PYD domain at the N-terminus and a CARD domain at the C-
terminus. Besides binding to ASC, NLRP3 is also bound through its NACHT domain to the
FIIND domain at the N-terminus of the Cardinal protein (Agostino et al., 2004). The ASC
and Cardinal proteins, through their CARD domains, in turn bind to the CARD domain of
pro-Caspase 1, causing proteolytic cleavage yielding activated Caspase 1. Cleaved Caspase
1 can then process pro-IL-1β to its bioactive IL-1β form (Agostino et al., 2004). Besides
Caspase 1, there is evidence that metalloproteases (MMPs) cleave IL-1β, therefore Caspase
1-independent pathways may also play roles in pain transmission (Kawasaki et al., 2008a).

3. IL-1β in gout and other autoinflammatory diseases
Recently, gouty arthritis has taken center stage in the inflammasome field. Gout is one of the
most painful acute conditions known to man and has been described since Egyptian times
(reviewed in Nuki and Simkin, 2006). Gout is an autoinflammatory disorder that is caused
by hyperuricemia. Articular deposits of monosodium urate (MSU) crystals lead to gouty
arthritis, which causes acute gout attacks. These attacks present clinically as a highly
inflammatory arthritis with intense redness, warmth and pain surrounding an affected joint
that lasts for a few days and are associated with systemic symptoms such as fever,
leukocytosis and elevated markers of inflammation. Most patients will have recurring
attacks and chronic tophaceus gout can occur in untreated gout (reviewed in Dalbeth and
Haskard, 2005, Masseoud et al., 2005, and Terkeltaub, 2006).

For the past 20 years, it had been known that IL-1β was produced by human white blood
cells stimulated by MSU crystals (Malawista et al., 1985; Di Giovine et al., 1987), but the
mechanism of how the crystals increased IL-1β production was not known until the seminal
work of Martinon et al. (2006). In this paper, it was demonstrated that the inflammatory
effects of the MSU crystals worked through the NLRP3 inflammasome. The authors showed
that there was a deficiency in the activation of IL-1β by MSU crystals in macrophages
isolated from mice deficient in various components of the inflammasome. Additionally, in
an in vivo model of MSU crystal-induced peritonitis, there was a reduction in the neutrophil
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influx in NLRP3, ASC, or Caspase 1-deficient mice as well as in IL-1R1-deficient mice
(Martinon et al. 2006).

The importance of the IL-1 pathway, and not IL-18, was demonstrated by Chen et al. (2006),
who showed that IL-1R1 deficient mice, and not IL-18R deficient mice, had an impairment
of neutrophil influx in the MSU crystal peritonitis model. Additionally, pharmacological
blockade of IL-1 pathway was shown to reduce neutrophil influx in the MSU crystal
peritonitis model with blocking antibodies to IL-1 and IL-R1 or with the recombinant
protein version of IL-1ra, Anakinra. This neutrophil influx decrease was not observed with
an anti-TNF blocking antibody (Chen et al., 2006; So et al., 2007). Furthermore, in a small
human pilot study involving 10 gouty arthritis patients, Anakinra rapidly relieved the
inflammatory symptoms of gout (So et al., 2007). Anakinra is an FDA approved drug for the
treatment of rheumatoid arthritis (reviewed in Braddock and Quinn, 2004 and Dinarello,
2004).

Besides the role of the inflammasome in acute gouty arthritis, there is a growing body of
literature that shows that multiple auto-inflammatory diseases may result from mutations
within genes that encode for different components of the inflammasome, leading to over
production of IL-1β (reviewed in Stojanov and Kastner, 2005 and Church et al., 2008). For
example, there are mutations within the NLRP3 gene that are associated with several
hereditary periodic-fever syndromes, such as familial cold urticaria and Muckle–Wells, that
lead to periodic fevers, joint inflammation and pain among other symptoms (Hoffman et al.,
2001; reviewed in Hull et al., 2003). These NLRP3 gene mutations are thought to lead to
excessive production of IL-1β (Agostino et al., 2004; Gattorno et al., 2007). The importance
of the overproduction of IL-1β was recently demonstrated in small human pilot clinical trials
showing that the recombinant protein version of IL-1ra, Anakinra, ameliorated clinical
symptoms in periodic-fever syndromes (Hawkins et al., 2004, Hoffman et al., 2004).
Additionally, Rilanocept (IL-1 Trap) was recently approved by the FDA for the treatment of
Cryopyrin-Associated Periodic Syndromes (CAPS), including Familial Cold
Autoinflammatory Syndrome (FCAS) and Muckle–Wells Syndrome (MWS) after
successfully completing human clinical trials (Hoffman et al., 2008; Gold-bach-Mansky et
al., 2008). The IL-1 Trap is a recombinant dimeric fusion protein that contains in a single
chain the extracellular domains of IL-1RI and IL-1RAcP fused to the human Fc portion of
an IgG protein (Economides et al., 2003; reviewed in Braddock and Quinn, 2004).

4. IL-1β in the periphery and pain
IL-1β is a potent mechanical and thermal hyperalgesic agent when injected into any number
of peripheral tissues (Ferreira et al., 1988; Fukuoka et al., 1994; Watkins et al., 1994; Safieh-
Garabedian et al., 1995; Cunha et al., 2000; Zelenka et al. 2005). Intraplantar injection of
inflammatory agents, such as carrageenan, lipopolysaccharide (LPS) bacterial endotoxin, or
complete Freund's adjuvant (CFA), produce mechanical or thermal hyperalgesia associated
with an upregulation of IL-1β and other inflammatory cytokines in the inflamed tissue and
in the dorsal root ganglia (DRG) (Safieh-Garabedian et al., 1995, 2002; Woolf et al., 1997;
Cunha et al., 2000; Samad et al., 2001; Chessell et al. 2005; Menetski et al. 2007).

One mechanism of action for IL-1β is through upregulation of other pro-nociceptive
mediators. For example, administration of IL-1ra significantly reduced mechanical
hyperalgesia produced by a CFA intraplantar injection as well as CFA-induced upregulation
of Nerve Growth Factor (NGF), a neurotrophic factor known to play a crucial role in a
variety of acute and chronic pain states (Safieh-Garabedian et al., 1995). Interestingly, anti-
NGF pre-treatment was able to reduce the CFA-induced hyperalgesia but not the elevation
in IL-1β (Safieh-Garabedian et al., 1995) suggesting indirect mechanisms may be
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responsible for the changes in behavior. This upregulation of NGF by IL-1β occurred at both
the transcriptional and post-transcriptional levels (Lindholm et al., 1987, 1988; Vige et al.,
1991). IL-1β can additionally signal through complex signaling cascades that lead to the
release and/or activation of other nociceptive molecules such as Prostaglandin,
Interleukin-6, Substance-P, and MMP9 (Inoue et al. 1999; Samad et al., 2001; Economides
et al., 2003; Kawasaki et al., 2008a).

Despite the anti-NGF results, there is also evidence that IL-1β's actions can occur directly on
nociceptors. RT-PCR and in situ hybridization studies have demonstrated that IL-1R1 is
expressed in sensory neurons (Copray et al. 2001, Obreja et al., 2002). IL-1β is known to
modulate neuronal excitability by affecting neuronal receptors such as TRPV1, sodium
channels, GABA receptors, and NMDA receptors (reviewed in Schäfers and Sorkin, 2008).
As evidence of IL-1β's direct actions on nociceptors, it has been shown that IL-1β in a
nerve-skin in vitro preparation can excite nociceptive fibers in as little as 1 min (Fukuoka et
al., 1994). Additionally, IL-1β has been shown to cause an increase in the heat-evoked
release of Calcitonin Gene Related Peptide (CGRP) from rat cutaneous nociceptors in vitro
(Opree and Kress, 2000). In a separate study, brief application of IL-1β to isolated neurons
yielded a potentiation of heat-activated excitatory inward currents (Iheat)(Obreja et al.,
2002).

5. IL-1β's role during neuropathic pain
Neuropathic pain arises from dysfunction of the nervous system. The interplay between the
immune and nervous systems is thought to be critical for the development and maintenance
of neuropathic pain, and the proinflammatory cytokines, including IL-1β, appear to be
contributory to the pain state (reviewed in Scholz and Woolf, 2007, and Uceyler and
Sommer, 2008). Low back pain is a common and debilitating painful disorder which can
arise from nerve injury. In degenerate and herniated human intervertebral discs, IL-1β
expression is higher than in non-degenerate intervertebral disc controls (LeMaitre and
Hoyland, 2007). In various animal models of neuropathic pain, IL-1β expression is increased
in the injured sciatic nerve, DRG, and spinal cord (Rotshenker et al., 1992; Hashizume et al
2000; Lee et al., 2004; Perrin et al., 2005; Ruohonen et al., 2005; Uceyler et al., 2007;
Kawasaki et al., 2008a). Immediately after peripheral nerve injury, Schwann cells are
activated and macrophages are recruited to the injury site and both secrete IL-1β (reviewed
in Scholz and Woolf, 2007) . The ipsilateral upregulation of IL-1β at the site of injury in the
sciatic nerve has been detected as early as 1 h post-surgery in the chronic constriction injury
(CCI) model in mice (Uceyler et al., 2007). In a rat transected sciatic nerve model,
upregulation of IL-1β has been detected as long as 35 days post-surgery (Ruohonen et al.,
2005).

In the CCI model in mice, sciatic nerve epineural injections of IL-1R1 neutralizing
antibodies were shown to reduce both thermal hyperalgesia and mechanical allodynia,
suggesting a role for the upregulated IL-1β in the induction of neuropathic pain (Sommer et
al. 1999; Schafers et al., 2001). Additionally, in the same CCI model, mechanical allodynia
was reduced by intrathecally administered IL-1β neutralizing antibody (Kawasaki et al.,
2008a) suggesting that neuropathic pain is mediated by IL-1β activity at several sites. That
IL-1β may act in concert with other mediators is suggested by the observation that in another
neuropathic pain model, the L5 spinal nerve transection in rats, the combination of
intrathecal (i.t.) injections of IL-1ra and soluble TNF Receptor (sTNFR) dose-dependently
attenuated mechanical allodynia (Sweitzer et al., 2001). Using genetically-engineered
models, it was shown that both IL-1R1 knockout mice and mice genetically overexpressing
IL-1ra in astrocytes had reduced thermal hyperalgesia and mechanical allodynia in the L5
spinal nerve transection model, and reduced autotomy in a complete sciatic denervation

Ren and Torres Page 4

Brain Res Rev. Author manuscript; available in PMC 2011 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



model. Additionally, both lines of engineered mice had a reduction in the amount of
spontaneous ectopic activity in isolated DRG, a phenomenon previously associated with the
development of neuropathic pain (Wolf et al., 2006).

Recently, new mechanisms of neuropathic pain have been revealed involving a complex
pathway with MMP9, MMP2 and IL1-β. Kawasaki et al., 2008a showed that in the CCI
model cleavage of IL-1β by MMP subtypes contributed to different phases of neuropathic
pain behavior. After nerve injury, MMP-9 induced neuropathic pain through IL-1β cleavage
and microglial activation at early times, whereas MMP-2 maintained neuropathic pain
through IL-1β cleavage and astrocyte activation at later times. This well-orchestrated
sequential activation of microglia followed by activation of astrocytes in the spinal cord
during neuropathic pain has been previously documented (reviewed in Scholz and Woolf,
2007). Additionally, IL-1β was shown to activate MMPs, suggesting a circular regulation
between MMPs and IL-1β (Kawasaki et al., 2008a). Therefore, IL-1β is likely part of a
complex signaling cascade involving MMPs in the CCI model.

6. IL-1β in the CNS and pain
As suggested by the spinal cord data mentioned previously, the involvement of cytokines in
persistent pain is not limited to peripheral sensitization. Proinflammatory cytokines and their
receptors have been found in the CNS. For example, IL-1β's receptor IL-1R1 has been
localized to the spinal dorsal horn and brain (Samad et al., 2001, Guo et al., 2007; Zhang et
al., 2008).

Direct injection of IL-1β into the CNS has been shown to produce hyperalgesia and
enhanced neuronal responses in animals (Oka et al., 1993; Oka et al., 1994; Watkins et al.,
1994; Reeve et al., 2000). For example, intracerebroventricular (i.c.v.) injection of IL-1β has
been shown to decrease response latency in the hot plate test in rats (Oka et al., 1993). A
separate study showed that an i.t. injection of IL-1β led to a decrease in hind paw
withdrawal thresholds in the von Frey test (Reeve et al., 2000). To assess the effects of
IL-1β in neuronal responses, Oka et al. (1994) microinjected IL-1β in the lateral cerebral
ventricle of rats. This resulted in potentiated responses of wide dynamic range neurons in the
trigeminal subnucleus caudalis to noxious pinching of the facial skin. However, the same
dose of IL-1β did not affect the responses of low threshold mechanoreceptive neurons to
skin brushing, suggesting some specificity of action. The IL-1β-induced enhancement of
nociceptive neuron responses was completely abolished by pretreatment with IL-1ra (Oka et
al., 1994). In a separate study, Reeve et al. (2000) showed that an i.t. administration of rat
IL-1β produced enhanced dorsal horn neuronal activity, including enhancement of responses
to C-fiber stimulation, wind-up and after-discharges.

In addition to the evidence cited above suggesting that CNS administration of IL-1β can
induce pain states, data have been generated which suggest that IL-1β acting in the CNS can
contribute to nociceptive responses in animal models of pain. For example, i.t. delivery of
IL-1ra has been demonstrated to relieve HIV-1 gp120-induced mechanical allodynia and
thermal hyperalgesia in the hind paw (Milligan et al., 2001). In addition, Zhang et al. (2008)
showed that IL-1ra given by an i.t. injection decreased inflammatory hyperalgesia in the
hind paw induced by a CFA injection. While the source of increased IL-1β in the CNS is not
clear, IL-1β has been shown to be present in the spinal cord and brain following a CFA hind
paw injection (Samad et al., 2001; Raghavendra et al., 2004; Zhang et al., 2008). Work with
IL-1β and other cytokines has led to the notion that the central cytokine cascade could be an
important contributor to the development of persistent pain states (Samad et al., 2001; Guo
et al., 2007; Kawasaki et al., 2008b; Zhang et al., 2008).
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7. IL-1β in central glia-neuronal interaction
Injury-induced central neuronal hyperexcitability, or central sensitization, has been
identified as an important mechanism underlying persistent pain. Evidence suggests that
glia, particularly astroglia, are intimately involved in the control of neuronal activity
(Jourdain et al., 2007; Parri and Crunelli, 2007). Convergent evidence suggests that
inflammatory cytokines act as mediators between glia and neurons and assume roles as
neuromodulators (reviewed in Watkins and Maier, 2003).

Inflammatory cytokines are known to be released by activated glia and have been implicated
in persistent hyper-algesia (DeLeo and Yezierski, 2001; Watkins et al., 2003). Injection of
CFA into the masseter muscle of the rat produces muscle inflammation and hyperalgesia.
After CFA injection, rats exhibited an increased responsiveness and reduced response
threshold to mechanical stimuli, characteristic of mechanical hyperalgesia and allodynia
(Sugiyo et al., 2005; Watanabe et al., 2005). Masseter inflammation induced glial activation
in the spinal trigeminal nucleus, as indicated by increased immunoreactivity of glial
fibrillary acidic protein (GFAP, astroglial marker), astroglial gap junction protein connexin
43 and CD11b, a marker of activated microglia (Guo et al., 2007). Activation of glia by
masseter inflammation was accompanied by an increase in IL-1β levels. Interestingly, IL-1β
was selectively induced in astroglia as shown by double immunofluorescence staining:
IL-1β colocalized with GFAP, but not CD11b and Neu-N, a neuronal marker (Guo et al.,
2007). Similar selective induction of IL-1β in astrocytes was also observed in a bone cancer
pain model and after intracerebral hemorrhage (Zhang et al., 2005; Wasserman and Zhu,
2007). These results suggest that astrocytes are a source of IL-1β release under these
conditions. Further evidence indicated that both inflammation-induced astroglial activation
and IL-1β were dependent on nerve input and were inhibited by the glial modulator
propentofylline, suggesting that glial activation is upstream and critical to cytokine
induction in the CNS after inflammation (Guo et al., 2007).

Studies have also indicated that IL-1β is produced in microglia in the CNS (Clark et al.
2006; Van Dam et al., 1995). Application of LPS to an ex vivo dorsal horn slice preparation
induced rapid secretion of IL-1β from activated spinal micro-glial cells (Clark et al., 2006).
Additionally, an i.t. injection of LPS in the lumbar spinal cord produced mechanical hyper-
algesia in the rat hindpaw that was attenuated by the concomitant i.t. injection of IL-1ra
(Clark et al., 2006). These data suggest a critical role of IL-1β and activated microglia in
enhancing nociceptive transmission in spinal cord inflammation.

8. IL-1β signaling, NMDA receptor phosphorylation, and persistent pain
Neuronal glutamate receptors, particularly ionotropic NMDA receptors, play major roles in
activity-dependent synaptic plasticity and persistent pain (reviewed in Woolf and Salter,
2000, Guo et al., 2006, and Ji and Woolf, 2001). NMDA receptors are heteromers of NR1/
NR3 and NR2 subunits (reviewed in Paoletti and Neyton, 2007). Several amino acid
residues on the intracellular C-termini of the NR1 and NR2 proteins are phosphorylated
upon activation of protein kinases. These phosphorylation sites of the NMDA receptor
subunits facilitates its trafficking, modulates channel kinetics and enhances function (Chen
and Huang, 1992; Tingley et al., 1997; Yu et al., 1997; Brenner et al., 2004). The NMDA
receptor phosphorylation is increased after tissue or nerve injury and this correlated with
increased pain sensitivity (Guo et al., 2002; Zou et al., 2002; Brenner et al., 2004; Caudle et
al., 2005).

Recent studies have indicated that the signal transduction cascade involving IL-1β and
NMDA receptors are linked in the ascending nociceptive circuit (Viviani et al., 2003; Yang
et al., 2005; Guo et al., 2007; Zhang et al., 2008; Kawasaki et al., 2008b). The glial inhibitor
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fluorocitrate and IL-1ra inhibited inflammatory hyperalgesia and inflammation-induced
NMDA receptor phosphorylation. Additionally, IL-1R1 and the NR1 subunit of the NMDA
receptor were shown to colocalize in neurons (Guo et al. 2007, Zhang et al., 2008). In
another set of experiments, direct application of IL-1β to an in vitro brain stem slice
preparation induced an enhanced NMDA receptor phosphorylation in regions involved in
trigeminal nociceptive processing. The effect of IL-1β on NMDA receptor was selective
since another prototype inflammatory cytokine, TNFα, did not affect P-ser896-NR1 levels at
the dose tested. This IL-1β-induced NR1 phosphorylation was blocked by IL-1ra, but not by
fluorocitrate, the glial inhibitor, suggesting that the effect of IL-1β on NMDA receptor is
downstream to glial activation (Guo et al. 2007). Taken together, these findings provide
evidence that IL-1β leads to NMDA receptor phosphorylation through IL-1R1 signaling to
facilitate pain transmission.

9. Conclusions
In summary, a growing number of studies show that peripheral injury activates both
neuronal and non-neuronal or glial components of the peripheral and central cellular
circuitry. The subsequent interactions between the injury site, neurons, and glia cells lead to
increased excitability and persistent pain. Proinflammatory cytokines are also induced after
injury, and may act on neurons to facilitate central sensitization and hyperalgesia. Recent
findings implicate IL-1β in painful and inflammatory processes at multiple levels, both
peripherally and centrally. IL-1β may explain how glial cells affect CNS neuronal activity
and promote hyperalgesia. The mediation of interactions between cells at the injury site,
such as glia and neurons, by IL-1β may facilitate synaptic activity and pain transmission,
and contribute to the development of chronic pain. Taken together, these findings suggest
that IL-1β inhibition could represent a broad-acting and efficacious method for managing
pain and inflammation across a wide variety of conditions.
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Fig. 1.
NLRP3 inflammasome: The NLRP3 protein is thought to be activated by both intracellular
and extracellular signals and acts as a central component of a protein complex containing
ASC, Cardinal, and Pro-Caspase1. The activation of the inflammasome leads to cleavage of
the Pro-caspase 1 to its active form, which results in the production of the active mature
form of IL-1β.
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