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Summary
During storage, red blood cells intended for transfusion
undergo progressive changes affecting survival and
function. Some of these in vitro changes are partly re-
stored in vivo after transfusion, and their clinical effects
are largely unknown. We evaluated publications of clini-
cal studies comparing storage times in connection with
red blood cell transfusion using physiological or clinical
outcomes. A few prospective randomised studies in hu-
mans investigated physiological outcomes or oxygen ki-
netics. Sixteen observational studies comparing clinical
outcome yielded contradictory results regarding the ef-
fect of red cell storage on mortality, length of intensive
care and hospital stay, infections, organ failure, and com-
posite adverse effects. The use of different red blood cell
products further obscures the issue. Available studies
provide no evidence that longer stored red cells are
more harmful than younger red cells. However, such an
effect may occur under extreme clinical conditions of se-
vere anaemia or septicaemia, but this can only be an-
swered by randomised studies controlling for confound-
ing factors.
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Zusammenfassung
Auswirkungen der Erythrozytenlagerung
Für die Transfusion vorgesehene Erythrozyten durchlau-
fen während ihrer Lagerung ständige Veränderungen,
die das Überleben und die Funktion der Zellen beeinflus-
sen. Einige dieser In-vitro-Veränderungen werden nach
der Transfusion in vivo teilweise rückgängig gemacht,
und ihre klinischen Auswirkungen sind größtenteils un-
bekannt. In der vorliegenden Arbeit werden Publikatio-
nen klinischer Studien, die Erythrozytenlagerungszeiten
anhand des physiologischen bzw. klinischen Outcome
vergleichen, bewertet. Einige am Menschen durchge-
führte prospektive, randomisierte Studien haben das
physiologische Outcome oder die Sauerstoffkinetik
untersucht. Sechzehn Beobachtungsstudien, in denen
das klinische Outcome verglichen wurde, erbrachten
widersprüchliche Ergebnisse bezüglich des Einflusses
der Erythrozytenlagerung auf die Mortalität, die Länge
der intensivmedizinischen Behandlung und des Kran-
kenhausaufenthalts, Infektionen, Organversagen sowie
verschiedene Nebenwirkungen. Die Verwendung unter-
schiedlicher Erythrozytenpräparate ist dabei ein zusätz-
licher Störfaktor. Vorliegende Studien liefern keine Hin-
weise darauf, dass länger gelagerte Erythrozyten ge-
sundheitsschädlicher als jüngere Zellen sind. Dies
schließt nicht aus, dass unter extremen klinischen Be-
dingungen wie schwerer Anämie oder Sepsis ein nach-
teiliger Effekt auftreten kann. Diese Frage kann jedoch
nur durch randomisierte Studien, in denen Störgrößen
überprüft werden, beantwortet werden.



Introduction

The primary function of red blood cells (RBC) is uptake,
transport, and delivery of oxygen. In addition, RBC contribute
to the colloid osmotic pressure, to platelet-endothelium inter-
actions, and transport of several molecules such as drugs or
immune complexes. The aim of RBC transfusions is to treat or
prevent tissue hypoxia. Virtually all oxygen is transported by
the haemoglobin (Hb). The oxygen supply is further deter-
mined by cardiac output and by oxygen uptake capacity in the
lung. Under resting circumstances, the oxygen supply exceeds
the demand. Overall, only 25–35% of the available oxygen is
extracted by the tissues, although some organs such as the
heart, kidney, and brain have a higher basic oxygen extraction
ratio of 55–70% and have less capacity to increase oxygen ex-
traction in response to anaemia [1]. Oxygen supply is not syn-
onymous with oxy Figgen delivery as this requires passage of
erythrocytes through the microcirculation and unloading of
oxygen, determined by the oxygen dissociation curve, which
depends among other factors on acidosis and the red cell en-
zyme 2,3-diphosphoglycerate (2,3-DPG) (table 1). 
During ex-vivo storage, red cells undergo changes affecting
function and viability, often collectively referred to as ‘storage
lesions’. These raised concern for appropriate oxygen deliv-
ery, increased adhesion of erythrocytes to endothelium, and
impaired deformability necessary for passage through small
capillaries; however the clinical relevance is unknown [2–5].
We discuss available clinical studies investigating effects of red
cell storage. 

Red Cell Products

For the production of red cells intended for transfusion, in the
Western world 450 or 500 ml of whole blood is collected in 63
or 70 ml of CPD-A (citrate-phosphate-dextrose with adenine),
respectively. The process of preparing RBC products varies
considerably. Variations concern holding time and tempera-
ture before centrifugation by a hard or a soft spin, buffy coat
removal, filtration of whole blood or of buffy coat-depleted
RBC to remove leucocytes, or no leucocyte depletion at all.
The resulting RBC products have various volumes of residual
plasma, platelets, and leucocytes. Red cells can be stored in
PVC bags at 2–6 ºC for a period of 5 weeks or longer depend-
ing on the red cell preservation solution used. PVC storage
bags contain the plasticiser di-ethylhexyl phthalate (DEHP)
which accumulates in the red cell membrane and slows down
the process of haemolysis and microvesicle formation, and im-
proves red cell survival [6, 7]. Regulations require that 24 h
after transfusion more than 75% of the cells are recovered in
the circulation [8, 9]. At expiration, the plasma Hb may not ex-
ceed 0.8% (Europe) or 1% (USA) of the RBC mass. 
It is prudent to realise that available databases which are used
in retrospect for clinical studies on the role of aged red cells
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used different RBC products. These studies include packed
RBC containing all leucocytes and platelets, RBC after re-
moval of platelet-rich plasma leaving the majority of leuco-
cytes in the product, buffy coat-depleted RBC in which > 90%
of the platelets and 60–70% of the leucocytes are removed,
and pre-storage filtered whole blood or filtered buffy coat-de-
pleted RBC, virtually depleted from all leucocytes and
platelets. Moreover, a variable volume of residual plasma and
different preservation solutions (SAG-M, Adsol 1,2,3,5) have
been present in these red cell products.

Red Cell Storage Lesions

Storage lesions, of which the most notable changes are dis-
cussed, not only affect red cell properties but also the red cell
product suspended in various solutes and containing other
residual cells.

Vasodilatory Capacity
Blood flow in the microcirculation is regulated by nitric oxide
(NO) produced by endothelial cells and induced by erythro-
cytes. When the environmental oxygen tension is low, this is
sensed by Hb, and within seconds an adjusted amount of NO
is produced causing a dosed vasodilatation for erythrocyte
passage through the vessels, bringing blood flow in line with
metabolic demand [10]. Reynolds et al. [11] and Bennett-
Guerrero et al. [12] showed an important role for S-nitrosoth-
iol-Hb (SNO-Hb) for the release of NO. Because SNO-Hb is
almost immediately decayed after blood withdrawal and is not
restored in vivo, they argue that stored RBC rather act as a
sink for NO, enhancing vasoconstriction. In contrast, Isbell et
al. [13] showed SNO-Hb is not essential for erythrocyte-de-
pendent vasodilation, and suggest an adenosine triphosphate
(ATP)-dependent mechanism. 

Table 1. Factors determining tissue oxygenation relevant for erythrocyte
transfusions

Determinants of oxygen Erythrocyte factors
supply and delivery

Oxygen supply
Hb/Ht level post transfusion RBC recovery
Cardiac output blood viscosity (Ht) 
Hb oxygen uptake COPD; oxygen supply/artificial ventilation

Oxygen delivery
Vasodilatation nitric oxide (endothelium, RBC)
RBC deformability RBC surface:volume ratio; spectrin

(un)folding
Oxygen off-loading oxygen dissociation curve; pH; 2,3-DPG

Oxygen extraction ratio
Organ dependent exercise; fever

COPD = Chronic obstructive lung disease; Ht = haematocrit.



Depletion of 2,3-Diphosphoglycerate (2,3-DPG)
This enzyme binds to de-oxy Hb forming a complex with low
O2 affinity. In the case of anaemia, red cell 2,3-DPG increases
after 16–36 h, albeit that this increase is reduced in critically ill
septic patients [14]. In RBC stored for 2 weeks, 2,3-DPG is
virtually depleted, resulting in a shift of the O2 dissociation
curve to the left, impairing oxygen delivery [12]. The reported
speed of in vivo restoration of 2,3-DPG after transfusion
varies. One hour after transfusion, 25–30% of 2,3-DPG was
measured [15], after 24 h recovery it is 50%, but full restora-
tion may take up to 3 days [16]. This led to concerns regarding
impaired oxygen delivery after transfusion of large amounts of
stored RBC. However, studies in baboons [17] and rats [18]
found no support for the role for 2,3-DPG as a key factor for
off-loading oxygen.

Sodium Potassium Pump 
At 2–6 °C, the Na+/K+ pump is paralysed, and K+ leaves the
cell while sodium enters it [19]. After 3 days of storage, potas-
sium leaks progressively from the erythrocyte, and the extra-
cellular concentration can increase to 50 mEq/l. After transfu-
sion, the red cell sodium content normalises within 24 h, while
complete K+ recovery should take at least 4 days [20]. Danger
of arrhythmia due to high potassium levels is mainly present
with large volume transfusions in newborns and small infants
in whom lethal cardiac arrest has been reported [21]. Washing
or simply removal of the supernatant are alternatives to re-
duce potassium toxicity for high-risk recipients [22, 23].

Gamma Irradiation 
Gamma irradiation to prevent transfusion-associated graft
versus host disease liberates reactive oxygen species, damages
red cell band 3 proteins, increases K+ leakage, enhances
haemolysis, and impairs at all shear rates the erythrocyte de-
formability [24, 25]. Gamma irradiation does not enhance
RBC aggregation and the adherence of red cells to endothelial
cells [26, 27]. Because of lower levels of oxygen radical scav-
engers, older cells are more susceptible to gamma irradiation-
induced damage [28]. 

Morphology, Deformability, and Viability
The lipid molecules of the red cell membrane are anchored to
different skeletal proteins whose folding and unfolding is es-
sential for cell deformability. The large surface-to-volume
ratio of the disc-shaped RBC enables adaptation of shape,
minimising the resistance of the 8 μm-sized red cells during
changing flow conditions and passage through smaller capil-
laries of 3–8 μm. During their in vivo lifespan, red cells lose
area, volume, and Hb through vesiculation of 50–200 nm parti-
cles [29]. After leaving the bone marrow, 10–14% of mem-
brane area is lost during reticulocyte maturation, followed by
16–17% during the remaining lifespan [30, 31]. Extrusion of
oxidative waste material of denatured Hb, along with surface
area loss, seems a finite process to protect the RBC from pre-

mature removal [31, 32]. Exhaustion of this potential may her-
ald the end of red cell lifespan as accumulated denatured Hb
in the red cell membrane may be a sign for binding to natural
auto-antibodies which in concert with complement promote
partial phagocytosis causing further surface area loss [33–35].
Phosphaditylserine (PS/Annexin V), the death signal, is ex-
pressed on 30–70% of the microvesicles, and 50% are coated
with immunoglobulins resulting in prompt removal by the
liver Kupffer cells [30, 36]. 
During in vitro storage, besides micro-vesiculation in particu-
lar of the younger cells [37], red cells also undergo a shape
change to echinocytes because of ATP depletion [38]. Initially,
this is a reversible process, but towards the end of the in vitro
shelf life, irreversible spheroechinocytes are formed, probably
due to depletion of the total available adenine nucleotide pool
consisting of ATP, adenosine diphosphate (ADP), and adeno-
sine monophosphate (AMP) [39, 40]. On stored red cells, the
expression of CD47, a 50-kDa surface transmembrane glyco-
protein widely expressed on all cells, reduces by 10–65% de-
pending on the type of product and assay used [41, 42]. CD47
is presumed to serve as a marker for self, and when expression
falls below 50%, the erythrocytes become susceptible for
phagocytosis [41, 43]. Of red cells transfused at the end of the
storage time, 20–30% are non-viable and are removed from
the circulation within a few hours. Cells that survive after 24 h,
show a normal lifespan, irrespective of storage duration [44]. 

The Role of Residual Leucocytes and Platelets during Storage
Residual leucocytes and platelets influence not only the RBC
storage lesion but also, by release of factors, the red cell prod-
uct. Potassium leakage and haemolysis is less in leucocyte-de-
pleted RBC products [45, 46]. Filtered leucocyte-depleted
stored RBC show virtually no increase in PS expression [12],
whereas PS becomes expressed in leucocyte-containing RBC
products stored as little as 2 weeks. PS-expressing red cells
exert pro-coagulant effects and increased adherence potential
to endothelium [47, 48], inducing endothelial activation facili-
tating transendothelial migration of monocytes [49].
In the supernatant of stored non-leucocyte- and platelet-re-
duced RBC, histamine, complement, lipids, and cytokines can
be detected [50]. Cytokines, Il-1β, IL-6, IL-8, TNF-α, are pro-
duced by residual leucocytes, and remain below detection lev-
els in leucocyte-reduced RBC [12, 51–54]. On the other hand,
filtration has been reported to increase the levels of neu-
trophil elastase and TGF-β1 in RBC [55]. From 2 weeks of
storage onwards, the supernatant of leucocyte-containing
RBC, but not of leucocyte-depleted RBC, can induce expres-
sion of CD11b (C3bi) and CD16 (FCR III) on neutrophils in
vitro, with both markers being associated with priming of neu-
trophils [49, 54].
Residual platelets and red cells themselves release factors dur-
ing RBC storage, such as the pro-inflammatory CD40Ligand
and bio-active lipid peroxidases, respectively. Both can prime
polymorph-nuclear cells (PMN), and have been proposed as
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(co-)factors causing transfusion-related acute lung injury
(TRALI) [56–58]. RBC supernatants harvested after 15 days
storage from filtered leucocyte-depleted as well as from non-
filtered RBC increase the oxidative potential of PMN in re-
sponse to N-formyl-methionyl-leucyl-phenylalanine (fMLP), a
chemotactic peptide stimulating the oxidative burst [54]. The
role of storage of red cells causing febrile non-haemolytic
transfusion reactions (FNHTR) and TRALI has indeed often
been questioned, but randomised studies have not yet been
performed [59, 60]. Heddle et al. [59], by application of multi-
variate regression analysis in a prospective study, identified
the number of contaminating leucocytes and the age of the
RBC component as the most significant factors associated
with FNHTR [59].
Although RBC expressing PS show enhanced endothelial ad-
herence and pro-coagulant activity, and RBC supernatants can
induce priming of PMN – factors that may play a role in caus-
ing TRALI, the exact contribution of aged RBC products to
TRALI is not yet known.

Physiological Studies in Humans

Oxygen Kinetics
Hebert and Chin-Yee [4] reviewed 14 observational studies in
critically ill patients estimating the effect of RBC transfusions
on oxygen delivery, oxygen consumption, and lactate levels. A
striking number of studies showed no improvement in these
parameters. Again, the use of different blood products may
explain some of the discordant outcomes. Marik et al. [61]
found in a prospective study measuring gastric mucosal oxy-
genation that 3 units of (leucocyte-containing) RBC stored
longer than 15 days, impaired gastric mucosal pH indicating
lower oxygen release. This study was repeated in a double-
blinded randomised trial, assigning patients to 2 units of RBC
stored < 5 days (mean 2) or > 20 days (mean 28), which had
been leucocyte-reduced before storage and stored in SAG-M
solution. This study found no support of any difference in oxy-
genation index between the storage groups, but also no im-
provement as compared to baseline values [62]. In an elegant

Table 2. Clinical studies on storage time and mortality

Reference Design Population Patients, Storage time variables Adjusting for Results
n confoundersa

Purdy et al., 1997 [64] retrospective cohort sepsis 31 mean no 17 vs. 25 days, 
p < 0.0001

Edna et al., 1998 [65] retrospective cohort colorectal 336 mean yes NS

Mynster and Nielsen, 2001 [66] prospective cohort colorectal 452 < 21 vs. > 21 days no NS

Gajic et al., 2004 [67] retrospective cohort ICU 181 < 15 vs. 15–20 vs. no NS
> 20 days

Murrell et al., 2005 [68] retrospective cohort trauma 275 dose (= mean number yes NS
of RBC)a

Hebert et al., 2005 [69] RCT cardiac + ICU 57 < 8 days (median 4 days) no NS
vs. standard (median 19 days)

Basran et al., 2006 [70, 84] retrospective cohort cardiac 321 mean + oldest RBC yes both show 
increased
in-hospital 
mortality

Van de Watering et al., 2006 [71] retrospective cohort cardiac 2,732 mean + oldest + youngest yes NS
+ < 18 vs. > 18 daysb

Leal-Noval et al., 2008 [72] prospective cohort trauma 66 < 10 vs. 10–14 vs. 15–19 vs. no NS
> 19 day

Koch et al., 2008 [73] retrospective cohort cardiac 6,002 < 14 vs. > 14 days no 1.7 vs. 2.8%, 
p = 0.004

Yap et al., 2008 [74] retrospective cohort cardiac 670 mean + oldest yes NS
+ (y/n) > 30 days

Weinberg et al., 2008 [75] retrospective cohort trauma 1,813 < 14 vs. ≥ 14 days yes NSc

NS = No significant independent association found between storage time and mortality; RCT = randomised clinical trial; y/n = yes/no.
aAdjustments for confounders like number of transfused RBC were performed in the analyses on mortality.
b1,895 patients in analyses < 18 days (945) vs. > 18 days (950).
cOnly in subgroup analysis significant associations were found.
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RBC in patients that died (25 days) versus survivors (17
days), p < 0.0001. One year later, Edna et al. [65] could not
see any independent association between mean storage time
and survival. And Mynster and Nielsen [66], in 2001, report-
ed even a small beneficial effect of prolonged (> 21 days)
storage in transfused colorectal surgery patients, mostly due
to significantly less cancer recurrence. Gajic et al. [67] strati-
fied his patient population according to the mean storage
time of the transfused RBC into ‘< 15 days’, ‘15–20 days’, 
‘> 20 days’. These strata showed similar mortality rates 
(0.30 vs. 0.30 vs. 0.26; p = 0.869). Two studies published in
2005 on this subject, both failed to find an association with
mortality. Murrell et al. [68] did not find an association be-
tween the dose of aged blood and mortality in major trauma
patients. Neither did Hebert et al. [69] reporting on a ran-
domised pilot study in 57 transfused cardiac/ICU patients re-
ceiving either standard RBC (mean storage time: 19 days) or
RBC stored < 8 days (mean 4 days). Then, in 2006, Basran et
al. [70] reported mortality to be associated with both the
mean storage time and the maximum storage time of the
transfused RBC, in transfused cardiac surgery patients. How-
ever, the reported results showed some inconsistencies which
could not be corrected, as the used dataset had been lost
[84]. Also in 2006, van de Watering et al. [71] reported analy-
ses on 2,732 coronary artery bypass graft (CABG) patients
that showed an association in univariate analyses between
mortality and the storage time of both the oldest and the
youngest RBC transfused. However, both these storage time
variables were strongly correlated with the total number of
RBC transfused, as shown in figure 1, and the multivariate
analyses adjusting for this imbalance showed absolutely no
independent correlation of storage times with mortality
(both p > 0.95). The mean storage time and the subgroups
with all RBC stored < 18 days vs. all RBC stored > 18 days
were in none of the analyses associated with mortality. In the
study of Leal-Noval et al. [72] in patients receiving 1 or 2
RBC, the storage time was stratified into ‘< 10 days’, ‘10–14
days’, ‘15–19 days’, and ‘> 19 days’. The analyses showed no
association between these strata and mortality. In 2008, Koch
et al. [73] reported on 6,002 cardiac surgery patients, receiv-
ing all their RBC either ≤ 14 days or all > 14 days old. A sig-
nificant association of mortality with storage time was re-
ported (p = 0.004), but shortcomings in this analysis (e.g. no
adjusting for confounders like the number of RBC trans-
fused) lead to several letters in response [85]. Yap et al. [74]
analysed mean storage time, the oldest RBC and if any RBC
stored > 30 days had been transfused, in 670 cardiac surgery
patients. None of these variables were independently associ-
ated with mortality. Weinberg et al. [75] analysed storage,
stratifying the number of filtered RBC < 14 days and ≥ 14
days into 0, 1–2, or ≥ 3 RBC in 1,813 transfused trauma pa-
tients. Both ‘young ‘and ‘old’ RBC increased the odds of
death, but this was stronger with old blood. The unadjusted
association of the storage time of transfused RBC with mor-

study in healthy volunteers, Weiskopf et al. [63] showed that
absence of 2,3-DPG in non-leucocyte-reduced RBC stored up
to 2–3 weeks improved cognitive functions in acute normo-
volaemic anaemia with Hb of 5–6 g/dl. 

Studies with Clinical (Surrogate) Endpoints

Dozens of studies have been performed investigating the asso-
ciation between clinical outcome and the transfusion of stored
RBC. However, only a minority of these have actually investi-
gated the role of the storage time of the RBC. The clinical set-
ting was most often in trauma, intensive care unit (ICU), car-
diac, or (colo)rectal surgery patients. Clinical outcome was
analysed using endpoints like mortality [64–75], ICU/hospital
stay [67, 68, 70–72, 74, 76–79], infectious complications [67, 73,
74, 79–82], intubation days [77–79], (multiple) organ failure
[69, 70, 74, 83], and composites of specific adverse outcomes
[69, 73, 79, 80]. Nearly all studies are observational, and there-
fore mostly associations are reported.

Storage Time and Mortality
The most investigated association is that between the storage
time of RBC and mortality (table 2). In 1997, Purdy et al.
[64] reported, in a population of 31 transfused septic pa-
tients, a significant longer mean storage time of transfused
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Fig. 1. Correlation of total number of transfused RBC with storage time
variables.
Correlation of the total number of RBC transfused with the 3 storage
time variables: (▲) mean storage time of the oldest RBC/patient; (xl)
mean storage time of all RBC/patient; (°) mean storage time of the
youngest RBC/patient.
Reproduced with permission from van de Watering L, Lorinser J, Ver-
steegh M, Westendorp R, Brand A: Effects of storage time of red blood
cell transfusions on the prognosis of coronary artery bypass graft patients.
Transfusion 2006;46(10):1712–8. ©Transfusion, 2006.
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tality, as initially reported in a small (n = 31) study, was not
reliably confirmed as independent association in any of the 
11 succeeding larger studies.

Storage Time and Length of Stay
An association between storage time of RBC and length of
ICU stay (table 3) was reported by Martin et al. [76] in 1994.
In 698 ICU patients, the transfusion of RBC stored > 14 days
was independently associated with the length of ICU stay.
Vamvakas and Carven [77] investigated in CABG patients the
association with both ICU and hospital length of stay, using
mean storage time of all RBC, the storage time of the oldest
RBC, and the mean of the 2 oldest RBC. After adjustment for
confounding factors, none of the storage time variables were
associated with either length of ICU stay or hospital stay.
Keller et al. [78] investigated both these associations in trauma
patients, using the number of RBC stored > 14 days as vari-
able. In all their models adjusting for confounding, no associa-
tion was found with length of ICU stay. Length of hospital stay
was only independently associated in the multivariate models
not including the number of RBC transfused [86]. Leal-Noval

et al. [79] reported in 2003 their study in cardiac surgery pa-
tients. Neither the mean storage time of all RBC nor the stor-
age time of the oldest RBC was associated with length of ICU
stay. Gajic et al. [67] stratifying his population of mechanically
ventilated patients on mean RBC storage into ‘< 15 days’,
‘15–20 days’, ‘> 20 days’ also found no association of these
strata with length of ICU stay. The study by Murrell et al. [68]
in trauma patients reported that the dose of aged blood (de-
fined as the average age of received RBC multiplied by the
number of RBC received) was significantly correlated with
longer ICU stay. From the 2 studies in 2006 on this topic in
cardiac surgery patients, Basran et al. [70, 84] reported an as-
sociation of the length of both ICU and hospital stay with the
storage time of the oldest RBC, but not with the mean storage
time or even the number of transfusions. The study by van de
Watering et al. [71] showed strong associations between the
storage time of both the youngest and the oldest RBC in the
unadjusted univariate analyses, that completely disappeared
in the multivariate analyses adjusting for confounders. Again,
no associations were seen with the mean storage time or in
the subgroups with all RBC < 18 days vs. all RBC > 18 days,

Table 3. Clinical studies on storage time and (ICU and/or hospital) length of stay

Reference Design Population Patients, Storage time variables Adjusting for Results
n confoundersa

Martin et al., 1994 [76] retrospective cohort ICU 698 < 14 vs. > 14 days yes ICU length of
stay p = 0.003

Vamvakas and Carven, 2000 [77] retrospective cohort cardiac 269 mean + oldest + mean of yes NS
2 oldest

Keller et al., 2002 [78, 86] retrospective cohort trauma 86 number of RBC > 14 days yes NS

Leal-Noval et al., 2003 [79] prospective cohort cardiac 585 mean + oldest RBC yes NS

Gajic et al. 2004 [67] retrospective cohort ICU 181 < 15 vs. 15–20 vs. > 20 days no NS

Murrell et al., 2005 [68] retrospective cohort trauma 275 dose (= mean × number yes dose aged 
of RBC) blood ⇒ in-

creased ICU 
length of stayb

Basran et al. 2006 [70, 84] retrospective cohort cardiac 321 mean + oldest RBC yes oldest RBC 
⇒ increased 
both ICU + 
hospital length
of stayc

Van de Watering et al. 2006 [71] retrospective cohort cardiac 2732 mean + oldest + youngest yes NS
+ < 18 vs. > 18 daysd

Leal-Noval et al., 2008 [72] prospective cohort trauma 66 < 10 vs. 10–14 vs. 15–19 vs. no NS
> 19 days

Yap et al., 2008 [74] retrospective cohort cardiac 1,813 mean + oldest + (y/n) yes NS
> 30 days

NS = No significant independent association found between storage time and ICU length of stay.
aAdjustments for confounders like number of transfused RBC were performed in the analyses on ICU length of stay.
bRelative risk 1.15, 95% confidence interval (CI): 1.11–1.20.
cInconsistencies in reported hazard ratios, 95% CIs, and p values could not be corrected due to loss of the dataset [84].
d1,895 patients in analyses < 18 (945) vs. > 18 days (950). 
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analysing 2,732 and 1,895 (945 vs. 950) patients, respectively.
The study by Leal-Noval et al. [72] stratifying brain trauma
patients on RBC storage time into ‘< 10 days’, ‘10–14 days’,
‘15–19 days’, and ‘> 19 days’ showed no association between
these strata and length of ICU or hospital stay. Yap et al. [74]
reported that neither the mean storage time nor the oldest
RBC or any RBC > 30 days old were independently associat-
ed with the postoperative ICU length of stay. Like with the
studies on the association with mortality, the initially reported
association of the storage time of transfused RBC with
ICU/hospital length of stay was not reliably confirmed as in-
dependent association in any of the succeeding studies.

Storage Time and Infectious Complications
A possible association between storage time of RBC and in-
fectious complications is investigated using several different
endpoints. Vamvakas and Carven [80], investigating transfused
CABG patients, reported both their composite outcome
(wound infection or pneumonia) and pneumonia by itself to
be associated with both the mean length of storage of all RBC
and the mean length of storage of the 2 oldest RBC. Mynster
and Nielsen [82] found in rectal cancer patients 60% of RBC
were stored for > 20 days in patients with postoperative infec-
tions versus only 25% of RBC in patients without infections.
Offner et al. [81] investigated in trauma patients the associa-
tion between infection and the number of RBC stored > 14
days or > 21 days. To correct for the total number of RBC
transfused, the analyses were performed in 3 strata (6–10
RBC; 11–15 RBC; 16–20 RBC). An independent association
with infection was seen in 1 of the 3 strata analysed for both
the number of RBC > 14 days (in 6–10 RBC) and > 21 days
(in 16–20 RBC). Leal-Noval et al. [79] saw in cardiac surgery
patients no independent association between the mean or
maximum storage time and their composite endpoint infec-
tion (pneumonia, sepsis, mediastinitis). However, in subgroup
analyses, storage of the oldest RBC longer than 28 days was
identified as risk factor for nosocomial pneumonia. The study
by Gajic et al. [67] comparing patients with a mean RBC stor-
age < 15, 15–20, or > 20 days found no association of these
strata with the occurrence of sepsis. Yap et al. [74] found no as-
sociation between postoperative pneumonia and mean stor-
age time, oldest RBC, or storage time > 30 days. Although
both the type of infectious complications investigated and the
way storage time was analysed differed between the studies,
an association between storage time and infectious complica-
tions was repeatedly reported.

Storage Time and Organ Failure
Other studies reporting on associations between storage time
of RBC and clinical endpoints mostly report on some type of

organ failure. Zallen et al. [83] reported in their study in trau-
ma patients an association between the mean storage time, the
number of RBC stored > 14 days, and the number of RBC
stored > 21 days with the occurrence of multiple organ failure.
Respiratory failure (period of intubation or acute lung injury)
was analysed in 5 studies. Vamvakas and Carven [77] found
no association with the mean storage time of all RBC, the
storage time of the oldest RBC, or the mean of the 2 oldest
RBC, Keller et al. [78] found no association with the number
of RBC stored > 14 days, Leal-Noval et al. [79] reported no as-
sociation with the mean storage time or the storage time of
the oldest RBC, Gajic et al. [67] found no difference in their
analyses stratified on mean storage time, and Hebert et al. [69]
found no difference in their randomised controlled trial in pa-
tients receiving either standard RBC (mean storage time: 19
days) or RBC stored < 8 days (mean 4). This last study also
found no differences in cardiac or renal support. Renal dys-
function was reported to be associated with both the mean
and the maximum storage time by Basran et al. [70], although
the precise magnitude of this association remains unclear [84].
Koch et al. [73, 85], comparing patients receiving either all
their RBC stored ≤ 14 days or all > 14 days, reported associa-
tions with respiratory failure, renal failure, and multiple organ
failure, only in their unadjusted analyses. Yap et al. [74] found,
after adjusting for number of transfusions and Euroscore, no
association between renal failure and mean storage time, old-
est RBC, or storage time > 30 days.

Conclusions

There is no clear consensus on possible associations between
storage time and morbidity or mortality. The results on infec-
tious complications are most consistent, but with the other
endpoints there seem to be additional variables, maybe unre-
ported or even unrecorded, that play a major role. Publication
bias may have played some role as more of the older, smaller,
studies report independent associations. Furthermore, some
studies failed to correct for known confounders, like the num-
ber of RBC transfused. Another explanation may be sought
with the fact that apart from infectious complications, associa-
tions are reported in most of the North American studies and
in none of the European studies. Differences in production
techniques, storage media, or cellular composition of the
blood products used in these studies may be part of the expla-
nation. The registered randomised controlled trials on storage
time (ClinicalTrials.gov identifiers: NCT00141674 & NCT
00458783) may come up with answers for North America, but
if their results will also be applicable for Europe will need
 further, intercontinental research.
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