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Abstract
Animal imaging of brain systems offers exciting opportunities to better understand the
neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies
as a result of technical issues including the use of anesthesia. Now that many of these issues have
been overcome including the possibility of imaging awake animals, there are new opportunities to
study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on
brain systems de novo (using pharmacological MRI) or testing in animal models of pain.
Understanding brain networks in these areas may provide new insights into translational science,
and use neural networks as a “language of translation” between preclinical to clinical models. In
this review we evaluate the role of functional and anatomical imaging in furthering our
understanding in pain and analgesia.

1: Introduction
Small animal model imaging has an increasingly important role in biomedical research
(Balaban and Hampshire, 2001). While studies using fMRI in animal imaging of pain and
analgesia have lagged behind human imaging (Lowe et al., 2007), ever since some of the
articles indicating the use of the approach (see (Tuor et al., 2000; Liu et al., 2007)) there has
been a significant increases in the number of scientific reports in recent years. For example
in the pain field, after the initial report of fMRI measures of pain in the spinal cord (Porszasz
et al., 1997), there has been slow but steady increase in the number of reports on animal
functional imaging in the literature (see Figure 1). The reason for this discrepancy relates to
the technical difficulties of imaging pain and analgesia in animals that includes amongst
other things, anesthesia. Developments for measures of pain, pain models, and brain states
(resting states) have now become more widely used. As such these open tremendous
opportunities for neurobiology of pain, translational medicine and the understanding of how
drugs work on brain systems.

Great strides in understanding neural systems in animal models have been made possible
with techniques such as electrophysiology, lesion studies, tract tracing, or measures of gene
expression in neurons or glia. However, in these approaches whole brain systems studies are
difficult to perform although some seem to be more useful such as functional multi-neuron
calcium imaging (Ikegaya, 2008). While complementary to other techniques, fMRI allows
the evaluation of disease state and drug effects in animal models in new and exciting ways.
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Such studies may be integrated into current techniques in preclinical studies. Perhaps more
important is to use information gained from neural circuits as a “language of translation” for
preclinical to clinical models. As such these imaging may provide more predictive data of
therapeutic agents acting on the CNS because of a better understanding of brain function. In
this review we evaluate the role of fMRI in furthering our understanding in pain and
analgesia.

Benefits of Preclinical Imaging for Pain and Analgesia
The application of functional neuroimaging (fMRI) has opened doors to evaluating brain
systems neuroscience in anesthetized or awake animals (Benveniste and Blackband, 2002;
Benveniste and Blackband, 2006; Driehuys et al., 2008). While difficult and expensive there
are a number of benefits that imaging neural systems can contribute to the field. These
include: (i) Objective measures of CNS animal model disease state or drug effect; (ii) A
translational method that can be used to define neural systems across species (see (Borsook
et al., 2006)); (iii) insights into similarities and differences in animal models that may lead to
the identification of a more predictive way to use conventional preclinical pain models; (iv)
Differentiate CNS mechanisms across different pain disease states; (v) Evaluation of
chronic/temporal changes in pain models; and (vi) Coupling imaging with behavioral
pharmacology provides insights into dosing; (vii) Potential evaluation of CNS penetration
and target engagement of novel drugs prior to development of a PET ligand.

2. The Methods
2.1. Imaging/Scanning Methods

Imaging methods as well as their advantages and disadvantages are described and
summarized in Tables 1 and 2 and Figure 2. In this review, we will emphasize functional
MRI techniques.

For fMRI, there are significant challenges in imaging functional activity in animals
including, the use of anesthesia which may be a confound to functional studies because of
alteration of brain metabolism and function (see below), the need to adopt special
stimulation systems within the magnet, the intense noise levels produced by the scanner, and
in general the lack of ability to directly observe the animal (since they are usually placed
deep within the magnet core, unless appropriate equipment is in place).

For structural imaging, these constraints are less of an issue since anesthesia is not a
confounding process on signal or neural processing.

Manganese (Mn(2+)) enhanced magnetic resonance imaging (MEMRI) has been used to
define brain activity, trace neural connections and improve visualization of brain structure. It
is administered systemically ((Silva et al., 2004; Watanabe et al., 2004)). The basic premise
consists of acquiring an image after injection of manganese prior to the tests/experiments of
interest that are carried out. The rodent is removed from the scanner and subject to the
behavioral test and returned to the scanner to acquire a second image where Mn has been
taken up by neurons and other cells. The difference of the pre- and post- behavioral images
reflects brain areas that have been active. The use of enhancers such as manganese has been
mitigated to some extent by toxicity and the difficulty of performing them (Silva and Bock,
2008). In addition to toxicity (that may include peripheral effects such as erythema), the use
of enhancers such as magnesium chloride include the fact that is not a dynamic process
(only the total uptake effects can be measured) , that there may be inhibition of neural
systems via actions on receptor systems (e.g., NMDA), and that there may be metabolic
changes such as weight loss or decreased motor performance ((Jackson et al., 2011)). Some
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of these side effects may be overcome by the use of slow release systems such as osmotic
pumps ((Eschenko et al., 2010)).

Several researchers in other fields actively use paramagnetic nanoparticles to enhance fMRI
signals (Boas et al., 2004; Liu et al., 2007;Mandeville et al., 2007) but these studies have
been carried out under anesthesia.

Near infrared spectroscopy (NIRS) is another form of functional imaging based on blood
flow (Boas et al., 2004; Ferrari et al., 2004), and currently it is limited to measures of
cortical function. It is not well developed in terms of measures of deep structures and does
not have a robust approach for localization of brain structures. NIRS offers some advantages
over fMRI including temporal resolution and animals can be directly observed during the
measures. It has been used to measure changes in brain function in rat models of cortical
spreading depression (Wolf et al., 1997), sensory processing/mapping of SI in non-human
primates (Shoham and Grinvald, 2001). Reports of correlation of NIRS with fMRI suggest a
high correlation of the two methods in rats (Chen et al., 2003). The future of NIRS in pain
and analgesia imaging may be in non-human primates and in rodent models once anatomical
correlation methods and enhanced resolution have been defined.

Functional and ligand binding data may also be obtained using positron emission
tomography (PET) in rodents (Jiang et al., 2009; Lancelot and Zimmer, 2010) and non-
human primates (Fox et al., 2010). For PET ligand binding studies, anesthesia may interfere,
but is not considered a major issue, although other concerns are well noted in the field
(Ametamey and Honer, 2007). For PET functional studies (blood flow) the same
considerations are similar to those noted for fMRI with respect to anesthesia. The use of
microPET systems is now quite common and may be a useful technique going forward
particularly with understanding neurotransmitter systems (Leriche et al., 2009).

Although the focus of this review is on functional MRI other approaches such as
autoradiographic methods have been useful in defining brain function. Such methods have
some advantages including the ability to evaluate behaviors in freely moving animals
((Holschneider and Maarek, 2004, 2008)). As noted in the latter reference, these approaches
can now be used for to the functional brain mapping of behaviors providing three-
dimensional reconstruction of the brain from autoradiographic sections and voxel-based
analysis of the whole brain, and generation of maps of the flattened cortical regions. The
disadvantage of autoradiographic methods, is that animals can only be studied once.

2.2. Technical Issues
MRI Imaging—The advantage of performing experiments at high and ultra-high magnetic
fields include the ability to achieve resolutions of a few 10ths of microns (Silva and
Koretsky, 2002; Schepkin et al., 2010; Yu et al., 2010), potentially allowing to investigate
brain activation at cortical laminar level (Silva and Koretsky, 2002; Jin and Kim, 2008).
However, issues related to susceptibility artifacts also increase with field strength rendering
certain brain structures practically “unreadable”. Hence, the use of ultra-high magnetic fields
for cortical structures is being used to advance significant the field. If whole brain or
subcortical structures are of interest, lower fields might be more appropriate.

Animal Preparation—For pain imaging either anesthetized or the awake animal
preparations have been used. In the case of anesthetized preparations, the most important
issue relates to physiological stability (ETCO2, pH, HR and pO2 levels, and body
temperature (see (Hildebrandt et al., 2008)) and the choice of anesthetic agent (since
different agents may have different effects on BOLD signals (Masamoto et al., 2009;
Tsurugizawa et al., 2010). Such changes may contribute to observed frequency of
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activations – for example, only 50% of SI activation was observed in a BOLD imaging
experiment using forepaw stimulation in mice (Adamczak et al., 2010). In addition,
stimulation parameters or anesthetic levels may either need to be adjusted for defining
activation in anesthetized animals (Masamoto et al., 2007). For imaging awake animals,
proper acclimation to the restraining procedures, stimulation type, and the MRI environment
are all critical to achieve good results. The use of ultra-high fields will also bring the
problem of noise levels exceeding the 120 dB creating a harmful and perturbing condition.
There are developments to fabricate noise-cancelling enclosures to reduce noise in the
scanner (Mechefske et al., 2002). Development of devices for conscious animal imaging
have been reported (Khubchandani et al., 2003). Some of thee require parts of the device to
be implanted in the skull, others require other considerations as noted below. The holder for
the animal is an important component of the experiment, it has to hold the rodent snuggly
without inducing pain or limit blood flow to the extremities. A mold fabricated out of a
rodent of similar size and weight carved out to include stimulation devices seems to be a
useful approach (Becerra et al., 2009). Equally, the electronics for RF and head restrain
should be built in a manner that does not interfere with the experiment by adding additional
pain or stress. Hence, the emphasis on acclimation cannot be underestimated.

Motion Artifact—A problem introduced by performing awake animals compared to
anesthetized ones is that rodents are capable of flexing their muscles (providing a muscle
paralyzer, as done in anesthetized animal experiments, is unethical) and, although they are
restrained, it is not possible to completely avoid some motion of the head or the body.
Motion of the head does not need to be significant to raise a potential issue with the images;
voxel sizes are of the order of 500 or less microns, and movement of that order could be
considered excessive for fMRI data. Acclimation of animals to the restraining device
significantly reduces motion of the head ((Becerra et al., 2010)). Motion of the body could
be driving motion of the head. Furthermore, motion of the body could be adding a
confounding signal to the activation maps as body motion might be time locked with
stimulus delivery. A potential solution to account for body motion-induced activation, is to
track muscle flexion and utilize that information to account for motion in brain activation.
Physiologically induced motion from respiration and cardiac processes can also introduce
motion of the head. Standard equipment to measure heart and respiratory rate can be used to
not only correlate them with brain activation but also to detect potentially induced changes
induced by evoked stimuli.

Ancillary Equipment—In addition to the constrains of using non-ferromagnetic
equipment for monitoring that can be electrically grounded or low-pass filtered to avoid
spurious RF to be introduced and contaminate the images, the equipment should be small
enough to be mounted on the holder to perform stimulation of the extremities or another
body part. There are not many manufacturers of such equipment for thermal stimulation. For
mechanical, automated von Frey filament devices that can be used in the scanner (Governo
et al., 2007). Basic physiology (e.g. heart rate, respiratory rate) can be easily monitored in
the scanner and there is a large variety of equipment and manufacturers that produce specific
physiological equipment for MRI systems.

2.3. Data Analysis
Human imaging methods of the CNS have evolved over the years and have reached a level
of standard that is becoming common among researchers. Application of novel systems
including standardized analysis methods for functional, anatomical and MRS related
approaches are well describe in human imaging (e.g., fMRIB software library
(www.fmrib.ox.ac.uk/fsl/); SPM (http://www.fil.ion.ucl.ac.uk/spm/), Brainvoyager
(http://www.brainvoyager.com/), Afni (http://afni.nimh.nih.gov/afni), or Freesurfer
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(http:surfer.nmr.mgh.harvard.edu/). In animal imaging, these techniques and software
packages are being adapted.

3. Animal Preparation
A number of animal handling procedures need to be taken into consideration when
designing and implementing an imaging experiment (for a review see (Hildebrandt et al.,
2008)). These include animal strain and gender, fasting, anesthesia type and dose, and
frequency of imaging, and duration of the study that need to taken into account increasing
weights and size of the animals, particularly in rats.

3.1. Anesthetized vs. Awake Animal Imaging
While most imaging studies of rodents have used anesthesia, the effects of anesthesia on
neural and hemodynamic responses are not well understood (Martin et al., 2006b).
Compared with halothane, for example, alpha-chloralose anesthesia is associated with a
greater BOLD response but there is variation of the response over time that may contribute
to significant variability in studies (Austin et al., 2005). In a recent article by Heindl and
colleagues (Heindl et al., 2008), the authors make the case for non-invasive imaging
techniques to reduce the number of experimental animals used in research. They further note
that this can be done “without pain”. Herein lies the conundrum: Do animals sense pain
while anesthetized? Certainly, pain imaging studies (as noted below) show activation in
sensory and emotional regions in anesthetized animals to painful stimuli (Adamczak et al.,
2010), and thus beg the question as to whether the anesthesia is producing mainly motor
inhibition. As noted in Table 2 currently used anesthetics either produce no analgesia (but
sedation and decreased mobility) or mild analgesia. Also for some, the duration of the effect
is not well defined and proper monitoring is required including direct observation. For
proper monitoring anesthesia monitoring systems need to be free of ferromagnetic material
or managed outside the field and special attention needs to be made in the MR situation (see
(Hanusch et al., 2007)). The latter is of note, since in most cases animals are placed deep in
the magnet core, and direct visualization without specialized equipment is not easy.

The use of fMRI in awake, trained rats has been performed by a number of investigators
(Martin et al., 2006a; Chin et al., 2008). There are marked differences in the BOLD response
in awake vs. anesthetized rats (Lahti et al., 1999; Sicard et al., 2003; Duong, 2007). Thus,
anesthesia may also complicate the data sets either because of a diminished signal or as a
result of drug-drug interactions on brain systems. Anesthesia itself may also be stressful, for
a number or reasons; (i) anesthesia is known to produce apoptopic changes in the brain’s of
animals (Dong et al., 2009; Lu et al., 2010); and (ii) it is stressful in that it may raise cortisol
levels and that simple immobility may not be a measure of conscious sensation in the animal
(Dobkin et al., 1966; Oyama, 1973). Anesthetic depth levels have been measured in rats
using thalamocortical local field potentials (Silva et al., 2010) – burst suppression ratio (%
suppression during burst suppression pattern) used as an index of anesthetic depth occurred
in the somatosensory cortex and thalamic nuclei with the highest concentration of isoflurane
(1.7%). It is noteworthy that in most animal studies with anesthesia, all brain systems are
“activated” including cortical regions, presumably involved in conscious evaluation of the
stimulus. In line with this, the cortex can show differential sensory responses during deep
isoflurane anesthesia in rats (Rojas et al., 2008). While ideally more suited for phMRI
studies, the trained awake animal can be used in pain experiments.

Different anesthetics have different effects on brain systems (Field et al., 1993) with regard
to sedative, analgesic, of motor (immobility) function. Some anesthetics may enhance
cortisol and other stress molecules such as norepinephrine (Hamstra et al., 1984; Diltoer and
Camu, 1988; Kostopanagiotou et al., 2010) and others may inhibit such release (Wagner et
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al., 1984). Most fMRI experiments in rodents have used alpha-chloralose, which has no, or
minimal, analgesic action but this is not possible in survival experiments and alternative
drugs, medetomidine, an alpha-2-adrenegic antagonist, which does have analgesic effects
has been adopted. The use of drugs that have analgesic effects may also confound the
evaluation of the data. In addition, some anesthetics alter cerebral blood flow that may alter
BOLD data, notwithstanding (Sharma et al., 1984). Table 3 summarizes pros and cons
related to anesthetized vs. awake imaging.

4. Preclinical Functional Imaging of Pain
Approaches to imaging pain in animals have by and large followed the course that human
imaging studies have reported. Since the first studies reported by Tuor and colleagues (Tuor
et al., 2000) , a number of groups have reported functional imaging studies across a number
of species from mouse to non-human primates in a number of acute and chronic preclinical
pain models. Amongst the first preclinical imaging studies of pain Tuor and colleagues
reported on the effects of electrical and chemical (formalin) stimulation of the forepaw in
rats (Tuor et al., 2000). Subsequent studies evaluated pain in different models as noted
below.

4.1. Acute Pain Models (Table 4, Figure 2)
Electrical Stimulation—Electrical stimulation of the forepaw was initially used because
of its relative ease of use in the scanner and has now been applied to mouse models
(Adamczak et al., 2010) and rat (Chang and Shyu, 2001) models. Such studies have reported
activation in contralateral somatosensory cortical regions to non-noxious stimuli and
activation in somatosensory cortex, cingulate cortex, medial thalamus and hypothalamus to
noxious stimuli that can be inhibited by the analgesic morphine; no activation was reported
in other subcortical regions (Chang and Shyu, 2001).

Algesic-Induced Pain—A similar approach using capsaicin-induced painful stimulation
in anesthetized rats. Following intradermal capsaicin (25 microl), activation of the anterior
cingulate (bilateral), frontal cortex (bilateral), and sensory motor cortex (contralateral) were
observed; morphine reduced these activations (Malisza and Docherty, 2001). Others have
observed additional structures in response to higher concentrations (30 microg) that included
the periaqueductal gray, parabrachial nucleus and superior colliculus (Moylan Governo et
al., 2006). Capsaicin has also been used to evaluate functional changes in the lumbar
(Malisza et al., 2003a) and cervical spinal cord (Malisza and Stroman, 2002). Other algesic
agents have been employed in fMRI imaging experiments. Formalin injected into the
forepaw has been evaluated by a number of groups (Tuor et al., 2002; Asanuma et al., 2008).
In the latter, pan early and late response in the SI cortex while only an early response is
observed with capsaicin; both were abolished by morphine (Asanuma et al., 2008).

Inflammatory Pain—Reports of specific drivers of neuromodulators (e.g., dyorphin) have
been employed in knockout vs. control mice in response to inflammatory stimuli (complete
Freunds adjuvant) (Taketa et al., 2010); no activation was observed in regions such as the
cingulate, somatosensory and insular cortices or thalamus in prodynorphin knockout mice.
Other fMRI visceral pain studies have included those in acute pancreatitis (see Figure 3A)
(Westlund et al., 2009), investigating the effects of a mu agonist (morphine) and mu
antagonist (naloxone) and following a peripheral pain stimulus (intraplantar formalin).

Thermal Stimuli—Heat stimuli activate a number of regions including the cingulate,
retrosplenial, sensory-motor and insular cortex, medial and lateral posterior thalamic nuclei,
pretectal area, hypothalamus and periaqueductal gray (Hess et al., 2007). Following
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injection of zymosan a protein-carbohydrate complex that used to produce an experimental
sterile inflammation), hyperalgesia was observed, with enhanced activation in these same
areas consistent with the notion of sensitization. In a prior study from our group we
evaluated the fMRI activation of the effects of heat on 5 drugs vs. placebo in humans and
rats (Borsook et al., 2007). Using a whole brain and neural circuit (sensory, emotional,
modulatory) activation, the effects of thermal heat applied to the hind paw in awake rats we
observed that drugs that are clinically useful in neuropathic pain had a distinct profile
(imipramine and gabapentin) compared with those that did not (topirimate, clonzaepam,
rofecoxib). Such studies, if shown to be reproducible, show that functional imaging may be
employed in ways we might not have previously considered.

Mechanical Stimuli—Systems to deliver punctate mechanical stimuli for animal fMRI
studies have been developed (Governo et al., 2007). In rats, painful punctate stimulus
produces activation in that included increased in cuneiform (involved in defensive responses
including pain modulation) and parabrachial nuclei and decreased signal change in
entorrhinal temporal and visual cortices (Governo et al., 2007). In addition to rodents,
studies in primate fMRI have been performed. Mechanical nociceptive stimuli applied to the
glabarous skin of the fingers have been used to map SI regions of the monkey brain using
near infrared spectroscopy (NIRS). Specific SI regions including areas 3a, 3b, and 1 were
activated and modulated by nociceptive stimulus intensity (Chen et al., 2009).

Taken together, these data represent a cohort of relatively early data sets that are consistent
with what has been learned in human imaging in response to electrical, heat and algesic
chemicals (see Figure 2), and in most studies, all activation patterns were reported to be
reversed by morphine. Overall, acute imaging studies have shown consistent results for
cortical regions but not for subcortical regions. To date, they have failed to depict a full
image of CNS pain processing in a manner accomplished in human studies, perhaps the
divergence of study designs, imaging, and analysis is at the root of that lack of a complete
picture. Potentially, with the development of better imaging standards and analysis this gap
will be filled.

4.2. Chronic Pain Models (Table 5)
Neuropathic Pain—As with the human experience, fMRI of neuropathic pain has
followed the development of procedures for acute pain (see above). However a few studies
have been reported in the literature. In a spinal cord injury of neuropathic pain (Xu et al.,
1992), in which some rats exhibit spontaneous truncal mechanical and cold hypersensitivity
and others are insensitive to these, but become hypersensitized when naloxone is
administered, activation in the contralateral SI correlates with the level of the hypersensitive
state (Endo et al., 2008b). See Figure 3B shows differences in activation in S1 in spinal
neuropathic vs. sham control animals.

In addition to functional imaging, few anatomical morphometric measures have been used in
neuropathic pain models in rats (Seminowicz et al., 2009). The approach is based on
volumetric changes in gray matter reported in human studies of chronic pain (Apkarian et
al., 2004). This study reports on anatomical changes in neuropathic rats over a five month
period and demonstrated decreased gray matter volumes in the frontal retrosplenial and
entorhinal cortices, S1 hind limb area, anterior cingulate cortex (ACC, areas 32 and 24), and
the insula.

Visceral Pain—Visceral pain is a significant clinical problem and while a number of
studies have been performed in humans (Aziz et al., 2000; Labus et al., 2009; Sharma et al.,
2009), relatively few have been in rodents. While a number of labeled (e.g., [(14)C]-
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iodoantipyrine) studies have been performed (Wang et al., 2008; Wang et al., 2009), one
study that uses fMRI (Johnson et al., 2010), in which a model of colonic distention is
reported and another reported correlated brain changes of c-fos expression with fMRI using
colorectal distention (Lazovic et al., 2005). fMRI activation was present in the amygdala,
hypothalamus, thalamus, cerebellum and hippocampus and cfos present in amygdala and
thalamus suggesting that these approaches may offer complementary information. The
Willis group used fMRI to observe changes in the brain in response to dorsal column
pathway manipulation (based on evidence that visceral information travels in these pathways
from human data (reviewed in (Palecek, 2004)), reported blood volume changes in response
to noxious stimulation of the pancreas and duodenum following before (sham) or after
surgical lesions of the dorsal columns showed increased in the thalamus and brainstem
(Willis et al., 1999).

As can be gleaned from the above discussion, preclinical imaging of pain is in its relative
infancy, certainly when compared with human imaging. Other models would seem to be
well suited for rat fMRI or MRI studies. For example arthritis models, cytokine models,
genetic strain evaluation, and gender differences.

5. Imaging Analgesics and Analgesic Effects (Table 6, Figures 4–6)
A number of analgesic drugs have been evaluated using fMRI. As noted above, many of the
models used morphine as a “blocker” of pain stimuli. Anesthetics alter brain
neurotransmitter systems and brain metabolism (Choi et al., 2002; Shulman et al., 2003) and
cellular metabolism (Luo et al., 2007). What would seem as an important use of animal
models is the ability to measure drug effects on brain neural circuits, particularly in the
awake model where the pharmacological and physiological effects of anesthetic drugs are
not an issue (see above). Most of the current fMRI reports on direct drug action on brain
systems in rodent models do however employ anesthesia. These have focused on opioids
(remifentanil, morphine, and heroin), gabapentinoids (pregabalin), antidepressants
(desipramine), NMDA antagonists (ketamine), and membrane stabilizers (lidocaine) (For
further details, including references, See Table 6). Most of these drugs, or similar drugs have
been evaluated in human imaging studies as noted in the discussion that follows, perhaps not
surprisingly since these fill the main categories of analgesics used clinically.

One of the earliest preclinical fMRI studies on opioids was with the drug heroin (Xu et al.,
2000). Following intravenous heroin, where under artificial respiration a region-specific
increase in BOLD signal was reported. Of significance was that the fMRI activation
observed corresponded with the distribution of opiate mu-receptors in rat brain as previously
reported by autoradiography. More recent studies on of the de novo effects of opioid
analgesics include a study on remifentanil and morphine (Liu et al., 2007).

In the study evaluating the cerebral blood volume (CBV) effects of remifentanil (10umg/kg)
and morphine (200µg/kg) on brain activation in anesthetized rats, the initial effects of
remifentanil resulted in a slow component with decreased CBV in a number of brain
regions, the largest of which occurred in the caudate, accumbens, ventral hippocampus,
cingulate, and piriform cortex (Liu et al., 2007). Figure 4A shows results from this study for
remifentanil. A faster temporal increase in CBV response occurred in the hippocampus
(thought to be due to inhibition of GABAergic neurons). The study demonstrated common
activation patterns for two opioids, and provided a temporal model for evaluating these
effects.

Another pharmacological MRI (phMRI) study on the gabapentinoid gabapentin (Governo et
al., 2007), perhaps the most commonly used agent for the clinical treatment of neuropathic
pain, resulted in increases in brain activity in sensory (thalamus) and modulatory (PAG)
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regions, and decreased BOLD signal in emotional areas (amygdala and entorhinal cortex)
(Figure 4B). These results indicate supraspinal effects of a drug and may explain not only
some of the analgesic effects but also some of the effects on regions of the brain that may be
involved in ‘pain memory’ and anxiety. Such insights are not possible from behavioral
studies alone. A similar approach by the same group, evaluated chronic effects of the
antidepressant drug desipramine (10 mg/kg × 14 days) in a model of chronic neuropathic
pain (SNL - spinal nerve ligation). Desipramine treatment diminished mechanical allodynia
in SNL rats that correlated with greater activation of the midbrain region, primary
somatosensory cortex, insular cortex, medial globus pallidus, inferior colliculus, perirhinal
cortex and cerebellum when compared with sham treated animals (in the latter regions
activated included those associated with “learning and memory”.

The sodium channel blocker, lidocaine, has been used to evaluate its effects on non-noxious
and noxious stimulation of the forepaw in anesthetized rats (Luo et al., 2009). The results in
healthy rats, as reported, indicate that lidocaine produced enhanced responses similar to
those reported for cocaine. The same drug (3mg/kg) was used to determine the effects on
painful electrical stimulation in a model of spinal cord neuropathic pain (see above). Local
application blocked all CNS activity, while systemic application affected activation (Zhao et
al., 2009b).

In a related field of anesthesia, the direct effects of anesthetics (etiomodate, isoflurane) on
brain activity in rodent models have been investigated. Anesthetic agents used in animal
studies have differing analgesic potency or effects (Table 4). Comparisons between
equithesin and isoflurane on air puffs applied to the face demonstrated that the former
reduced brain activation in response the stimulus, while isoflurane include the anesthetics
equithesin and with the use of isoflurane (1.5%) robust activations were detected (Dashti et
al., 2005). Furthermore, repeated exposure of the animals to isoflurane, results in altered
cerebro-vascular responses even if the exposures are separated by five days (Wegener and
Wong, 2008). This type of data is very important since it suggests that different anesthetics
can influence sensory responses. No such comparisons have been reported for the effects of
different anesthetics on painful stimuli.

6. Preclinical imaging of pain and analgesics in Future Research
The ability to measure changes in multiple brain areas in the brainstem and higher centers
(cortical and subcortical) with new imaging modalities, such as functional magnetic
resonance imaging (fMRI), allows for a ‘global brain response’ that captures activation
patterns in numerous functional circuits (e.g., sensory, emotional) that may provide an
objective evaluation of an organisms response to pain or analgesics. As the use of NMR
technologies in the preclinical phase increases, significant advances in understanding the
neurobiology of pain, understanding of how and where in the brain these drugs affect pain
processing, improving an understanding of direct effects of analgesics on brain systems and
implicitly in analgesic drug development. The impact of using this technology for measures
of whole brain systems in the context of healthy vs. preclinical animal models is just
beginning to be realized. The use of neural circuit as “a language of translation” (see
(Borsook et al., 2006)) has implications for refining old and defining new models in
translational medicine. Such translations may be bidirectional (see Figure 5).

Implications for Pain Neurobiology
From a systems neuroscience point of view, functional imaging offers a unique window into
brain function. Aside from traditional approaches that include evoked and resting state
measures the addition of anatomical and chemical measures allows for evaluation of
plasticity of the nervous system. In addition, the use of stimulation and ablation techniques
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in combination with imaging opens new vistas into circuit based measures (Figure 3). New
approaches including measures of resting state networks may enable new research and
insights into chronic pain processing.

Differentiating Drug Classes
Potentially, one of the most useful applications of phMRI of the brain is to segregate classes
of drugs. Figure 6 shows one such example of different brain activation patterns for an
opioid vs. a tricyclic antidepressant. Such approaches may help evaluate novel drugs, and
combination treatments. With novel drug evaluation, differentiation of potential molecules
being developed can be evaluated this way as an additional method of profiling candidate
molecules.

Electrophysiology - Brain Recording and Stimulation in the Magnet
fMRI is a surrogate for measures of neural activity (Logothetis, 2002). Coupling of the
BOLD response and electrophysiology has been reported in rats (Huttunen et al., 2008) and
primates (Shmuel et al., 2006). Combining imaging with electrophysiology or stimulation of
a targeted region of interest offer additional research. Stimulation of specific regions,
defined by imaging, may provide preclinical evidence for efficacy of such approaches that
are now common across a number of diseases affecting the central nervous system.

Using glass-coasted carbon fiber electrodes methods for direct stimulation of brain
structures have been described in which the authors report little distortion of images
acquired (Shyu et al., 2004b; Shyu et al., 2004a). Stimulation of the medial thalamus
resulted in an increase in signal in the anterior cingulate cortex (ACC). Such approaches
may be used not only to show such connectivity, but also may be important in evaluating
targets for neurostimulation therapies for chronic pain.

Longitudinal studies for Pain
Pain conditions such as neuropathic pain, evolve following an injury and an understanding
of how the brain changes over time through repeated fMRI measures. As noted above,
longitudinal studies are possible with functional and anatomical imaging and may be limited
with PET because of issues related to radioactivity exposure. Such possibilities are
important in measures of changes that occur with the evolution of chronic pain in animal
models. Repeated imaging needs to take into account issues of the potential effects of multi-
dose effects of anesthetic drugs, or in the case of awake animals, repeated training for the
imaging (Weber et al., 2006).

“Dynamic” and “Static” Lesion Studies
Animal models offer approaches that allow for experiments to answer questions that are
difficult or impossible to perform in humans. Lesions of pain pathways have contributed
enormously to our understanding including modulatory pain pathways (Porreca et al., 2002).
We use the term “static” lesion studies as those where a lesion is produced in the routine
manner (electrolytic or chemical) and “dynamic” refers to manipulations such as genetic
switches introduced into a brain region (Bernstein et al., 2008) that can be turned on or off.
By introducing genes into specified neurons, the latter may be silenced or activated in a
controlled temporal fashion and thus allows for studies of neural regions as they relate to
systems biology in surrogate models of pain.

Species and Gender Considerations
Imaging across species including rats, mice and non-human primates is now possible with
advantages amongst each group. Rats have formed the backbone of much of pain research.
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Since genetic strains and manipulations of gene in mouse strains, these clearly offer
additional advantages on evaluation of changes resulting from gene manipulation (Nadler et
al., 2006; Badea et al., 2009). For some specific issues, non-human primates may be the
species of choice, for example, PET studies of ligands or novel pharmacological agents.
Given that human imaging is now pervasive and most experiments can now be done in
human volunteers and patients, the need for experiments in non-human primates is relatively
low. Differences and commonalities across species clearly need to be taken into account
(Keller et al., 2009; Pinsk et al., 2009). In addition, well known gender differences need to
be considered as have been shown in human studies (Lv et al., 2010).

Neuroplasticity
Pain is now considered a disease that affects CNS function ad structure. These neuroplastic
changes observed across a number of human studies (phantom limb pain, neuropathic pain,
fibromyalgia, migraine) have recently been applied to the rodent model of neuropathic pain.
In general, structural (Antonini et al., 1999; De Groof et al., 2006; Ghosh et al., 2009) and
functional imaging (Kuo et al., 2005; Van der Linden et al., 2009) in rodents has provided
excellent readouts of brain plasticity. In a rodent model of spared nerve injury (SNI)
significant changes in measures of brain volume were reported (Seminowicz et al., 2009).
This is highly significant since the information provides another human-rodent correlation, it
allows for strategies to be developed in order to fully understand these changes (Metz et al.,
2009). Similar approaches to prior human models evaluating cortical plasticity are also
observed in humans has been reported in animal models (Sydekum et al., 2009). In the latter
study, spinal cord injury resulted in changes in fMRI responses in SI (enlargement of the
activated area) and persistence of the fMRI signal in the wake of behavioral recovery. Such
functional reorganization has been shown in humans to continue brain even in the light of
abnormal brain function (Lebel et al., 2008). However, such recovery markers may prove to
be useful in long-term imaging/behavioral trials.

Understanding Signal Change
The nature of decreased or negative BOLD fMRI signals is not been well understood (Harel
et al., 2002; Boorman et al., 2010). In a novel approach to this issue using a pain model, the
effects of intravenous dopaimine-2-receptor agonists (D2RA) that normally produce
decreased BOLD in the basal ganglia (caudate-putamen) was evaluated in rats (Shih et al.,
2009). By combining pharmacological applications of the D2RA (which would produce
decreased activations), markers of neuronal activation (c-fos), and electrophysiological
recordings, decreases in BOLD were associated with increases in c-fos expression and
electrical activity in neurons. The implication of this study is that endogenous
neurotransmission may be responsible for the diminished BOLD signal. In addition,
differences in BOLD signal may be the result of the anesthetic state (Figure 7) and attempts
to understand not only BOLD signal biology, but also differences in pain and analgesic
processing will require further understanding of the benefits of awake, trained animal
imaging.

Genetic Strains
A great deal of new information on the genetics of pain and analgesia has been reported in
animal rodent models (Lariviere and Mogil, 2010). An understanding of how strain and
genetic differences affect pain processing at neural circuit levels is clearly an opportunity
that is exciting. Most work on genetic manipulation has been carried out in mice strains.
Species and strain differences produce different manifestations related to drug effects and
disease models (e.g., neuropathic pain) (Rigaud et al., 2008). In a recent example of these
approaches, evaluation of dynophin over-expressing mice brain activations to heat were
compared with wild type mice with an overall decrement in signal in pain structures
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(Heindl-Erdmann et al., 2010). Of interest, was that administration of a kappa receptor
antagonist reversed this observation to parallel changes observed in wild type mice. Another
example of use of imaging in evaluating genetic modulation relates to protein kinase C
(PKC) that has been reported to significantly alter pain processing (Zou et al., 2002). In
mice lacking PKC gamma gene, activation of PKC produces decreased paw withdrawal
latency to heat but not in knockout mice lacking the gene (Niikura et al., 2008). fMRI
analyses reported early increases in brain activity in sensory and thalamic regions and
delayed activation increases in emotional brain regions (cingulate, accumbens and ventral
tegmental area) in wild type mice in response to the intrathecal injection of the PKC
activator. None of these effects were observed in the knockout mice. Such approaches offer
tremendous advantages in understanding genetic modification on brain systems in acute and
chronic pain models.

Implications for Translational Uses in Drug Development – Mapping Animal-Human
Equivalence

In the past 50 years there have been few novel therapeutic agents for chronic pain and
patients are in need of more effective therapies. The lack of facile surrogate endpoints for
potential CNS therapeutics means that making the right choice of molecule and enhancing
early attrition of inappropriate targets so that the best molecules survive in development
(Pritchard et al., 2003) is critical. For the CNS, the problem is also confounded by the
paucity of processes and technologies that can provide a true translational bridge between
preclinical and clinical testing and evaluation (Bleicher et al., 2003). See Figure 6. A
number of models now show cross-species equivalence in spinal cord and higher centers.
With respect to the former, much of our understanding of chronic pain has come from
studies on the dorsal horn for both somatic and visceral pain (Willis and Westlund, 2001).
Both human (Bouwman et al., 2008) and animal imaging studies (Zhao et al., 2009a) allow
for measures of fMRI activation in the spinal cord offering further insights into intact animal
evaluation of pain processing at this level. For examples of spinal cord imaging see Tables
4–6. Additional examples are in painful heat responses in the brain (Becerra et al., 2010).
Studies on cross species equivalence in drug and disease state are now warranted.

Appropriate preclinical models that translate into successful clinical programs are fraught
with difficulties related to predictability. Imaging offers a view of the invisible that is
perhaps best described by an example. Rats do not have a robust vomiting behavior, and as a
result, other species (e.g., dogs or ferrets) may be used to evaluate this side effect. A report
showing that a marker for vomiting in awake rats showed activation in the well-known
brainstem “vomiting centers” the area postrema and the nucleus tractus solitarius in response
to the emetic drug apomorphine (Chin et al., 2006). This study captures some notable issues
important in the use of imaging in drug development; including, (i) evaluation of novel
drugs based on known neural circuit activations; (ii) the ability to predict potential side
effects.

However, new correlation metrics will need to be determined including: (i) A correlative
segmentation or functional activity domains integrating human and rat atlases; (ii)
Standardization of fMRI signals: humans and rats will be required since they are imaged in
very different MRI systems. In order to accomplish this, methods such as the following may
be introduced – determination of activation through standard fMRI analysis for noxious and
mechanical stimulation for both humans and rats; normalization of activity on a voxel-by-
voxel by scaling sensory activity with BOLD amplitude generated by BOLD-control scan:
breath holding in humans and CO2 challenge in rats; and summary of each brain structure
by defined metrics such as peak amplitude, volume of activation (as a fraction of the volume
of the structure).
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Direct Effects of Analgesics on Brain Activation (phMRI)
While few studies have been reported in this area, it would seem an area of great opportunity
since resting state or phMRI experiments can be performed in anesthetized (Hutchison et al.,
2010) or awake animals where no stimuli are required (Ferris and Stolberg, 2010). Examples
are discussed above and shown in Figures 4–7. A major obstacle in the development of new
drugs for chronic pain as well as better understanding of chronic pain disease conditions
relates to the poor relationship that exists between clinical and preclinical studies.
Behavioral measures, although very in formative, reduce significantly the dimensions of
pain. It is very difficult to assess sensory, emotional, attention, modulatory characteristics in
preclinical models in an integrative manner that could begin to predict a clinical condition or
the effects of a drug. An integrative approach that could in principle provide such level of
information relies in neuroimaging of the Central Nervous System.

Drug Sorting
Imaging may be able to distinguish different drug effects, by class (e.g., membrane
stabilizers vs. antidepressants) or within a class (e.g., antidepressants). This approach could
enhance drug selection for further development by selecting best in class for CNS effects for
pain and analgesia.

Drug Effects Across Species
Determination of signals within and between species is a critical process that needs to be
evaluated and imaging studies perhaps provide one of the best platforms in which to do this
(see (Borsook et al., 2007)). See Figure 6C.

Costs, Speed and Integrative Approaches
Clearly imaging is not a stand-alone entity that can answer all questions related to drug
development. Animal imaging can now be performed relatively quickly and analysis tools
are becoming standardized and efficient. Thus, the technology may be employed so that it
can be a contributor to evaluating CNS acting drugs, including analgesics, relatively fast and
in an objective manner. In addition, early observation of CNS effects in drugs “designed to
not have any side effects” can be done early on prior to human experiments.

Detection of side effects
CNS side effects that can be predicted include (i) emesis (see (Chin et al., 2006); (ii)
sedation; and (iii) potential rewarding (addictive) or aversive responses. The sensitivity and
specificity need further investigation and definition. Pharmacological modulation of side
effects

7. Closing the Gaps
There is a need for standardized approaches so that data can be compared across institutions/
centers. Standards, reproducibility, benefits, application and opportunities for imaging
awake vs. anesthetized rats in order to study brain effects of pain and analgesia. Ideally,
initial data supporting similarities and differences across species and within species would
be a significant contribution. Advantages of having animal imaging processes that are robust
and reproducible (particularly with inferences to the human condition) allow for
manipulations that are not possible in humans. Can imaging reduce animal experimentation
using these technologies (Gruber and Hartung, 2004; Heindl et al., 2008)? While this is not
clear, the idea of obtaining more objective data on brain effects may help focus research to
accomplish this.
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The Need for Animal Imaging Studies
Ideally, we would not need animal studies to further define brain systems involved in pain
and analgesia (see (Langley et al., 2008)). The necessity of animal models in pain research
has recently been reviewed (Mogil et al., 2010) and supports the complementary role,
inherent advantages and relevance of translation that animal models may afford. On the one
hand, despite significant use of animals in basic research, the benefits in terms of effective
treatments with few side effects for chronic pain remain elusive. Part of the issue has been
the use of animal models that have not provided useful translation into the human condition
– both from a drug evaluation point of view and from a disease state point of view. Most
drugs defined in humans for pain have great efficacy in animals (Kobierski et al., 2003;
Borsook and Edwards, 2004). However, as suggested previously, given that chronic pain is
now considered a disease of the brain, functional imaging may be used as a language of
translation to help overcome some of these deficits. Furthermore, other considerations
include costs of human studies, inability to test novel drugs in humans until regulatory
approval (IND) is made, the ability to perform genetic manipulations in humans and
inability to produce invasive procedures in initial testing of either procedures or of lesioning
brain regions to better understand pain processing. Taken together, it would seem that
preclinical imaging has much to offer in understanding basic neurobiological aspects of
chronic pain and providing new opportunities in evaluating potential opportunities.
However, as with any animal model use, optimizing animal welfare and scientific validity
for research clearly deserves further attention (Auer et al., 2007).

8. Conclusions
Functional neuroimaging provides an objective readout of CNS function (neuroinformatics)
that can inform neurobehavioral studies of CNS disorders such as chronic pain and provide a
novel framework to evaluate therapeutic hypotheses rapidly. A better understanding of the
neurobiology of pain particularly CNS changes in chronic pain has clearly made significant
advances in recent times. However, the big question is whether preclinical fMRI can help
provide a focus and a level of specific functionality that can guide therapeutic approaches to
chronic pain treatment in the clinic? Continued efforts are poised to make functional
neuroimaging of pain and analgesia a significant contributor to this end.

Research Highlights

• Preclinical Imaging of Pain and Analgesia should advance systems neural
science

• Review of Methodological Approaches using fMRI including technical issues

• Effects on brain systems in Anesthetized Animal vs. Acclimated Awake Animal
Imaging

• Current Review of Acute and Chronic Pain models as well as Drug effects

• Evaluation of Translational models that overlap the human data
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Figure 1. Research Reports on Preclinical Functional Imaging of Pain
Numbers of papers published in the field of “functional magnetic resonance imaging and
pain and rats” from before 2000 and through each year to 2009. Search Source PubMed
(www.ncbi.nlm.nih.gov/pubmed/).
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Figure 2. fMRI Measures of Acute Pain in the Rat Brain
Common activated structures across evoked painful stimuli studies: Pseudo-colors represent
percentage of 15 studies that a particular brain area has been to activate in response to an
evoked painful stimulus. Cortical structures (sensory, motor, cingulate) tend to be most
commonly activated that subcortical structures. See Table 4 for more details.
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Figure 3. Examples of Activations in clinical models of pain
A: Visceral Pain: Activation in the thalamus in response to abdominal stimulation in a
model of visceral pain ((Westlund et al., 2009); with permission, Neuroimage). Note the
increase in the lateral and dorsal thalamus suggesting increased activation in lateral and
medial pain pathways.
B: Neuropathic Pain: Activation in response to trunk stimulation in a rat model of spinal
cord injury. Panel A shows activation in response to the stimuli in SI (arrow) in normal
animals that is increased in the injured animal ((Endo et al., 2008a); with Permission, IASP
Press).
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Figure 4. phMRI showing Activation Maps
A: Remifentanil. The figure shows positive (red-yellow) and negative (blue-green) changes
in CBV following remifentanil infusion (10µg/kg). Activation patterns are noted in piriform
cortex (white rostral slices), ventral tegmental areas (yellow), hippocampus (green rostral
areas), raphe (red), reticular formation (green caudal areas). From ((Liu et al., 2007); with
permission, Neuroimage).
B: Gabapentin. The figure shows BOLD signal activation following 100mg/kg infusion of
gabapentin vs. saline resulting in activation in a number of regions including the thalamus,
PAG, hippocampus and tegmental area (From (Governo et al., 2008); permission, British
Journal of Pharmacology, with minor modifications). Numbers indicate distance from
Bregma.
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Figure 5. Human – Rat Correlations using fMRI (Box)
A: Functional Correlations (from (Borsook et al., 2007); with permission, Drug Discovery
Research). The figure shows the thermal response of rats and humans to a 46°C stimulus
applied to the dorsum of the foot. Note that the activation patterns in the regions of interest
(primary somatosensory cortex (SI), thalamus (Th), insula (I), anterior cingulate cortex
(aCG) and amygdala (A)) is similar in each species. Furthermore, the signal sign (i.e.,
increase or decrease in BOLD signal) is similar in both species).
B: Morphological Correlations: B1: The Figure shows cortical gray matter volume loss
(gray matter density) in the dorsolateral prefrontal cortex (DLPF) in patients with chronic
back pain (From (Apkarian et al., 2004); with permission, Journal of Neuroscience). B2:
Data from a rat neuropathic pain model (SNI) showing cortical volume loss in the prefrontal
cortex (From (Seminowicz et al., 2009); with permission, Neuroimage).
C: Analgesic Correlations (from (Borsook et al., 2006); with permission, Drug Discovery
Research). Effects of Drugs on Thermal Stressor in Humans. C1: Sample axial slices
depicting activation maps for two drugs (imipramine and clonazepam) and placebo. Visual
inspections indicate that there is an overall decrease in activation for imipramine vs. placebo
and an overall increase in activation for clonazepam vs. placebo. C2: Voxel count for 5
drugs vs. placebo for whole brain (WHB) activation. Note that for imipramine (I) and
gabapentin (G) more voxels are activated in drug vs. placebo while for clonazepam (C),
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rofecoxib (R) and ketorolac (K) more voxels are activated in the drug vs. placebo.
Topiramate (T) has an intermediate or mixed effect. C3: Voxel count for pathway activation
(PB). Note a similar pattern is present when compared with whole brain activation.
Effects of Drugs on Thermal Stressor in and Rats. C4: Sample axial slices depicting
activation maps for two drugs (imipramine and clonazepam) and placebo. Visual inspection
indicates that there is an overall decrease in activation for imipramine vs. placebo and an
overall increase in activation for clonazepam (C) vs. placebo. C5: Voxel count for 4 drugs
vs. placebo for rat whole brain (RWHB) activation. Note that for imipramine (I) more
voxels are activated in placebo vs. drug while for clonazepam (C), rofecoxib (R) and
ketorolac (K) more voxels are activated in the drug vs. placebo. C6: Voxel count for
pathway (RPB) activation in rats, showing a similar pattern to that for RWHB. Key: Red bar
= voxels activated in drug > placebo; blue bar = drugs < placebo.
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Figure 6. Differentiating Drugs
fMRI images through the rat brain following infusion of a tricyclic antidepressant
imipramine 20mg/kg (Drug A) opioid morphine 5mg/kg (Drug B) and showing different
activation patterns. The experiments were conducted in trained awake rats. (Borsook et al.,
unpublished data). Key: ACC = anterior cingulated cortex; H = hypothalamus; Hi =
Hippocampus; S = septal region; PAG = periaqueductal gray; SN = substantia nigra; DB =
Diagonal band of Broca;
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Figure 7. Resting State Networks in the Rat
A: Anesthetized Rat. Horizontal images (except for lower right showing hypothalamus)
through the rat brain showing differences in activation patterns in different brain regions to
1% Isoflurane (left columns) and ketamine 50mg/kg/h i.p./xylazine 6mg/kg/h i.p. (right
columns) (From (Hutchison et al., 2010) ;with permission, Journal of Neurophysiology, with
modification).
B: Conscious Rat. Funcitonal connectivity map using the thalamus as a seed region. A
number of regions connected to the thalamus including the hippocampus, auditory, motor
somatosensory, retrosplenial cingulate, prefrontal regions and the caudate putaminal regions
(From (Zhang et al., 2010); with permission, Journal Neurosci Methods, with modification).
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Table 2

Analgesic Effects of Anesthetic Agents used in Preclinical Imaging Studies

Stimulus Mechanism of Action Analgesic Effects References

Isoflurane Uncharacterized None in sub-anesthetic levels in human models of pain (Petersen-Felix et al., 1995)

Enhances Windup in Spinal Cord in Rats (Ng and Antognini, 2006)

Etiomodate Agonist at GABAA receptors Depresses Lumbar dorsal horn neuronal activity to pain (Mitsuyo et al., 2006)

Medetomidine Alpha(2)-adrenergic agonist Produces sedation and possible supraspinal mediation of
analgesia

(Buerkle and Yaksh, 1998)

Alpha-chloralose Unknown Predominantly a sedative hypnotic with poor analgesic
effects

(Strobel and Wollman, 1969)

Has been shown to suppresses dorsal horn neurons (Collins et al., 1983)
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Table 3

Pros and Cons of Anesthetized vs. Awake Imaging

Condition Anesthetized Awake

Training No training required Training required

RSN state Δ by Anesthetic Agent Not influenced by anesthetic agent

Hemodynamic Stability Needs specialized processing Not an issue

Mobility Minimal Movement may be an issue

Analgesic State Unknown Known

Anesthetic Depth Difficult to Measure Not an issue

Sensitized by Training No Unknown

Sensitized by Anesthetic Yes (if survival experiments) No

Repeated Exposure Apoptosis Unknown

Cortisol Release Depends on anesthetic Diminished by Training

Chemical modulation of Brain State by Anesthetic Depends on anesthetic Not affected

Stress State Unknown since it depends on anesthetic depth Measured
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