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SUMMARY
We consider the problem of evaluating a statistical hypothesis when some model characteristics
are non-identifiable from observed data. Such scenario is common in meta-analysis for assessing
publication bias and in longitudinal studies for evaluating a covariate effect when dropouts are
likely to be non-ignorable. One possible approach to this problem is to fix a minimal set of
sensitivity parameters conditional upon which hypothesized parameters are identifiable. Here, we
extend this idea and show how to evaluate the hypothesis of interest using an infimum statistic
over the whole support of the sensitivity parameter. We characterize the limiting distribution of
the statistic as a process in the sensitivity parameter, which involves a careful theoretical analysis
of its behavior under model misspecification. In practice, we suggest a nonparametric bootstrap
procedure to implement this infimum test as well as to construct confidence bands for
simultaneous pointwise tests across all values of the sensitivity parameter, adjusting for multiple
testing. The methodology’s practical utility is illustrated in an analysis of a longitudinal
psychiatric study.
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1. Introduction
Sensitivity analysis has been widely advocated in missing data scenarios where the
missingness process depends on the unobserved outcomes, as defined in Little and Rubin
(1987). Under such missingness mechanism, missing data cannot simply be ignored and
unbiased inferences may require strong modelling assumptions, which cannot be checked
using the observed data. We consider parametric models, where there are certain parameters
of interest in the model for the data and other parameters in the missingness model which
may be viewed as secondary parameters. In addition to the form of the parametric model not
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being identifiable, in many cases, the models may be ”overparameterized”, so that even if
the form of the model is correct, standard estimation techniques may still fail due to the
models being non-identifiable. This is problematic, since it may not be known a priori
whether identifiability holds, owing to the complex nonlinear structure of the missing data
models. In practice, these problems may be manifested in unstable estimation, where the
algorithms used to compute the estimators may not converge reliably.

In order to make inference about the parameters of interest without simultaneously
estimating all model parameters, one may instead fix a minimal set of parameters, called
sensitivity parameters, conditional upon which the primary parameters are assumed
identifiable. These profile models, viewed as functionals of the sensitivity parameters,
provide the basis of sensitivity analysis. In essence, one uses the model profiled across the
sensitivity parameters as a working model to delineate inferences consistent with the
observed data. Two general strategies for sensitivity analysis have been discussed in the
literature, local and global, depending on the range of the sensitivity parameter under
consideration. A local sensitivity approach assesses the impacts of uncertainties on
inferences over a range of models specified by the sensitivity parameter in a small
“neighborhood” of a known value of this parameter (Copas and Eguchi, 2001; Verbeke et
al., 2001; Troxel et al., 2002; and Todem et al., 2006). The idea stems from work on missing
data, where one may assess the effects of small perturbations of the ignorable model in the
directions of non-ignorable models. The sensitivity of the identifiable parameter with respect
to sensitivity parameters may be estimated via partial derivatives with respect to the
sensitivity parameter in a neighborhood of the sensitivity parameter values corresponding to
ignorable missingness. If the parameter estimates are locally insensitive to these values of
sensitivity parameters, then, under the assumption of small violations of ignorability, the
hypothesis can be reasonably evaluated assuming ignorable missingness. Such methodology
is useful but does not permit assessments of large deviations of sensitivity parameters on
inferences. In practice, it may be of scientific interest to understand the impact of such
deviations. Global analyses may be critically important in such applications. Under
qualitative assumptions regarding the missingness mechanism, it may be possible to derive
such bounds without imposing further parametric assumptions; see Manski (2003) and
Horowitz and Manski (2006) for overviews. Such ideas have been explored empirically, as
in Scharfstein, Manski and Anthony (2004) for observational studies. Alternatively, one may
employ more structured parametric models for the missingness mechanism. Such modelling
approaches are commonly employed in practical data analytic settings, owing to their
conceptual simplicity and ease of implementation. Similarly to our set-up, there are a small
number of sensitivity parameters. Recent illustrations of such methodology can be found in
Shepherd et al (2006) and Vansteelandt et al (2006). A limitation is that formal inference is
not provided. The usual strategy for presenting results is to provide parameter estimates at
various values of the sensitivity parameters, accompanied by pointwise confidence intervals
based on the assumption of a correctly specified model. Inference regarding significance of
the covariates is ad hoc, ignoring that multiple tests are conducted and that the model may
be misspecified.

In Section 2, we propose conservatively testing the null hypothesis across the support of the
sensitivity parameter using an infimum test statistic. The test accounts for the facts that
inferences are carried out simultaneously across the entire range of the sensitivity parameter
and that the model is misspecified under certain values of the sensitivity parameter, as there
is only a single true value. We also develop simultaneous confidence bands for the
identifiable parameter, enabling pointwise tests which control the overall type I error rate
and an assessment of the magnitudes of the effects, over the range of the sensitivity
parameter. These procedures require a careful theoretical analysis of the estimator as a
process in the sensitivity parameter; asymptotic properties are sketched in the text, with
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details in a supplementary web file. A bootstrap procedure is suggested for practical
implementation. In Section 3, we present a special case of our general working model set-
up, a shared random effects model for longitudinal binary outcomes with non-random
dropouts. We discuss identifiability issues related to the proposed model and describe
aspects of estimation and inference. A practical illustration of the sensitivity analysis for this
model using a psychiatric data set is given. We conduct a simulation study assessing the
performance of the sensitivity tests in small samples. A discussion concludes in section 4.
Additional technical details are contained in a Supplementary Materials file.

2. The general framework
2.1 Overview

Consider a random process of any finite dimension W ~ fW(θ;W), where fW(θ;.) is a
parametric family known up to a parameter vector θ ∈ Θ. As an example, in the context of
meta-analysis on publication bias one may take W = (Y, R), where Y is observed for R = 0
and missing for R = 1. In the context of longitudinal studies with T potential outcomes for
each subject, one would take Y = (Y1, …, YT)′, and R = (R1, …, RT)′, where Rt = 1 if Yt is
unobserved and 0 if otherwise. Suppose that n independent copies W1, W2,…, Wn of W are
available and that consistent estimation of θ may not be possible as a result of identifiability
issues. That is, the maximum likelihood estimate of θ namely,

may not have good properties. The nonidentifiability of the model can be managed by
considering a parameter say δ, conditional upon which the others are estimable. The model
parameter vector can then be partitioned as θ = (ψ, δ), where ψ is assumed identifiable for a
fixed δ. The usual strategy for presenting results is to provide the maximum likelihood
parameter estimates ψ̂(δ) of ψ at various values of δ, accompanied by pointwise confidence
intervals based on the assumption of a correctly specified model. Inference regarding
significance of identifiable model parameters is ad hoc, ignoring that multiple tests are
conducted and that the model may be misspecified. Previous work on complex parametric
models has overlooked these two key issues, the first being that inference must be made
simultaneously across a continuum of the sensitivity parameter and the second being that the
missingness model will be misspecified at virtually all values of the sensitivity parameter
within that continuum. The theoretical analysis below provides the necessary results for
dealing with these issues. In particular, the development of the sensitivity tests in the next
subsection depends critically on a careful study of the properties of the ψ̂ (δ).

2.2 Uniform asymptotic properties of profile likelihood-based estimators
To ensure that the profile likelihood function is bounded for any value of δ, we restrict ℋ,
the support of δ, to a compact set. It is well known that under a correctly specified model fit
with δ = δ0, the true value of δ, and under mild regularity conditions, the estimators are
consistent and asymptotically normal, that is,

as the sample size n gets large, where ψ0 is the true value of ψ with δ fixed at δ0. Under a
misspecified dropout process, i.e. δ ≠ δ0, and for a large n, we get ψ̂ (δ) →p ψ*, with ψ* not
necessarily equal to ψ0. The vector ψ* will typically depend on δ and will be denoted ψ*(δ)
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to highlight this dependence. When n → ∞, the pseudoscore functions are roughly quadratic

in the neighborhood of ψ*(δ) for fixed δ and the limiting distribution of  is
mean zero normal with variance-covariance matrix Γ (δ) (White, 1982).

These pointwise results may be made uniform under certain smoothness conditions, using
empirical process arguments. Under conditions C1 and C2 in the Supplementary Materials,
ψ̂ (δ) is uniformly consistent for ψ*(δ) and J(δ) = n1/2{ψ̂(δ) −ψ*(δ)} converges weakly to a
Gaussian process with mean 0 and covariance function E{J(δ1)J(δ2)′} = Γ(δ1, δ2) =
E{ιi(δ1)ιi(δ2)′}, where the influence function ιi(δ) is defined in (A3) in the Supplementary
Materials. In general, estimates at different values of the sensitivity parameter will be highly
correlated and treating the estimates as independent could lead to misleading inferences. An
estimate of Γ(δ) based on the inverse of the observed information matrix from the profile
likelihood is known to be biased, due to the model misspecification. McCullagh and
Tibshirani (1990) have shown that some adjustments can be made in order to reduce the bias
to O(1/n). An alternative is to use a robust sandwich variance estimator as described by

White (1982), which can be computed as  where ι̂i is ιi with all
unknown quantities replaced by empirical estimators. One may also use the bootstrap
method to estimate the standard errors of the estimates of the parameter ψ*(δ) (Efron and
Tibshirani, 1993). The method consists of randomly selecting S samples of size n with
replacement from the original data set, where the sampling units consist of all information
collected on each individual, Wi, i = 1,…, n. The sample standard deviation of the parameter
estimates from the n bootstrap samples estimates the true standard error. This bootstrap
procedure may also be used to approximate the distribution of ψ̂(δ) as a process, which is
quite complex and does not lead to simple analytic testing procedures. The validity of the
bootstrap follows automatically from empirical process theory under the regularity
conditions given in Appendix A (van der Vaart and Wellner, 2000), essentially requiring the
smoothness and boundedness of the likelihood for fixed δ ∈ ℋ. This occurs because even
though the model may be misspecified, the estimand ψ*(δ) is an implicit functional of the
empirical distribution so that empirical process theory applies equally under correctly
specified and misspecified models.

Condition C2 in the Supplementary Materials underlying all of the above results requires
that a unique ψ*(δ) exists after fixing δ. In fact, to our knowledge, a rigorous analysis of ψ̂
(δ) accounting for model misspecification has not previously been undertaken. Formally
establishing this condition is beyond the scope of this paper.

2.3 Global sensitivity testing
Suppose we are interested in evaluating the following null hypothesis:

where C is an r × p contrast matrix and c is an r × 1 vector of constants. This framework
allows for composite hypotheses. In the special case of testing whether the jth coefficient of
ψ is equal to 0, one takes C to be 1 × p vector with a one in the jth position and zeros
elsewhere and c = 0. Under a nonidentifiable model, the above hypothesis cannot be tested
without additional restrictions. If the true sensitivity parameter δ0 is known, the true
hypothesis to be evaluated is given by H02 : Cψ*(δ0) = c, where ψ*(δ0) = ψ0. Unfortunately
in most cases, δ0 is unknown and may not be estimable from observed data. We propose a
global sensitivity test which uses the trivial inequalities given by,
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to make rigorous inferential statements about H02. Here ‖·‖ is any norm function, typically
Euclidean norm. We can evaluate H02 by conservatively testing the hypothesis infδ ‖Cψ*(δ)
−c‖ = 0. Clearly when infδ ‖Cψ*(δ) − c‖ is strictly greater than zero, ‖Cψ*(δ0) − c‖ will be
greater than zero as well. The infimum hypothesis is formally defined as

(1)

In the case of a one-dimensional parameter ψ, an ad hoc test may be conducted by
constructing simultaneous confidence bands for ψ*(δ) given δ. If the band includes 0 for any
δ, then H02 cannot be rejected. In general, if a simultaneous confidence band for Cψ*(δ)
excludes c for all δ, then one rejects the associated null. Note that such bands also identify
those δ at which the null is rejected, which may be useful in understanding how inferences
change as a function of the missingness model.

We now propose a formal infimum statistic to evaluate H03,

where Σ̂(δ) is an estimator of the variance-covariance matrix of ψ̂ (δ). The test statistic T
rejects the null for unusual large values. While for each fixed δ, the test process follows a
simple chi square distribution under the null, the asymptotic distribution of the estimator ψ̂
(δ) as a process in δ is quite complicated and the distribution of T is analytically intractable.
One may use the nonparametric bootstrap to generate the distribution of the infimum test
statistic and to construct the confidence bands, using the approach described in section 2.2.
Let ψ̂s(δ) and Ts, s = 1,…, S denote the estimators and infimum tests computed in the S
bootstrap samples. One rejects the null at level α if the observed test statistic is larger than
the (1 − α) percentile of empirical distribution of Ts, s = 1,… S. A simultaneous confidence
region for Cψ*(δ) − c takes the form

where ϑ ̃α as the (1 − α)th empirical percentile of .

A pointwise approach might also be used to perform a sensitivity analysis for ‖Cψ*(δ)−c‖ =
0 given a finite number of values for δ. The method consists of letting the sensitivity
parameter take values in a set A = {δ1, …,δQ} ⊂ R+, with Q < ∞ and evaluating the
hypothesis, ‖Cψ*(δ) − c‖ = 0. Specifically, for δ ∈ A, simultaneous pointwise confidence
intervals may be constructed for {Cψ*(δ) − c} using standard error estimates for ψ̂ (δ) from
section 2.2, with a multiplicity adjustment. If all intervals exclude 0, then Cψ*(δ) ≠ c at
those δ. This approach should be carefully undertaken as the choice of points in A may be
somewhat arbitrary and may miss δ where H03 holds. Thus, one cannot formally test H01
using finite δ. Moreover, there may be reduced power with large Q, where the multiplicity
adjustment for controlling the overall type I error may be quite conservative. The global
approach described above provides a systematic method for dealing with these issues.
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3. Application to longitudinal outcomes with potentially non-random
dropouts
3.1 A shared random effects model as a working model

We consider a longitudinal study where for each subject i = 1,…,n, there are T potential
outcomes Yi1,…, YiT represented by the vector Yi(  = (Yi1,…, YiT)′, measured at discrete
time points in = {t1,…, tT}. These outcomes, however, may not be fully observed and
therefore are coupled with a missingness indicator Ri = (Ri1,…, RiT)′, where Rit = 1 if Yit is
unobserved and 0 if otherwise. When the missing data result from dropouts, it is intuitive to
represent the series of missingness indicators by a single random variable denoted by Di = 1
+ max{t : Rit = 0}, which indicates the drop-out time for subject i. We assume that Di ≥ 2
which implies that all subjects are present at first time point. If Di = T + 1 then the subject is
fully observed and if Di < T + 1 the subject drops out.

Although our analysis can be performed for a wide variety of models, to minimize incidental
technicalities, we consider the special case of random intercept models with potentially not
at random missing values. We consider a conditional mean model, μit = pr(Yit = 1 | bi, Xit),
for an hypothetical response Yit given some random effects bi as,

Here g is a monotone, differentiable and invertible function, and β = (β1,…, βp) is the slope
vector associated with fixed covariate Xit. The random variable bi is assumed to be generated
from a central normal distribution with variance τ2. This mean model is suitable for
analyzing data for which the primary interest is the assessment of subject’s level contrasts. It
is well known that this family of models produces fixed effects parameters that have a
subject-specific interpretation.

We allow the discrete dropout hazard, hitj = pr(tDi = tj | tDi ≥ tj, bi, Zitj) at discrete time point
tj ∈  to depend on the hypothetical complete measurement series Yi(  through the
unobserved covariate bi. Specifically, we assume the model,

where ε(Zit) is an appropriate function of fixed covariates Zit with associated coefficient α.
The parameter δ, assumed positive, is the slope associated to the transformed random effects
ϕ(bi). The function ϕ (.) is a nondecreasing function such that 0 < ϕ(bi) < 1, for all bi, and
attains the boundaries at the limits, that is limbi→−∞ ϕ(bi) = 0 and limbi→∞ ϕ(bi) = 1. Note
that the function ϕ(.) can suitably be modified when bi has a finite support. We can
reparameterise the function ϕ (.) by writing ϕ(bi) = (1 + e−η(bi))−1 for all bi on the real line.
The function ϕ(.) imposes the following restrictions on η(.), limbi→−∞ η(bi) = −∞ and
limbi→∞ η(bi) = 1. Any such function ϕ(.) that meets the conditions above defines a function
η(.) and vice versa.

The idea of using a shared random effects model for modeling longitudinal outcome subject
to dropouts not at random is not new (see for example, Wu and Carroll, 1988; Albert and
Follmann, 2000 and Ten Have et al., 2002). This class of models is very attractive in the
context of unbalanced longitudinal studies. Our extension of the shared random effects
technique is the introduction of the function ϕ(.) and restriction of the parameter δ to be
positive. The function ϕ(.) is assumed to be bounded, monotone, differentiable and
invertible. These constraints endow the parameter δ with a meaningful interpretation as an
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odds ratio for treatment assignment inequality (Rosenbaum, 2002), where the unobserved
variable is constrained to the interval [0, 1]. Our constraint satisfies this condition, with the
boundaries 0 and 1 attained at the limits. Here, the odds ratio of drop-out hazard between
two subjects i and i′ with same fixed covariate vectors, Zit = Zi′t is bounded as

In other words, for δ > 0, exp(δ) is a measure of the degree of departure from a study with a
random dropout mechanism.

For the random effects model above, joint identifiability of the data and missingness models
has not been established. A natural choice of sensitivity parameter is δ, which measures the
extent of non-randomness of the dropout process. It is clear that when δ = 0, the two
processes can be separately identified and the dropouts and completers have the same
distributional properties. Treating the fixed, possibly non-zero, value of δ as the true value,
one may form a working likelihood under the random intercept model, assuming conditional
independence of the outcomes and the missingness given random effects. The inference
procedure we discuss below is valid assuming that ψ*(δ) is identifiable conditionally on δ,
regardless of the joint identifiability of the outcome model and the missingness model.
Interestingly, even for the case of fixed δ, formal conditions for identifying ψ*(δ) have yet to
be developed.

Under mild conditions, for large δ the profile log-likelihood diverges and the maximum
likelihood solution does not exist (proof shown in Supplementary Materials). That is,

where nd = ∑i I(Di ≤ T) is the number of subjects dropping out prior to end of study, after a
rearrangement of the data set. This supports the above constraint that δ is bounded. Hence,
we assume without any loss of generality that δ lies in a compact set, that is δ ≤ Δ with 0 <
Δ < ∞. In practice, the upper bound should be chosen so that the algorithm converges for all
δ ≤ Δ.

3.2 Analysis of psychiatric data
A good example of a longitudinal study with potentially non-random dropouts is the
Fluvoxamine (a serotonin reuptake inhibitor) clinical trial. This is a multi-center non-
comparative study, designed to reflect clinical practice closely with out-patients diagnosed
with depression, obsessive-compulsive disorder or panic disorder. Accumulated experience
in controlled trials has shown that Fluvoxamine is as effective as conventional tricyclic
antidepressant drugs, and more effective than placebo in the treatment of depression (for a
review, see Burton, 1991). However, many patients suffering from depression have
concomitant morbidity associated with this condition, potentially leading to dropout. It was
then decided to set up a post-marketing pharmaco-vigilance trial to study more accurately
the profile of Fluvoxamine in ambulatory clinical psychiatric practice. A total of 315
patients with a diagnosis of either depression or obsessive-compulsive or panic disorder
were enrolled in the study. All subjects were treated with Fluvoxamine in doses ranging
from 100 to 300 mg/day and underwent clinical evaluations at baseline, 2, 4, 8 and 12
weeks. One primary endpoint comprised the side effects of the drug recorded on an ordinal
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scale. Several patient’s baseline characteristics such as sex, age, initial severity of the
disease on a 1 to 7 scale, and duration of the mental illness were recorded. A full description
of the study is given by Molenberghs and Lesaffre (1994), Lesaffre et al. (1996) and
Kenward et al. (1994).

One key objective of the study was to assess the within-subject evolution of side effects over
time, accounting for dropouts. For simplicity and ease of interpretation, our analysis of the
within-subject evolution (captured by time effects) is based on a dichotomized version
(presence/abscence) of side effects, as opposed to ordinal outcomes, regardless of the
baseline characteristics. A side effect occurs if new symptoms appear.

Figure 1 shows the empirical distribution of side effects over the four time points for the
complete (full-sequence) cases and over the first three time points for dropout cases. Out of
315 patients, 224 patients had a full-sequence data resulting from the fact that 14 subjects
were not observed after recruitment, 31, 26, and 18 patients dropped out, respectively, after
the first, second and third visit and 2 patients had a non-monotone missing pattern. We
ignore the 2 cases that had a non-monotone missing pattern as well as the 14 patients that
dropped out before the first visit (at 2 months). Compared to the start of the study, a drastic
reduction of side effects is depicted throughout the study for the completers compared to the
dropout cases. Specifically, about 54% of patients who complete the study had some side
effects at 2 months compared to 66% for subjects who did not complete the study. At 4
months, 44% of completers had some side effects compared to 62% for subjects who did not
complete the study. And finally, at 8 months, 35% of completers had some side effects
compared to 44% for subjects who did not complete the study. Clearly, the study non-
completers are doing more poorly with respect to side effects. A naive analysis that ignores
this selection process might lead us to conclude that the side effects drastically diminish
over time in the studied population. A question emerges: How do side effects evolve over
time within a patient when dropouts are accounted for?

As a preliminary analysis, we first fit a random subject effect model to the side effects
response with only fixed linear time effects both to completers and non-completers. The
measurement model is given by, pr(Yit = 1|bi,Xit) = {1 + exp(−β0 − β1Xit − bi)}−1, where
{Yit = 1} indicates the presence of some side effects and Xit represents the value of the time
covariate for subject i at time point t. The results of the time slope estimates (standard
errors) are −.75 (.13) for the complete cases and −.23 (.28) for the incomplete cases. The
results of this analysis are consistent with those of the bar charts shown in Figure 1. In
particular, the time effect on side effects appears larger (in magnitude) for the analysis based
on the completers. Hence, subjects who dropped out prematurely from the study are likely to
suffer more side-effects, although the estimate fails to reach statistical significance.

Following the sensitivity testing strategy described in section 2.3, we first fit the ignorable
model to assess the effect of time on the side effects outcome. The result of β̂1(0), the time
slope estimate (standard error) is −.76 (.12) using all available cases. The ignorable model
clearly suggests a significant linear time effect (p-value < .0001).

We next attempted to simultaneously estimate δ and ψ via maximum likelihood
Unfortunately, the computations were unstable. Multiple starting values were tried. In some
cases, the algorithm diverged, while in cases where it did converge, multiple local maxima
were obtained. This suggests that the model is at best weakly identified on the psychiatric
data.

In order to conduct inferences which do not require joint identifiability of the data and
missingness models, we evaluate the hypothesis infδ |β*,1(δ)| > 0 using the infimum test
under the shared random effects with a dropout model given by; log{hit/(1 − hit)} = α0 +

Todem et al. Page 8

Biometrics. Author manuscript; available in PMC 2011 April 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



α1Xit+δϕ(bi). Our sensitivity analysis was restricted to the range [0, 80] as values of δ above
80 yields unstable estimates. We perform the infimum test based on 1000 bootstrap samples,
using the statistic T = infδ {β̂1(δ)′Σ̂(δ)−1 ββ1(δ)}. The observed value of the infimum test
statistic is Tobs = 40.90, which is highly significant at 1% level (p-value < .0001) (see the
histogram of bootstrap test samples in Figure 2). This test suggests that infδ |β*,1(δ)| is
greater than zero and it can then be concluded that the true time effect measured by |β*,1(δ0)|
is greater than zero.

One might criticize the choice of the upper bound Δ = 80 as being scientifically
unreasonable. We believe that this choice reflects an extreme scenario, which may be of
scientific interest, albeit one which is a priori unlikely. The main concern is that
contemplating such scenarios leads to a null hypothesis which reflects an overly
conservative worst case scenario. Interestingly, in this example, the evidence for the
covariate effect is rather strong, so that the infimum test rejects over this wide interval.
Moreover, in general, considering such a wide range for δ enables one to construct
confidence regions for δ for which |β*,1| > 0, which is practically useful. That is, one can
determine all values of δ for which a non-zero covariate effect exists, accounting for
simultaneous inference across many δ.

To illustrate how the magnitude of the covariate effect changes as the sensitivity parameter
is varied, we also computed simultaneous 95% confidence bands for β*,1(δ) for δ ≤ 80 (see
Figure 3). All simultaneous confidence intervals exclude 0, which is in agreement with the
infimum test above. The largest time effect is achieved when δ ≈ 15.

This example illustrates that it may be useful to conceptualize a sensitivity analysis in terms
of testing the smallest covariate effect over the range of the sensitivity parameter when the
true effect is not identifiable from the observed data. The approach is especially useful in
high-risk situations where a worst case analysis may be helpful. For the Fluvoxamine data
set, the linear time effect exits regardless of the sensitivity parameter. In addition, we found
that the estimate of the time effects ranges between −1.15 and −.74 given values of the
sensitivity parameter. Hence, the estimated odds for showing some side effects can be
multiplied by a factor as small as .32 and as much as .48 for each unit increase in time. The
95% confidence bounds run from roughly −1.50 (smallest value on lower bound across all
δ) to −.50 (largest value on upper bound across all δ). This could be viewed as a
conservative 95% confidence interval for the unknown β1 = β*,1(δ0).

In this example, the global analysis is essential since the estimate of the parameter being
tested does not increase or decrease monotonically as the sensitivity parameter is increased
or decreased. An explanation is that the joint measurement-missingness model is highly
nonlinear, so that there may be a complex relationship between β*(δ) and δ, which may not
be monotone in δ. Under monotonicity, it is only necessary to evaluate β*(δ) at the lower
and upper bounds of the sensitivity parameter space in order to test the null hypothesis. With
non-monotone behavior, such tests may yield misleading results.

3.3 Simulations
We report results of a small simulation study evaluating the performance of the infimum test
under the null when the dropout process is related to unobserved responses. The simulations
were conducted so as to roughly approximate data from the Fluvoxamine study. In each
Monte Carlo iteration, we simulated a sample of n subjects with four potential measurement
time points (T = 4), using the outcome model pr(Yit = 1|bi, Xit) = {1+exp(−β0−β1Xit−bi)}−1,
where bi ~ N(0,2) and Xit = t takes values in {1, 2, 3, 4}. The dropout observations were
generated using the dropout hazard model log{hit/(1 − hit)} = α0 + α1Xit + δ0ϕ(bi). To keep
the simulation simple, we set α1 = 0 to constrain the instantaneous dropout probability to be
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time independent and β1 = 0, so that the null is satisfied. We produced 20 – 60% dropout
using both an ignorable (β0 = 0) and a non-ignorable (β0 = 3) missing data models. This
process was repeated for 1000 Monte Carlo replications. The infimum tests were computed
using 1000 bootstrap samples for δ ≤ 10.

Table 1 shows the results of this simulation study for sample sizes equal 25, 50, 100, and
250 and nominal test levels equal to .01, .05, and .1. Asymptotic standard errors (as the
number of Monte Carlo iterations tends to infinity) are reported in the last row of the table.
Overall, the tests perform well, with the bootstrap distribution of the test providing a
reasonable approximation to the nominal level even in fairly small samples (n = 25). As
expected, for increasing sample sizes, the empirical rejection rates agree more closely with
the true significance levels under the null.

4. Discussion
In this paper, we have shown how a statistical hypothesis can be evaluated using a joint
parametric model for the measurement and missing data processes, when some model
characteristics are non-identifiable. We proposed an approach in which hypothesized
parameters are viewed as a functional of a non-identifiable sensitivity parameter. A
conservative testing procedure was employed based on an infimum statistic over the range
of the sensitivity parameter. Similar approaches based on confidence bounds have been
studied for global sensitivity analyses under qualitative restrictions. Our approach differs in
that we work with parametric models and rigorously delineate the full spectrum of
inferences consistent with the model assumptions. Previous work with parametric models
has not addressed key issues inherent in such formulation, including multiple testing and
model misspecification. Our methodology enables the construction of simultaneous
confidence bands which pinpoint those values of the sensitivity parameter at which
significance is achieved, as well as a comparison of the magnitude of the effects across the
sensitivity parameter.

Obtaining the sensitivity parameter region over which a covariate effect is significant may
be particularly important in scenarios where the effect does not increase or decrease
monotonically as the sensitivity parameters are increased or decreased. In practice, missing
data models are often quite complicated and it may not be clear whether monotonicity holds.
In these set-ups, a global sensitivity analysis is the most conservative data analytic strategy.
For the Fluvoxamine example, the infimum test shows that the linear time effect exists,
regardless of the sensitivity parameter, while the confidence bands demonstrate that the
magnitude of the effect is non-monotone. These findings are extremely important for the
drug company which may be interested in knowing how the side effects evolve within a
subject as a function of the drop-out mechanism.

Although the method is presented in the context of likelihood based analyses, with a focus
on generalized linear mixed effects models for binary outcomes in time with non-ignorable
dropouts, the method can easily be applied to other situations where any component of the
model is non-identifiable from observed data and non-likelihood based methods of analysis
are available, for example, generalized estimating equations. Further research is needed to
show how to choose the sensitivity parameter in other model settings. The choice of the
sensitivity parameter from a statistical perspective is non-unique, so long as identifiability is
induced in the appropriate sense. However, a careful choice may lead to simplifications in
the computations (Kenward et al., 2001). The subject matter is also instrumental in guiding
the investigator in the choice of the sensitivity parameter.
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Additional work is needed to show how to apply the global test in situations where more
than one dimension of the model may be non-identifiable. For example, for our working
random effects model, multiple sensitivity parameters could be considered, if it was deemed
necessary for identification purposes. The parameters in the shared random effects
distribution might be treated as sensitivity parameters along with the parameter δ, yielding a
multidimensional problem. The infimum test can then be constructed over a class of
distributions for the random effects along with values of δ. The computational burden of
such tests will increase with the dimension of the sensitivity parameter and be burdensome
in some setups. The computational issues require careful study. Another issue is that we
restrict δ to be bounded. It would be useful to permit the sensitivity parameters to be
unbounded. While this is conceptually straightforward, it poses certain theoretical
challenges which are not easily addressed. This is a topic for future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Evolution of observed side effects for all complete cases over observed time points
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Figure 2.
Histogram of the 1000 bootstrap sample test statistics generated under the null hypothesis
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Figure 3.
Estimate of time slope for fixed values of the sensitivity parameter δ and corresponding 95%
simultaneous confidence bands using the side effects data from the Fluvoxamine study
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