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Abstract
Breast tumors expressing estrogen receptor alpha (ER) respond well to therapeutic strategies using
SERMs (selective estrogen receptor modulators) such as tamoxifen. However, about thirty percent
of invasive breast cancers are hormone independent because they lack ER expression due to
hypermethylation of ER promoter. Treatment of ER–negative breast cancer cells with
demethylating agents and histone deacetylase inhibitors leads to expression of ER mRNA and
functional protein. Additionally, growth factor signaling pathways have also been implicated in
ER silencing in ER-negative tumor phenotype. Recently, important role of components of
ubiquitin-proteasome pathway has been shown in mediating downregulation of ER. In this article,
we will review various mechanisms underlying the silencing of ER in ER negative tumor
phenotype and discuss diverse strategies to combat it. Ongoing studies may provide the
mechanistic insight to design therapeutic strategies directed towards epigenetic and non-epigenetic
mechanisms in the prevention or treatment of ER-negative breast cancer.
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Introduction and Background
Breast cancer is one of the leading cause of cancer and the second leading cause of cancer
related mortality in women in the United States. According to the American Cancer
Society's most recent estimates for breast cancer in the United States, about 207,090 new
cases of invasive breast cancer and about 54,010 new cases of carcinoma in situ (CIS) will
be diagnosed in 2010. The lifetime risk of developing invasive breast cancer for a women
living in the USA today is approximately a little less than 1 in 8 (12%). Mortality related to
breast cancer has been declining since 1990 but still remains at a staggering high level with
approximately 1 in 35 (3%) women dying of breast cancer. About 39,840 women will die
from breast cancer in 2010.
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Breast cancer is a heterogeneous disease consisting of multiple molecular subtypes.
Molecular profiling of these subtypes has put forth many prognostic markers that can be
used to guide clinical practice for personalized therapy. Despite all the genomic advances,
only a few predictive markers are routinely used in the clinic. The presence of estrogen
receptor (ER), progesterone receptor (PR) and overexpression of human epidermal growth
factor receptor -2/Her-2 play an important role during therapeutic intervention as well as
predicting response to therapy. Hormone receptor positive tumors typically present a better
prognosis because of their ability to respond to endocrine interventions. Approximately 15–
20% breast tumors exhibit Her2 gene amplification leading to Her2 protein overexpression.
Her2 positive tumors are typically associated with a higher rate of relapse and mortality but
respond to trastuzumab which significanly improves disease free survival and overall
survival (1–4). Tumors lacking ER, PR and Her2 overexpression present yet another
biologically and genetically diverse group called triple negative (TN) breast cancer. TN
tumors tend to have a poor prognosis partly because of their aggressive phenotype and also
because of lack of any targeted therapy unlike their hormone receptor positive and Her2
positive counterparts. Extensive gene expression profiling h a s l e d t o further molecular
classification of breast cancer subtypes. The basal like breast cancer shows five distinct gene
signatures. Luminal A and luminal B are ER positive while Her2 enriched, basal-like and
normal-like are ER negative subtypes (5–7). These subtypes have been used to predict
clinical outcomes like relapse free survival and overall survival. Luminal A subtype show a
better clinical prognosis than basal-like and Her2 positive, both of which are associated with
poorer prognosis (5). Basal-like breast cancer more often occurs in younger, premenopausal
women and affects women of African American ethnicity at a disproportionately higher
level (8,9).

While the quest for novel therapeutic options for all molecular subtypes of breast cancer is
ongoing, endocrine therapies, first used more than 100 years ago, are the most effective
treatment for ER positive tumors. All endocrine therapies are designed to block ER function;
selective ER modulators such as tamoxifen bind ER to partially block its transactivation
function while selective ER downregulators such as fulvestrant bind ER to completely block
its function and inducing degradation. In addition, ovarian ablation, luteinizing hormone-
releasing hormone agonists and aromatase inhibitors diminish the levels of estrogen hence
inhibiting ligand-dependent ER activation. These endocrine approaches are not only
effective in early stage disease; they also benefit advanced metastatic disease. Despite great
benefits in a considerable proportion of patients, de novo and acquired resistance remain
major problems. Understanding ER biology provides new insight into the molecular
mechanisms underlying the development of de novo and acquired resistance as well as new
clinically relevant strategies to combat it.

In this article we will review the emerging studies of ER function and epigenetic silencing
that reveal the roles of a wide spectrum of chromatin modulators, methyl binding proteins
and corepressor complexes as well as components of growth factor signaling. An
understanding of the molecular factors that modulate ER can be used for its reactivation and
therapeutic targeting using various strategies.

Estrogen Receptor Function: Molecular Mechanism
There are two ERs, ERα and ERβ, encoded by independent genes (10,11). Both ERα and
ERβ belong to a nuclear hormone receptor (NR) superfamily and share similar although not
identical modular structures characteristics of the NR superfamily including six functional
domains (Figure 1) (12). DNA binding domain (DBD) is the most conserved domain with
97% homology followed by the ligand binding domain (LBD). LBD also contains a
dimerization surface and a ligand-dependent activation function-2 (AF-2). Agonist bound
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receptor adopts a conformation in which alpha helices (3,5,12) in the ligand binding domain
form a hydrophobic cleft (AF-2) providing a binding surface for NR boxes (LXXLL motifs)
in coactivators. Antagonists, like tamoxifen have a bulky side chain that sterically modulates
the conformation of the hydrophobic cleft (AF-2) with helix 12 binding to the AF-2 cleft
with its own intrinsic NR box, occluding the binding of coactivators. Antagonist-mediated
inhibition of receptor is not only a passive process resulting from repositioning of helix 12
thereby blocking the coactivator binding (13), but also involves the active recruitment of
corepressors to form repressive receptor complex at target genes. Activation function -1
(AF-1) is located at the N-terminus A/B domain of the receptor and its hormone-
independent function is regulated by phosphorylation induced by growth factors. The two
activating domains act synergistically to achieve maximal transcriptional activity, although
some gene promoters have been shown to be activated independently by AF-1 or AF-2
based on the cellular and promoter context (14).

Typically, unstimulated estrogen receptor associates with chaperone proteins and resides in
the cytoplasm. During ligand-dependent activation, hormone binding to ER activates it
through phosphorylation, alters its conformation and dissociates chaperone proteins such as
heat-shock protein 90. Alternatively, growth factor signaling networks can induce ER
activation via phosphorylation in the absence of ligand (15). This process is termed as
ligand-independent activation. Activated ER then dimerizes and binds to estrogen receptor
response elements (ERE) in the promoter region of estrogen-responsive genes. Promoter-
bound ER induces transactivation function via recruiting various histone acetyltransferase
(HAT) activity containing coactivators such as SRC-1, SRC-2, AIB-1. HAT activity
containing coactivators induce histone acetylation in a concerted action, leading to open
chromatin configuration and recruitment of basal transcription machinery (Figure 2) (16,17).
Some of these coactivator proteins are integral to ER function (18). For example, SRC-3 is
overexpressed in 65 % of breast tumors and gene amplified in 5% as compared to normal
ductal epithelium (19,20). Reducing the levels of SRC-3 not only significantly inhibit ER
mediated gene activation but also tumor growth in experimental models (21). ER can also
mediate repression of certain genes by inducing the binding of histone deacetylase (HDAC)
activity containing corepressor complexes which induce histone deacetylation leading to
close chromatin conformation. Binding of tamoxifen in the LBD induces a conformation
change in AF-2 that poses a steric hindrance to coactivator binding while encouraging
binding of corepressors. Tamoxifen-bound ER recruits corepressor complexes and
participates in active repression (22). On the other hand, high levels of coactivator proteins
may also contribute to endocrine resistance by enhancing estrogen agonist activity of
SERMs such as tamoxifen (23,24). Coregulatory proteins impart more complexity to
genomic function of ER. The above described mechanism is referred as the classical
genomic activity of ER and is directly related to its ability to regulate the expression of
estrogen responsive genes containing an ERE in their promoters. However, different
mechanisms of action of ER have been demonstrated.

In a nonclassical transcriptional regulation mode, ER has been shown to regulate gene
expression by interacting with other transcription factors such as the Fos-Jun complex at
alternative regulatory DNA sequences such as AP-1, SP-1 and other non-ERE sites (Figure
2). Thus, ER itself functions as a coregulatory protein for the DNA bound transcription
factor complex and may also recruit additional coactivators (25–28). ER participates in the
regulation of many important genes, such as, cyclin D1, myc, BCl2 and IGF1R via non-
classical genomic action. Non-classical genomic action of ER may play an important role
not only in breast cancer cell proliferation and survival but also in the development of
resistance to endocrine therapy.
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Apart from its role as a transcription factor for estrogen-responsive genes and a coactivator
for other transcription complexes, ER also functions at the plasma membrane level to elicit
rapid action on cells (29). This rapid nongenomic ER activity has been observed in response
to estrogen as well as SERMs such as tamoxifen. Presence of full length ER and an
alternatively spliced truncated form of ER at the plasma membrane has been observed in
some studies (30–33). While the precise cellular localization of these nongenomic ERs and
the underlying mechanisms are still not clear, it has been shown that nongenomic action of
ER also involves activation of other growth factor receptors, cellular tyrosine kinases
(34,35), mitogen-activated protein kinases (MAPKs) (36), phosphatidylinositol 3 kinase
(37), and Akt signaling pathway (Figure 3). Membrane ER directly interacts with the
insulin-like growth factor 1 receptor, the p85 regulatory subunit of PI3K, Src and Shc to
activate Akt and MAPK pathways (34–37) . These kinases not only induce cell survival and
cell proliferation but also phosphorylate ER and its coregulators to influence genomic action
of ER. Other proteins such as MNAR/PELP1 (modulators of nongenomic activity of the
estrogen receptor) and MTA1 (metastasis associated gene family) also participates in
nongenomic activity of ER by facilitating interactions with other membrane components
(Figure 3) (38–40). Estrogen receptor, via its nongenomic activity, plays an important role in
breast tumors with highly active growth factor signaling pathways such as Her2
amplification. Estrogen activates growth factor signaling via non genomic actions of ER and
the growth factor signaling activates ER, hence forming a vicious cycle. Because of multiple
mode of actions (classical genomic, non-classical genomic and nongenomic), estrogen
receptor has become important for breast tumor progression and have important therapeutic
implications.

Estrogen Receptor Silencing: Role of Epigenetics
Aberrant cytosine methylation of promoter regions of numerous cancer-related and tumor
suppressor genes is one of the mechanism leading to gene silencing. It is known that 3–5%
of the cytosine residues in mammalian genomic DNA occur as 5-methylcytosines (41). A
major number (approximately 70–80%) of 5-methylcytosines residues are found within CpG
dinucleotides which accumulate to form CpG islands (42). CpG islands normally remain
unmethylated but may reversibly regulate gene expression. Cytosine methylation and
transcription levels are inversely related for a large number of genes. Two major epigenetic
modifications are DNA methylation and histone acetylation that act in concert to regulate
gene silencing.

ER promoter is hypermethylated and ER mRNA is absent in some ER-negative breast
cancer cells. Treatment of ER negative breast cancer cells with DNA methyltransferase
(DNMT) and/or histone deacetylase (HDAC) inhibitors leads to the reactivation of
expression of ER mRNA and functional protein, underscoring the importance of DNMTs
and HDACs in maintaining the repressive environment at target genes like ER (43,44).
Hypermethylation of CpG island may inhibit transcription by interfering with the
recruitment and function of basal transcription factors or transcriptional coactivators. Also,
hypermethylation of CpG dinucleotides near the transcriptional regulatory region may
initiate the recruitment of the methyl-CpG binding domain (MBD) family proteins that
mediate silencing of genes via facilitation of a repressive chromatin environment (45). Five
methyl-CpG binding proteins including MeCP2, MBD1, MBD2, MBD3 and MBD4 have
been identified (46–50). It has been shown that MeCP2, MBD1, MBD2 and MBD3 can all
recruit HDAC-containing repressor complex but with distinctive functional features (48,51–
53). MBD1, MBD2 and MBD4 have been reported to bind specifically to a variety of DNA
sequences containing methyl CpG whereas MBD3 does not directly bind DNA either in
vitro or in vivo (53–55).
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Many tissue-specific or ubiquitous DNMTs that initiate methylation at position 5 of
cytosines of CpG dinucleotides have been identified (56). DNMT1, the chief enzyme
responsible for maintenance of mammalian DNA methylation during DNA replication using
hemimethylated DNA, can also bind HDAC2 and DMAP1 (DNMT associated protein) to
mediate transcriptional repression (57). The de novo methylases, DNMT3a and DNMT3b
(58,59), can act as transcriptional repressors by using their ATRX domain to recruit HDAC1
(60,61). Heterochromatic structure characterized by differential modifications of histones is
another facet of the complex machinery influencing repression. Amino terminal tails of the
core histones undergo modifications such as acetylation at lysine, methylation at lysine or
arginine and phosphorylation at serine to evolve a histone code for transcriptional activation
and repression (62,63). These posttranslational modifications modulate the chromatin
structure by altering the electrostatic interactions between histone proteins and DNA and
modifying the recruitment of various non-histone proteins such as coactivators and
corepressors to chromatin.

CpG methylation of the ER promoter results in transcriptional silencing (64) and inhibition
of HDAC and/or DNMT activity reactivates ER (43,44). These findings support a model in
which methyl-CpG binding proteins, DNMTs, and HDACs might be involved in
transcriptional control of ER. It has been shown that the unmethylated active ER promoter in
ER-positive MCF-7 cells is enriched for H3 and H4 acetylation and H3-K4 methylation and
shows little binding of any methyl binding protein or DNMT. In ER-negative MDA-
MB-231 cells, the ER promoter is silenced by DNA hypermethylation, histone
hypoacetylation, H3-K9 methylation and the recruitment of MeCP2, MBD1, MBD2,
DNMT1, DNMT3b and HDAC1 proteins (Figure 4). HDAC inhibitor, TSA, causes histone
hyperacetylation and a low level of ER mRNA reexpression in ER negative breast cancer
cells as methyl binding proteins (DNMT1, DNMT3b, MeCP2, MBD1 and MBD2) remain
bound to the methylated ER promoter. DNMT inhibitor, 5-aza-dC, also induces ER mRNA
expression as it facilitates promoter demethylation and partial dissociation of MeCP2,
MBD1, MBD2, DNMT1, DNMT3b, and DNMT1. ER negative breast cancer cells also
display a relative depletion of acetylated H3 and H4 and methylated K9 H3. Thus, both
HDAC and DNMT inhibitors lead to reexpression of ER but strikingly different protein
complexes are associated with the ER promoter in each case. The combination facilitates the
release of a repressor complex containing various MBD proteins (MeCP2, MBD1 and
MBD2), DNMTs (DNMT1 and DNMT3b) and HDAC1 from the ER promoter. Release of
corepressor complex leads to concomitant enrichment of acetyl-H4, acetyl-H3, and K4-
dimethylated H3 and diminished methylation at K9-H3 (65) (Figure 5). Thus the
epigenetically reactivated ER promoter in ER negative breast cancer cells treated with both
drugs acquires a chromatin profile similar to that of the innately active ER promoter in ER
positive cells.

Estrogen Receptor Reactivation: Therapeutic targeting
The effects of endocrine therapy are primarily mediated through the estrogen receptor
therefore ER expression is a strong predictor of response to SERM treatment. Indeed, lack
of ER expression is the dominant mechanism of de novo resistance to SERMs such as
tamoxifen (66–68). Also, during breast cancer progression, many initially ER positive
tumors lose ER expression and attain hormone unresponsiveness (69,70). ER negative
tumors are more aggressive and considering the ability of these tumors to metastasize and
their heterogeneity, new therapies or strategies for sensitization of ER negative tumors to
endocrine treatment are required.

A number of enzymatic inhibitors targeting HDACs have been developed with good in vivo
bioavailability and intracellular capability to inhibit HDAC. Preclinical studies and initial
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clinical trials indicate that HDAC inhibitors from different structural classes are very well
tolerated and exhibit clinical activity against a variety of human cancers (71,72). The
hydroxamatetrichostatin A has been shown to have an in vivo antitumor activity with daily
parenteral dosing associated with little systemic toxicity (73). The greatest potential of
HDAC inhibitors lies in their ability to modulate the activity of other therapeutic agents.
Demethylating agents such as 5-aza-dC are particularly interesting candidates owing to the
interaction of DNA methylation with histone deacetylation in gene silencing of tumor
suppressor genes. Combined treatment of TSA or depsipeptide with 5-aza-dC has been
shown to synergistically reactivate silenced tumor suppressor genes in human cancer cells,
including MLH1, TIMP3, CDKN2B, CDKN2A, gelsolin and maspin (74,75). ER negative
breast cancer cells can be sensitized to anti-tumor effects of tamoxifen by combined
treatment with 5-aza-dC/TSA, underscoring the importance of drugs having the potential to
derepress the expression of epigenetically silenced key genes in cancer therapeutics.
Reactivation of ER directs tamoxifen-dependent repression of endogenous ER target genes
indicating that 5-Aza-dC/TSA reactivated ER is able to interact with both agonists and
antagonists to modulate transcription.

The molecular basis of repression of ER responsive genes by tamoxifen bound reactivated
ER in ER-negative breast cancer cells can be comprehended by deciphering the nature of
corepressor complex involved in these antagonistic actions. Tamoxifen-bound reactivated
ER show the formation of a distinct complex containing HDAC3, NCoR and TBL1 on
promoter regions of ER responsive genes (Figure 6). HDAC3 has been shown as the major
HDAC associated with NCoR/SMRT complexes and NCoR interacts directly with HDAC3
through a deacetylase-activating domain (DAD) activating HDAC3 activity (76,77). TBL1
then recognizes and binds the resultant deacetylated histone tails further stabilizing the
binding of this multiprotein complex le ading to repression . TBL1 and TBLR1 are not
required for HDAC3 activity or initial binding of the NCoR/SMRT complex to nuclear
receptors, but they can interact with core histones to stabilize the binding. This is similar to
the role of RbAp46 and RbAp48 in NuRD complex. While RbAp48 binds to H2A, H3 and
H4, TBL1 bind preferentially to H2B and H4. Binding of NuRD complex to the ER
responsive promoters has also been observed in ER-negative breast cancer cells reexpressing
functional estrogen receptor in response to tamoxifen.

Combinatorial utilization of multiple corepressor complexes may be required to achieve
physiologic levels of repression on some promoters whereas on other promoters different
complexes might get recruited independent of each other. NCoR directly interacts with
nuclear receptors via its NR box-related conserved bipartite NR interaction domain (NRID)
containing L/IXXI/VI sequence (77), anchoring NCoR/HDAC3 multiprotein complex.
NCoR can also interact with components of both the SAP (Sin-associated protein) and the
NuRD complexes (78), suggesting that NCoR and NuRD complexes may be co-recruited to
ER or other nuclear receptor gene targets. NCoR/HDAC3 and NuRD complex bind to ER
responsive promoters containing either classical or non-classical EREs in a mutually
exclusive manner in ChIP/Re-ChIP experiments. Mutually exclusive binding of both NCoR
and NuRD corepressor complexes rules out the possibility of NCoR mediated recruitment of
NuRD complex, at least in the case of tamoxifen-bound reactivated ER. Since human NuRD
complex is a multi-subunit protein complex, it is possible that it gets recruited using one of
its own subunits as the anchoring protein. Biochemical and immunofluorescence studies
have shown that MTA1 interacts directly with the estrogen receptor (53). However whether
MTA1 targets the NuRD complex to ER-responsive promoter has not been elucidated. Other
candidate subunits of the NuRD complex are methyl binding proteins such as MBD2 and
MBD3. While human MBD3 does not recognize methylated DNA (54), MBD2 might direct
the recruitment of NuRD complex to methylated loci at target gene promoters (79). It has
been suggested that a DNA methylation mediated mechanism is unlikely as NuRD complex
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components bind at the EBAG9 promoter within 40 minutes of tamoxifen treatment. In
addition, NuRD complex purified with HDAC1 contains MBD2 (80), whereas a similar
immunoaffinity purification of HDAC2 generated a NuRD complex with no detectable
MBD2 (80). The recruitment of HDAC2 but not HDAC1 containing NuRD complex at the
ER-responsive promoters suggests that MBD2 is not involved in tamoxifen mediated
repression by reactivated ER. An ordered recruitment of NCoR complex followed by NuRD
complex at distinct ER target promoters in ER-negative breast cancer cells via tamoxifen-
bound reexpressed ER has also been shown. Sequential recruitment of various cofactors has
been reported for regulation of various mammalian genes (81,82). Given the ordered
recruitment of corepressor complexes, a multistep model of tamoxifen- mediated repression
by reactivated ER has been suggested. NCoR complex can directly interact with tamoxifen-
bound reactivated ER resulting in deacetylation of local histones through recruitment of
HDAC activity (76,77). One possibility is that removal of the acetyl groups from K9 and
K14 of histone H3 (83) creates an environment that promotes the binding of Suv39H1/Clr4.
The methylation of H3-K9 by Suv39H1/Clr4 after histone deacetylases remove the acetyl
groups from K9 and K14 of histone H3 (83) then serves as a binding site for the
chromodomain of HP1/Swi6 (84,85). NuRD complex contains Mi2/CHD family proteins
which have a chromodomain (86) and biochemical analysis have shown that the NuRD
complex associates with histone H3 when lysine 9 is methylated (87). This model is in
accordance with the histone code hypothesis as the pattern of histone tail modifications
serves as a recognition code for the recruitment of cofactors resulting in modulation of
chromatin structure and function.

Additionally, DNMT inhibitor, Aza has been used in combination with scriptaid, a HDAC
inhibitor, leading to reactivation of ER (88). Combination of DNMT and HDAC inhibitors
can restore response to endocrine therapy in ER negative tumors in a xenograft model in
nude mice (89). ER can also be reexpressed using clinically relevant HDAC inhibitor
LBH589 without demethylation of the CpG island within the ER promoter (90). Similar to
Aza-TSA combination treatment, LBH589 treatment also results in release of DNMT1 and
HDAC1. Additional studies using suberoylanilidehydroxamic acid (SAHA) have shown
reexpression of ER as well as an inhibition of EGFR expression via disruption of the EGFR
mRNA stability. EGFR inhibition further decreases EGF-initiated pathways including
PAK1, p38MAPK and Akt (91). Collectively, these studies show clinical relevance of
HDAC and DNMT inhibitors.

Additional approaches for Estrogen Receptor Reactivation and Therapeutic
Targeting

Silencing of estrogen receptor because of promoter methylation occurs in approximately
25% of ER negative tumors. This suggests the existence of additional pathways that may
contribute to ER silencing. Overexpression of EGFR has been inversely correlated with ER
expression (92). Stable transfection of growth factor signaling components like EGFR,
Her2, Ras, Raf and MEK1 results in both estrogen independent growth and down-regulation
of ER expression in ER positive cells (93–99). MAPK has emerged as a pivotal component
of these upstream growth factor pathway as cells stably expressing EGFR (97), Her2 (95),
Raf (93) and MEK1 (100), exhibit MAPK hyperactivation. Hyperactivation of MAPK
results in the down-regulation of ER expression and inhibition of this hyperactive MAPK
results in restoration of functional ER protein (100). Molecular profiling of hyperactive
MAPK cells show down-regulation of ER as well as a large number of ER responsive genes
(101). MAPK inhibition restores ER expression in both ex vivo tissues and primary cultures
from breast tumors as well as restores response to endocrine treatment (102). Hence, some
ER negative tumors exhibiting hyperactive MAPK may benefit from a combined MAPK
inhibition and hormonal therapy. Ubiquitylation and proteolysis have recently been shown
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as another possible mechanism leading to ER down-regulation. In genomic action of ER,
estrogen binding to ER rapidly stimulates ER ubiquitylation and proteolysis (103,104). E6-
AP acts as a coactivator and ubiquitin ligase for ER and is a component of ubiquitin-
proteasome pathway. E6-AP expression has recently been shown to have an inverse
correlation with ER expression in breast cancer. E6-AP is upregulated in ER negative breast
cancer. It is possible that E6-AP may induce down-regulation of ER. Some ER negative
tumors do express ER mRNA indicating the role of proteasomal degradation of ER.
Recently, crosstalk between Src and ER has been shown to increase ER degradation.
Transfection of Src in ER positive breast cancer cells leads to decreased levels of ER which
can be prevented by a Src inhibitor (105). Hence a subset of ER negative tumors expressing
activated Src may benefit from Src inhibition.

Endocrine therapy targeting ER has proven its efficacy with the development of anti-
estrogens and aromatase inhibitors. Sensitizing hormone-resistant ER-negative breast cancer
cells to endocrine therapy by combined treatment with DNA methyltransferase inhibitors
and histone deacetylase inhibitors or MAPK inhibitors and Src inhibitors, provide new
treatment options for patients with de novo resistance. In addition, the elucidation of the
specific corepressor complexes and components of important upstream regulators as well as
proteasome-ubiquitin pathway involved in the ER mediated repression of endogenous ER-
responsive genes might help in designing more combined therapies using other therapeutic
agents and innovative drug delivery strategies.
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Figure 1. Schematic representation of the two human estrogen receptors, ERα and ERβ
Both receptors contain five functional domains (A-E) as other members of the nuclear
hormone receptor superfamily and an additional F domain at C terminal. Functional domains
include, the DNA-binding domain (DBD), the Ligand-binding domain (LBD), the ligand-
independent activation function AF-1, ligand-dependent activation function AF-2. The
percentage identity between the two receptors is indicated.
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Figure 2. Genomic classical and non-classical actions of ER
In classical genomic mode of action, estrogen (E2) binds estrogen receptor (ER), induces
dimerization of the receptors, nuclear translocation and recruitment to estrogen response
element (ERE) in the promoter region of the target genes. Coactivators such as AIB1, CBP/
p300, PCAF are recruited to the transcription complex followed by gene transcription. In
non-classical mode of action, estrogen bound ER gets recruited to other transcription factors
such as Jun/Fos to activate transcription.
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Figure 3. Nongenomic ER activity. Estrogen activates ER in or near membrane
Membrane ER binds to growth factors signaling elements and activates key molecules of
growth factor signaling which can further activate ER and its coregulators to enhance
nuclear effects.
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Figure 4. Differential recruitment of coregulatory complexes to the promoter region of un/
hypomethylatedvshypermethylated ER
ER promoter is un/hypomethylated in ER-positive breast cancer cells with acetylated
histones and binding of coactivator complexes. In contrast, ER promoter is hypermethylated
in ER-negative breast cancer cells with deacetylated histones and binding of various methyl-
binding proteins (MBD1, MBD2 and MeCP2) and DNA methyltransferases (DNMT1 and
DNMT3b).
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Figure 5. Reactivation of ER in ER-negative breast cancer cells
ER-negative cells can be treated with a combination of DNMT and HDAC inhibitors
resulting in demethylation and release of the repression complex consisting of various
methyl-binding proteins and DNA methyltransferases. Demethylation and release of
repression complex paves the way for histone acetylation and coactivator binding resulting
in ER reexpression in ER-negative breast cancer cells.

Saxena and Sharma Page 18

Mol Cell Pharmacol. Author manuscript; available in PMC 2011 April 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Sensitizing ER-negative breast cancer cells to endocrine therapy
ER can be reactivated in ER-negative breast cancer cells using a combination of therapies.
Reactivated ER can be targeted with tamoxifen. Tamoxifen bound reactivated ER recruits
compressor complexes resulting in modulation of ER-responsive gene expression.
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