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Abstract
Interpretation of dense single nucleotide polymorphism (SNP) follow-up of genome-wide
association or linkage scan signals can be facilitated by establishing expectation for the behaviour
of primary mapping signals upon fine-mapping, under both null and alternative hypotheses. We
examined the inferences that can be made regarding the posterior probability of a real genetic
effect and considered different disease-mapping strategies and prior probabilities of association.
We investigated the impact of the extent of linkage disequilibrium between the disease SNP and
the primary analysis signal and the extent to which the disease gene can be physically localised
under these scenarios. We found that large increases in significance (>2 orders of magnitude)
appear in the exclusive domain of genuine genetic effects, especially in the follow-up of genome-
wide association scans or consensus regions from multiple linkage scans. Fine-mapping
significant association signals that reside directly under linkage peaks yield little improvement in
an already high posterior probability of a real effect. Following fine-mapping, those signals that
increase in significance also demonstrate improved localisation. We found local linkage
disequiliptium patterns around the primary analysis signal(s) and tagging efficacy of typed
markers to play an important role in determining a suitable interval for fine-mapping. Our findings
help inform the interpretation and design of dense SNP-mapping follow-up studies, thus
facilitating discrimination between a genuine genetic effect and chance fluctuation (false positive).
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INTRODUCTION
The search for genes underlying complex traits and diseases enters an exciting new phase,
with the publication of genome-wide association (GWA) scans for many complex diseases,
including Alzheimer’s disease [Coon et al., 2007], breast cancer [Easton et al., 2007],
coronary artery disease [Wellcome Trust Case Control Consortium, 2007], Crohn’s disease
[Hampe et al., 2007; Wellcome Trust Case Control Consortium, 2007], myocardial
infarction [Helgadottir et al., 2007] and type 2 diabetes [Sladek et al., 2007; Wellcome Trust
Case Control Consortium, 2007; Zeggini et al., 2007]. The GWA scan approach offers
genuine prospects for major advances in understanding the genetic aetiology of complex

© 2007 Wiley-Liss, Inc.
*Correspondence to: Dr. Steven Wiltshire, Laboratory for Genetic Epidemiology, Western Australian Institute for Medical Research,
Queen Elizabeth II Medical Centre, Ground Floor, B Block, Hospital Avenue, Nedlands WA 6009, Australia.
shire@cyllene.uwa.edu.au.

The Supplementary materials described in this article can be found at http://www.interscience.wiley.com/jpages/0741-0395/suppmat

Europe PMC Funders Group
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2011 April 14.

Published in final edited form as:
Genet Epidemiol. 2008 April ; 32(3): 204–214. doi:10.1002/gepi.20295.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.interscience.wiley.com/jpages/0741-0395/suppmat


traits, notwithstanding its difficulties and challenges [Hirschhorn and Daly, 2005]. However,
the several hundred complex trait linkage scans published over the course of the past decade
or so still provide a wealth of statistical and positional evidence for the presence of
susceptibility genes [Wiltshire et al., 2005; Roeder et al., 2006] that could be exploited in a
linkage-based fine-scale association mapping approach.

Both experimental approaches are likely to proceed along a design familiar to linkage
studies. First, a primary analysis will be conducted with a modestly dense set of markers
[such as the commercially available 300 K and 500 K single nucleotide polymorphism
(SNP) chip products; Barrett and Cardon, 2006]. Second, potentially interesting regions (i.e.
those reaching a certain level of significance) will be investigated in additional samples and/
or populations in the hope of replication [Thomas et al., 2004; Skol et al., 2006; Wang et al.,
2006]. In parallel, such regions identified in primary analyses will undergo fine-scale
mapping with a denser set of markers (e.g. HapMap phase II or resequencing) to obtain
better (hopefully stronger) evidence for a genetic effect and better (hopefully more precise)
localisation of the disease variant.

Here, we explore the behaviour of primary mapping signals upon fine-mapping, under both
null and alternative hypotheses, and examine the inferences that can be made regarding the
posterior probability of there being a real genetic effect. We consider several different
disease mapping strategies and prior probabilities of association. We examine the impact of
regional linkage disequilibtium (LD) architecture and of the extent of LD between the
disease SNP and the primary analysis signal — to model different tagging efficacies — on
the posterior probability of a real genetic effect. Finally, we consider the extent to which the
disease gene can be physically localised under these scenarios.

METHODS
Using a coalescent simulator [Schaffner et al., 2005], we simulated 1,000 separate
populations of 10,000 chromosomes each of 500 kb in length (the size being dictated by
computational limitations), assuming a European ancestry and population history. For each
of these populations, the SNP density was thinned, as necessary, to generate mean SNP
separations close to those of the 10 ENCODE (build 16.1c) regions [International HapMap
Consortium, 2005]. These 1,000 populations of 10,000 thinned haplotypes constituted the
substrates for all subsequent analyses.

For this study, we considered a range of disease models, encompassing three gene effect
sizes (minor allele homozygote genotype relative risk (GRRhom) of 1.5, 2 and 3) under three
modes of action (dominant, recessive and additive). We also considered the null hypothesis
of no genetic effect. For each population, using its set of thinned chromosomes described
above, we generated case/control replicates comprising the genotypes of 1,000 control
subjects and 1,000 case subjects. A single SNP was designated as the causal variant, selected
at random from all polymorphisms with a predetermined minor allele frequency (“close” to
0.1, 0.2 and 0.4). Individuals were generated by selecting pairs of haplotypes at random,
with replacement, from the population, and simulating their disease status according to the
disease model. The process was repeated until sufficient cases and controls were generated.
We retained the position of the disease SNP for each case/control replicate. We repeated our
simulations and analyses using solely common (>5%) SNPs.

For each population, for the primary analysis of each case/control replicate, we selected a
subset of SNPs from the fine-scale map to achieve a HapMap phase I density of
approximately one common (≥5%) SNP every 4 kb and approximately one rare (≤5%) SNP
every 30 kb. Each replicate was analysed using logistic regression implemented in
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COCAphase [Dudbridge, 2003], either in a SNP-by-SNP approach or in a five-SNP
haplotype sliding window approach. The most significantly associated SNP, or five-SNP
haplotype, together with its position, was recorded. Rare (<1%) haplotypes were pooled
during analysis. We continued to simulate and analyse case/control replicates until a
significant primary analysis signal — that is one with asymptotic P≤0.001 (uncorrected) —
was achieved. (This significance threshold was chosen for reasons of computational
practicality, especially under the null hypothesis, given a simulation study of this nature.)
The number of replicates necessary to achieve this (Nrep), together with the position of the
associated SNP, was recorded. The significant replicate was then fine-mapped by
introducing into the analysis map all SNPs (from the thinned haplotypes) that lay within 30
kb on either side of the significantly associated SNP or associated five-SNP haplotype. The
size of this region corresponds to approximately three average LD blocks [International
HapMap Consortium, 2005], and as such is reasonably well dimensioned for modelling in a
simulation study such as this. The fine-mapped region was reanalysed with COCAphase: the
most significantly associated SNP (or haplotype), its position and P-value recorded. We
determined the magnitude and direction of the P-value change during fine-scale mapping,
and the extent of LD between the primary “hit” SNP and the actual disease SNP from the
control sample genotypes.

This exercise was performed for all 1,000 populations under the null model (of no genetic
effect) and three alternative genetic models, for each genetic effect size and allele frequency.
For each set of parameters, we were, therefore, able to derive two measures: the total
number of replicates necessary to achieve a significant primary analysis signals meeting the
significance threshold for all 1,000 populations (Nrep), and the number of primary analysis
signals that increased in significance following fine-scale mapping (Ninc). From these, we
could calculate the following quantities:

a. P(s|H0), P(s|H1) — the probabilities of obtaining a significant result during primary
mapping, computed as Nrep/1,000, under the null and alternative hypotheses,
respectively.

b. P(i|s,H0), P(i|s,H1) — the conditional probabilities of observing an increase in
statistical significance of an association following fine-mapping, computed as Ninc/
1,000, under the null and alternative hypotheses, respectively.

c. P(nd|s,H0), P(nd|s,H1) — the conditional probabilities of observing either no
change or a decrease in the significance of an association following fine-mapping,
under the null and alternative hypotheses, calculated as 1–P(i|s,H0) and 1–P(i|s,H1),
respectively.

The prior probability of a SNP in the genome being pathologically important will depend
not only on the genetic architecture of the trait (given the total number of aetiologically
important genes, any interactions between them and their physical distribution along the
chromosome) but also on the experimental scenario (contrast a de novo scan with the
association mapping of a linkage peak). Therefore, we have decided upon three examples for
the purposes of our study to encompass a realistic range of values for the experimental and
biological scenarios described above. Each P(H1) is the prior probability of a single disease
SNP lying on the 500 kb DNA segment considered in our analyses. The three scenarios are
as follows:

1. Ten disease-causing SNPs in the genome (of 3,000 Mb), investigated as part of a de
novo GWA scan, each of which has an equal probability of lying on our 500 kb
DNA segment: P(H1) = 10 × (segment length)/(genome length) [(segment length)/
(genome length)]9 = 0.00166.
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2. A single disease-causing SNP lying somewhere within a 20 Mb (~20-cM) linkage
peak that has been replicated by multiple genome-wide linkage studies: P(H1) = 5 ×
105/2 × 107 = 0.025.

3. A single disease-causing SNP in the genome, investigated as part of a typical (10
cM) genome-wide multipoint linkage scan of a late-onset trait such as type 2
diabetes, with an allele-sharing LOD score of 3 or more: P(H1) = 0.667 (from
[Wiltshire et al., 2005]).

Given these three prior probabilities for a disease SNP lying on our 500 kb DNA segment
(P(H1)), the corresponding prior probability for no disease SNP (P(H0) = 1–P(H1)), and the
quantities in (a), (b) and (c), we used Bayes’ theorem to obtain the following posterior
probabilities:

(d) The posterior probability of a significant primary map association being due to a
genuine disease gene before fine-mapping: P(H1|s) = P(s|H1)P(H1)/[P(s|
H1)P(H1)+P(s|H0)P(H0)].

(e) The posterior probability of a significant primary map association being due to a
genuine disease gene after fine-mapping, given that it increases in statistical
significance (i.e. the P-value gets smaller): P(H1|i,s) = P(i|s,H1)P(s|H1)P(H1)/
[P(i|s, H1)P(s|H1)P(H1)+P(i|s, H0)P(s|H0)P(H0)].

(f) The analogous posterior probability, P(H1|nd, s), given no change or a decrease
in statistical significance of the association following fine-mapping.

Many (perhaps most) fine-mapping association studies will be conducted using tag SNPs,
selected in order to reduce genotyping effort by exploiting the LD patterns in the genome
[Carlson et al., 2004; de Bakker et al., 2006]. We have, therefore, examined the effect of the
LD between our marker SNPs (standing in for tags) and the disease gene (present
somewhere with a given prior probability) by stratifying our results according to three levels
of LD between the disease gene and the primary analysis signal: low (r2 < 0.5, in which the
disease gene is poorly tagged), moderate to high (r2≥0.5) and high (r2≥ 0.8, in which the
disease gene is well tagged). The quantities (a), (b) and (c) above are now conditional on r2,
and under the alternative hypothesis of a genuine genetic effect, P(s|H1, r2) and P(i|s, H1, r2),
are recalculated solely from the replicates meeting the r2 criterion; under the null hypothesis,
r2 is irrelevant (there is no disease gene) and P(s|H0, r2) and P(i|s,H0, r2) will, therefore, be
the same as in their unconditional counterparts. The posterior probabilities of a real gene
conditional upon r2, both before and after fine-mapping — P(H1 |s, r2) and P(H1 |i,s, r2) —
are calculated as before from these quantities.

RESULTS
We consider here a disease gene with an allele frequency of 0.2 with several different effect
sizes acting under dominant, recessive and additive genetic models. The probabilities of
obtaining a significant association (i.e. P<0.001, uncorrected), and of observing an increase
in statistical significance after fine-mapping, for both individual SNP and five-SNP
haplotype sliding windows are shown in Table I. Under the null hypothesis of no genetic
effect, we see a primary analysis signal increase in significance by approximately one third
of the time in a single-SNP and five-SNP haplotype-based analyses following fine-mapping
(Table II). Only in a minority of these instances (5% for single SNP and 11% for haplotype-
based) do the P-values change by one or more orders of magnitude. We never see an
increase in statistical significance of three or more orders of magnitude during single-SNP or
haplotype-based analyses (Table II).
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Under the alternative hypothesis of a genetic effect, increases in the primary analysis signal
significance upon fine-mapping are much more frequent under dominant and additive
models than under the null hypothesis (Table I). This is especially so for large increases (of
two or three orders of magnitude) (Table II), and there is little difference between the single
SNP and haplotype analytical approaches with significance changes of this order of
magnitude. However, irrespective of the analytical approach, recessive genes with small
effect sizes barely differ from the null model in terms of power to detect the initial signal
(P(s)) the frequency of signal increase on fine-mapping (P(i|s)), or the magnitude of the
change in significance, and differ only modestly for larger (GRRhom>2) gene effect sizes
(Tables I and II).

THE POSTERIOR PROBABILITY OF A GENUINE GENETIC EFFECT
Using these simulation results, we determined the posterior probability of a real disease gene
for three mapping scenarios described above, both before fine-mapping (P(H1|s)) and after
fine-mapping (P(H1|i,s) given an increase in statistical significance. In the first, we consider
a GWA scan of a trait with 10 causative genes, each of equal effect and with the same
probability of lying on our 500 kb region of DNA (Table III). The prior probability of one of
these genes lying within such a region is small, at 0.00167. During a single-SNP analysis of
dominant and additive genetic models, the proportional gain in the posterior probability of a
genetic effect (i.e. contrasting the primary mapping with fine-scale mapping) is moderate to
large; for recessive genes, it is much smaller. For example, fine-mapping an additive gene
(with GRRhom of 1.5, 2 or 3), which has been detected in the primary association scan,
results in a proportional gain of 60–110% in the posterior probability of a real effect, given
an increase (of any size) in the statistical significance of the primary scan signal following
the fine-mapping; however, the actual posterior probabilities themselves remain small,
between 0.01 and 0.04. During haplotype analyses of common and rare SNPs (Table IV),
the proportional increases in posterior probability of a genetic effect are smaller than those
under single-SNP analyses, but the posterior probabilities themselves are higher; the
converse is true, however, when focusing solely on common SNPs, where both quantities
are larger (see supplementary online information).

In the second scenario, we consider a single disease SNP lying somewhere under a 20-Mb
linkage peak, with prior probability of 0.025 (Table III). Increases in the posterior
probability of an additive or dominant gene, when the primary analysis association signal
increases in significance following fine-mapping, are modest and smaller than in the
previous scenario, but otherwise the trend is the same. Recessive genes respond the least
well to fine-mapping: even with the largest gene effect size (GRRhom = 3), they reach a
posterior probability of only 0.123 given after fine-mapping in a single-SNP analysis,
whereas under additive and dominant models, the posterior probabilities exceed 0.4. A
change in analytical method (i.e. the use of haplotype-based analyses; Table IV) results in
the same direction of effect as seen with the genome-wide mapping scenario discussed
above, although to a lesser extent.

Our third scenario assumes a single-SNP at the top of a linkage peak observed with a LOD
score of 3 or more (Table III). In this instance the prior probability of association is 0.667
[Wiltshire et al., 2005]. The posterior probabilities before fine-mapping are all high (0.8 to
over 0.9 for dominant and additive genes; over 0.7 for recessive genes) and the proportional
changes given an increase in significance following fine-mapping are negligible, as are the
differences between single SNP and haplotype analyses (Table IV).
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THE MAGNITUDE OF THE INCREASE IN SIGNAL SIGNIFICANCE
We examined the changes in the posterior probability of a genetic effect in terms of the
magnitude of the increase in statistical significance of the association signal seen in two of
these mapping scenarios — 10 SNPs somewhere in the genome, and one SNP somewhere
under a 20-Mb linkage peak (Table V). It is clear from Table II that increases of three orders
of magnitude in single-SNP and haplotype-based analyses are never seen under the null
hypothesis of no gene. Consequently, if fine-mapping results in an increase of this
magnitude, the posterior probability of a genetic effect will be one. However, increases of
this size are uncommon (except for large gene effect sizes under dominant models —
unlikely in complex traits) and we, therefore, focus on the more common and practically
useful increase of at least one order of magnitude. Increases of this size have a pronounced
effect on the posterior probability of a genetic effect (Table V). For example, for our three
additive models (GRRhom of 1.5, 2.0 and 3.0), the posterior probabilities of a genetic effect
given an increase in significance of at least one order of magnitude after fine-mapping are
0.033, 0.244 and 0.423, respectively, (increases of 378, 1327 and 2023%) for the scenario of
10 genes in the genome (Table V). (Dominant genes show bigger proportional changes,
whereas recessive genes respond only modestly.) For the scenario of a single gene under a
20-Mb linkage peak, these probabilities are 0.347, 0.832 and 0.919 for the three additive
genetic models described above, with more modest proportional changes of 255–285%.
(Recessive genes show a response comparable with additive and dominant genes only with
large effect sizes under this mapping scenario; Table V.)

THE EFFECT OF LINKAGE DISEQUILIBRIUM BETWEEN THE MARKER AND
DISEASE SNPS

We considered the effects of the LD between the disease SNP and marker SNP most
strongly associated during primary analysis with the response to fine-mapping in the same
two scenarios as those above. In the case of dominant genes, the greatest increases in the
posterior probability of a genetic effect given an increase in significance tend to occur when
the LD between disease and marker SNP is low (r2<0.5), and the smallest proportional
increases are seen when the LD is high, irrespective of marker allele frequency, although for
small gene effect sizes, the difference is not large (Table VI). Similar findings are seen for
larger gene effect sizes under additive models: for example, for an additive gene with
GRRhom = 2.0, we see proportional increases of 130% with a low r2, 93% with a moderate
r2 (≥0.5) and 75% with a high r2 (≥0.8), in the genome-wide mapping scenario (Table VI).
The same is true when fine-mapping a single SNP under a well-replicated linkage peak.
However, the converse is seen for recessive genes, with the greatest gains in posterior
probability to be made when the LD between disease and marker SNPs is moderate or high.
For the same gene effect size (GRRhom = 2.0), we see only a 27% gain for the low r2

stratum, contrasting with gains of 90% and 71% for the moderate and high r2 strata,
respectively, in a genome-wide mapping scenario. A similar trend is seen when fine-
mapping recessive genes under well-replicated linkage peaks.

CONSEQUENCES OF NO CHANGE IN SIGNIFICANCE FOLLOWING FINE
MAPPING

We examined the consequences of no change in the statistical significance of association
(for single SNPs) or a decrease (for haplotype analyses) on the posterior probability of a
genetic effect (P(H1|nd, s) for our three experimental fine-mapping scenarios (Tables VII
and VIII). In each case, the posterior probabilities fall given no change/a decrease in the
significance of the primary analysis result, more so for haplotype analyses than for single
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SNP analyses (Tables VII and VIII). This decrease is negligible when fine-mapping a
linkage peak with LOD≥3, and is only modest for single-SNP analyses of dominant and
additive genes (negligible for recessive genes) in our first two fine-mapping scenarios,
irrespective of marker SNP frequency.

EFFECTS OF MARKER AND DISEASE ALLELE FREQUENCIES ON THE
RESPONSE TO FINE-MAPPING

We examined the effects of marker and disease allele frequencies on the response to fine-
mapping in additional simulations. These results are shown in the online supplementary
material. In general, the use of common marker SNPs (frequency >0.05) in the primary and
fine-scale mapping process yields the same pattern of response as the use of common and
rare SNPs, although the magnitude of the responses tends to be smaller. In models with a
higher disease allele frequency (of 0.4), the frequency of an increase in significance
following fine-mapping is only modestly higher, as are the posterior probabilities of a
genetic effect (both before and after such an increase), and the proportion gains therein,
although, excepting in the case of recessive genes, which showed a markedly improved
response to fine-mapping. For models with the lower disease allele frequency (of 0.1) these
quantities are smaller, especially so in the case of recessive genes, which respond poorly to
fine mapping.

PHYSICAL LOCALISATION OF THE DISEASE GENE
Our simulations provide some insight into the ability to physically localise disease SNPs
during a primary analysis (Tables I and IX). Recessive genes are localised poorly during
primary analysis, with a mean separation of 147 kb between the disease gene and the
primary analysis signal; dominant genes are localised the best, with a mean separation of 48
kb from the primary marker SNP (Table I). However, localisation improves as the r2

between disease and marker increases (Table IX). For example, an additive gene with
GRRhom = 2 is localised with a mean separation of 80 kB when the r2 is low, 23 kb with
moderate-to-high LD (r2≥0.5); the very best tags (r2≥0.8) localise the disease gene best, with
a mean separation of 15 kb. Primary analysis signals that subsequently increase in
significance following fine-mapping are closer to the disease gene than those that remain
unchanged (Table IX): for the genetic model adduced above, the mean separations are 58,
22 and 16 kb, for low, moderate and high r2 strata, respectively. Following fine-mapping,
those signals that increase in significance show improved localisation, with mean
separations of 52, 18 and 14 kb for low, moderate and high r2 strata, respectively (data not
shown). We note, however, that our measures of physical localisation — especially for those
in the low r2 stratum — will be underestimated owing to the size of the fine-mapping
interval we used in this study. We see the same trends in physical localisation irrespective of
disease or marker SNP frequency, although, as expected, localisation improves as disease
frequency increases (data not shown).

DISCUSSION
There are four principal factors that influence the response to fine-mapping, from which
useful inferences can be made when deciding on follow-up studies. The first of these is the
underlying genetic model of the trait in question. The ability to discern between a genuine
genetic effect and chance fluctuation (false positive) derives from the differences in the
distribution of the test statistic under the two hypotheses: a central χ2 under the null, and a
non-central χ2 under the alternative hypothesis of a genuine genetic effect, in which the
non-centrality parameter is related to the size of this genetic effect. Consequently, although
false positive signals increased quite noticeably when-fine mapped, they do so less
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frequently, and by smaller amounts, than those due to a genuine genetic effect. The larger
the genetic effect and the higher its allele frequency, the wider this distinction becomes. As
might be expected, dominant genes show the greatest frequency (and magnitude) of
increases, whereas recessive genes show the lowest frequency — these are barely
distinguishable from false positives when the disease allele frequency is low. Large
increases appear to be the exclusive domain of genuine genetic effects, especially dominant
and additive models; observing such an increase in a study should lead to a strong
supposition of the association signal as being due to a real gene. Increases of a single order
of magnitude or more, however, are common for dominant and additive genes, but rare
under the null hypothesis, and as such provide good discerning power between the two
hypotheses, yielding substantially increased posterior probability of a real gene. However,
the rarity of such events given a recessive mode of inheritance — except when the disease
allele frequency is high — underlies the potential difficulties encountered with mapping
such traits.

The second factor is the choice of markers and analytical method. On the whole, haplotype-
based methods have comparable power to detect a genetic effect, but higher frequency of
increases and lower false positive rates than single-SNP analyses. As a result, there are
smaller gains in the posterior probability of a genuine genetic effect given an increase in
statistical significance after fine-mapping, although the posterior probabilities themselves
are higher, than in the single-SNP analysis. The discerning power of a haplotype-based test
may therefore be less than that of a single-SNP analysis, but the overall evidence it provides
in terms of the probability of a real effect is greater. Consequently, a well-designed analysis
will include both single-SNP and haplotype-based analyses.

The third factor is prior the probability of a genetic effect. When the prior probability is
high, such as that typical of a study reporting very strong evidence for linkage with narrow
1-LOD support intervals, the posterior probability of association is also high (given a
significant primary association result) before fine-mapping, and the gains given an increase
in statistical significance (of any size) are minimal, regardless of the genetic effect size or
disease or marker allele frequency. In this circumstance, there is little to gain from the
exercise of fine-mapping, and an investigator would do better to direct resources and effort
into replication studies from the outset. When the prior is lower — for instance, a broad but
well-replicated linkage peak, or the signals from a GWA scan of a complex trait with
multiple underlying genes, there can be sizeable increases in the posterior probability of a
genuine genetic effect. These gains are larger for dominant and additive genetic models and
for genome-wide scans than for linkage peaks. Recessive genes show the least response and
will present a particular experimental challenge to map when the disease allele frequency is
low. Our study, however, is agnostic to the underlying distribution of functional DNA
elements; in a real data situation, the prior probability of a disease-causing mutation would
be higher over known functional elements — exons, splice sites, regulatory regions and
evolutionarily conserved elements [Hirschhorn and Daly, 2005; Rigoutsos et al., 2006].
These should clearly be accounted for in any posterior probability calculations involving
real data.

The fourth factor is the extent of LD between the disease and marker SNPs. The extent of
disequilibrium, the allele frequencies at both loci and their phase — encapsulated by r2 —
are powerful determinants of the ability to detect a genetic effect on a trait [Zondervan and
Cardon, 2004]. We did not explicitly consider completely random subsets of SNPs (to model
use of the Affymetrix 500 k chip) or specifically chosen tag SNPs (to model use of the
Illumina 550 k chip) as to do so would have been computationally unfeasible in a simulation
study such as this. Nevertheless, our findings will be applicable to analyses with such SNP
chips without too much difficulty as we are concerned here principally with the probabilities
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of association and not the genotyping effort itself. Our study shows that the greatest gains in
the posterior probability of a dominant or additive disease gene are seen for disease genes
that are poorly or moderately well captured by tags during the primary analysis. Conversely,
there tends to be the least to gain from fine-mapping when the disease gene is well captured
by marker SNPs (regardless of whether the marker set contains rare alleles or not) with
r2>0.8 — as would be the case with a set of efficacious tag SNPs. This is especially true in
GWA scans. The situation for recessive genes is almost the complete opposite.

The ability to localise a disease-causing mutation during fine-mapping studies is influenced
by the complex relationship between r2 and the physical distance on the broad and fine
scales. Nonetheless, markers in LD with the disease gene with a high r2 localise it more
tightly during primary analysis (approximately the length of one average LD block), than
when the correlation between disease and marker SNPs is low, although in both situations
the range of physical distances can be large. An investigator needs to consider, therefore, the
local LD patterns around their primary analysis signal(s) and the tagging efficacy of their
markers, when determining a suitable interval for fine-mapping. If the fine-mapping interval
is inadequately sized, the physical localisation will be bad, even if fine-mapping is
accompanied by sizeable increases in the posterior probability of a genuine genetic effect. In
either case, the lack of a relationship between r2 and the physical distance on the fine-scale
sets an upper limit on the ability of fine-scale mapping to localise disease genes and the
investigator is left with little option but a functional assessment of the most significantly
associated SNPs after fine-mapping.

In summary, fine-mapping significant, well-localised linkage peaks yields little
improvement in an already high posterior probability of a genuine genetic effect, and the
investigator is best directed to replication studies. Large increases in peak significance upon
fine-mapping signals from GWA scans or consensus regions from multiple linkage scans
can lead to sizeable increases in the probability of the signal indicating a genuine genetic
effect. This is especially so when the markers used in the primary analysis do not capture the
genetic variation in the region well, but such markers do not localise well in the primary
analysis, necessitating larger fine-mapping intervals to more precisely localise the disease
gene. Primary analyses with a set of markers (or tags) that efficaciously capture the genetic
variation yield only modest improvements in what is already a high probability that the
signal is genuine; the exception to this is when mapping recessive genes, in which the use of
good tags during primary analysis is crucial. The course of action chosen by an investigator
therefore depends largely on resources, experimental scenario and prior hypothesis of the
aetiology of the genetic disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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