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Neurons in the visual cortex respond best to rod-like stimuli of
given orientation. While the preferred orientation varies continu-
ously across most of the cortex, there are prominent pinwheel
centers around which all orientations are present. Oriented seg-
ments abound in natural images and tend to be collinear; neurons
are also more likely to be connected if their preferred orientations
are aligned to their topographic separation. These are indications
of a reduced symmetry requiring joint rotations of both orientation
preference and the underlying topography. We verify that this
requirement extends to cortical maps of monkey and cat by direct
statistical analysis. Furthermore, analytical arguments and numer-
ical studies indicate that pinwheels are generically stable in evolv-
ing field models that couple orientation and topography.

The preferential response of cells in the primary visual cortex
to lines of a particular orientation has been known for �40

years (1) yet remains a subject of intense experimental study and
modeling. Early models were simple structural arrangements of
local isoorientation columns into regular arrays (2–4). Intricate
maps of global patterns of orientation preference over the
cortex, obtained by optical imaging (5, 6), revealed more com-
plex arrangements. Thus, later models focused on the develop-
ment of orientation preference (OP) in networks of neurons
whose connectivity is modified in response to stimuli (7–9).
Obtaining large-scale patterns of OP with many pinwheels is
computationally costly with the later models (10); drastically
simplified models generate large static maps essentially from
bandpass-filtered white noise (11–13).

Analytical understanding of the development of visual maps
and its connections to other problems in pattern formation is
best obtained in terms of evolving fields. In this framework, OP
is modeled by a director field, s� � (sx(x, y), sy(x, y)), indicating
the preferred orientation at location r� � (x, y) on the cortex. The
field s�(r�, t) then evolves in time according to some development
rule that depends on its configurations at earlier times (14, 15).
Wolf and Geisel (WG) (16) have shown that a large number of
such evolutions can be summarized through a dynamical equa-
tion, �t s�(r�, t) � F[s�]. [WG combine the two components into a
single complex field, z � (sx � isy)2.] Common elements in
models of evolving fields are: (i) Starting from an initial condi-
tion with little OP, there is rapid onset of selectivity governed by
L[s�], the linear part of the functional F[s�]. The characteristic
length scale observed in cortical maps is implemented by a linear
operator that causes maximal growth of features of wavelength
�, i.e., acting as a band-pass filter, in the parlance of circuits. It
is possible to follow the linear development analytically: WG
(16) show that the density of pinwheels [zeros of the field z(r�)]
has to be larger than ���2 in this regime. (ii) Because the linear
evolution leads to unbounded growth of OP, nonlinearities are
essential for a proper saturation of the field. Although analytical
studies of nonlinear development are difficult, numerical simu-
lations indicate that the OP patterns continue to change (albeit
more slowly) even after their magnitudes have saturated. More
importantly, the pinwheels typically annihilate in pairs, giving
way to a rainbow pattern of wavelength �. To maintain pin-
wheels, development has to be stopped, or extrinsic elements
such as inhomogeneities that trap the pinwheels have to be

introduced. Constant stirring by sufficiently strong external noise
can also lead to dynamic creation and annihilation of pinwheels,
but our focus is on evolving fields where the only randomness is
in the choice of initial conditions. Because the neural processes
that lead to OP are still not fully understood, the stability of
pinwheels has not been a topic of much study among neurosci-
entists. Nevertheless, the search for intrinsically stable pinwheel
patterns has motivated some recent studies (17, 18). We propose
here an alternative explanation, demonstrating that evolving
field models with proper rotational symmetry generically lead to
patterns with stable pinwheels.

Symmetry considerations are paramount in problems of
pattern formation. Because all directions are more or less
equally present in cortical maps, practically all models of OP
[certainly those summarized in WG (16)] assume that different
orientations are equivalent. In fact (as we also found in our
analysis of monkey map), not all orientations are equally
represented. This type of anisotropy indicates the absence of
any form of rotation symmetry and should not be confused
with the distinction between full and joint rotation symmetries,
which is the subject of this article. The former is compatible
with rainbow patterns and does not appear to play a role in the
stability of pinwheels. We verified this explicitly by numerical
simulations in models with a preference for the horizontal
direction (also available as supporting information, which is
published on the PNAS web site). The full rotational symmetry
is implemented by requiring the evolution of s�(r�, t) to be
unchanged if all angles are rotated together. This rotation is
independent of the topographic space r�, which is also assumed
to be isotropic (no preferred directions). Two versions of
rotation are illustrated in Fig. 1. Fig. 1b displays a collection
of oriented lines that are rotated independently of the back-
ground grid from Fig. 1a. We propose that the appropriate
symmetry for OP maps is simultaneous rotations of the
orientations and the underlying space, as illustrated in Fig. 1c.

The observational evidence for the reduced symmetry is
reviewed in Observational Evidence of Reduced Symmetry in
Cortical Maps. As suggested by Fig. 1, the absence of full
rotation symmetry in natural images is expected and in fact
demonstrated in ref. 19. There is also evidence that neural
connectivities are preferentially linked along the axis of OP
(20). We present a statistical analysis of OP maps from monkey
and cat, which also supports the lack of full rotation symmetry.
Consequences of reduced symmetry in evolving field models
are discussed in Modeling Joint Rotation Symmetry. A linear
analysis indicates that the reduced symmetry introduces an
additional time scale into the problem and an interval in which
the pinwheel density can actually increase by pair creations.
Vectorial versions of center-surround interactions are then
used in numerical simulations of models with joint rotation
symmetry. The simulations result in patterns with intrinsically
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stable pinwheels and histograms of OP similar to those ob-
tained from cat and monkey maps.

Observational Evidence of Reduced Symmetry in Cortical Maps
Casual consideration of scenes strongly suggests that the persis-
tence of edges of stationary objects (as in Fig. 1) or of tracks of
moving ones leads to oriented segments that cannot be rotated
independent of their background. This expectation has been
confirmed and quantified by statistical tests in ref. 19, where an
orientation was assigned to each pixel of images from the natural
world. The primary query of ref. 19 was the range and direc-
tionality of correlations in orientation. Sigman et al. observed
that correlations depend on the relative angles in the topo-
graphic space, in a manner consistent with a collection of circles.

Because the task of the visual system is to extract information
from observed images, it is likely that the neural connections that
carry out the associated computations are influenced by sym-
metries and anisotropies of the natural scenes. Contemplation of
the Hebbian rule (21), ‘‘neurons that fire together wire to-
gether,’’ suggests that there should be more connections between
neurons whose shared OP is collinear to their topographic
separation. Indeed, biocytin injections that map the horizontal
connections of neurons have been combined with optical imag-
ing of the primary visual cortex of the tree shrew (20). Connec-
tions from an injection site are anisotropic, preferentially ex-
tended along the axis of OP at the site. Although less
pronounced, similar anisotropies are also observed in maps from
monkey (22) and cat. Such connectivities are incompatible with
rotations of OP independent of the underlying topography. A
map with all OPs rotated by a fixed angle would require a
different set of horizontal connections.

To test the hypothesis that cortical maps of OP also ref lect
the reduced rotation symmetry, we undertook statistical tests
of a map of monkey (in the form of 360 � 480 pixels; provided
by K. Obermeyer, Technical University of Berlin, Berlin). At
each point i of the map, there is an orientation angle �i,
measured relative to an arbitrary axis; and two points i and j,
separated by a distance R form an angle �ij with the same axis,
as indicated in Fig. 2a. Binning into intervals of 10°, we make
joint histograms of the form hR[2(�i � �j), 2(�ij � �j)]. (The

factor of two is introduced because the orientation is defined
from 0 to �.) The second argument measures the angle relative
to the line-joining points i and j. If the orientations are
independent of topography, the histograms should be inde-
pendent of their second argument. This is not the case for the
monkey histograms shown on the left column in Fig. 2; the
right column of Fig. 2 shows cross sections at 2(�ij � �j) � 0�
and 90°, which display maximal contrast for parallel orienta-
tions. The larger probability for 2(�ij � �j) � 90� does not
violate expectations based on collinear orientations, because
we do not know the actual topographic axis in our monkey
map. The choice of an arbitrary axis does not modify �i � �j
but shifts the histograms along 2(�ij � �j). The advantage of
our method is the ability to detect lack of full rotation
symmetry in the absence of knowledge of topographic axis, but
the lack of this information prevents making a connection to
correlations in visual inputs.

Fig. 2 b and c are at separations R, which are a fraction of the
typical distance between pinwheels and show no indication of
any dependence on topography. By contrast, Fig. 2 d and e
correspond to values of R comparable to pinwheel separations.
There is now a small but distinct dependence on the orientation
of the line between two points, indicating that the OPs do not
follow a distribution with full rotational symmetry. Similar
results were obtained for maps from cat (204 � 372 pixels;
provided by M. Sur and J. Schummers, Massachusetts Institute
of Technology, Cambridge) and are available as supporting
information. In both cases, the dependence on the second
argument is small (at most �20%), and some assessment of its
statistical significance is needed. Because we had access to only
one map in each case, we made an indirect estimate of statistical
error by constructing an artificial ensemble of 2,000 histograms
though random samplings of 2.9% of total pixels in the monkey

Fig. 1. (a) The image of an arrow formed by oriented solid lines on a
topographic grid of dotted lines. (b) Each solid line is rotated counterclockwise
by 45° independent of the grid. The thus rotated image bears little resem-
blance to the original. (c) There is simultaneous rotation of the grid and the
solid lines as the whole image is rotated.

Fig. 2. Histograms of OP from a cortical map of monkey. (a) The relative
orientation between two pixels i and j at a distance R is one argument of the
histogram; the second is the OP of one point measured relative to the line
joining the two pixels (at angle �ij). Full histograms are shown on the left,
whereas the right is for 2(�ij � �j) � 0° (solid line) or 90° (dotted line) (b and
c) Short separations of 5–10 pixel spacings with no dependence on the relative
angle. By contrast, there is a small but clear indication of a coupling to the
underlying topography in d and e, which are taken at distances of 70–75
pixels, comparable to the separations of pinwheels. Such dependence indi-
cates the lack of full rotation symmetry in the map.
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map. (As described in the supporting information, we tested this
sampling procedure on maps generated by numerical simula-
tions.) From the thus-included error bars in Fig. 2e, we conclude
that the differences fall outside statistical errors.

Modeling Joint Rotation Symmetry
We believe that the restriction to joint rotation symmetry is an
essential aspect of the OP maps and should be incorporated into
models and analytical studies. In computational models with
neural networks (10), this reduction in symmetry is naturally
achieved through the choice of a proper training set of images.
How should this be implemented in analytical models of evolving
fields? If the inputs to locations (such as i and j in Fig. 2) are
predominantly parallel, a Hebbian interaction between them
would evolve to minimize �i � �j. If the OP at i is indicated by
a vector s�i, this interaction can be written as J(R)s�i�s�j. Such an
interaction, however, makes no reference to the relative orien-
tation �j � �ij and thus cannot represent a response to a
preponderance of inputs that are collinear with the topographic
(unit) vector r̂ij. To account for the latter, we could have distinct
interactions between components of s�i and s�j that are parallel or
perpendicular to r̂ij; the difference between them can be repre-
sented by a new interaction of the form K(R)(s�i�r̂ij)(s�j�r̂ij). [More
precisely, we should use interactions of the form (s�i�s�j)2 and
(s�i�r̂ij)2(s�j�r̂ij)2 that are invariant under s�i 3 �s�i, because both
vectors indicate the same orientation. Such modifications unduly
complicate the presentation and analysis without changing the
essence of our results.] With this distinction, when s�i and s�j are
parallel (perpendicular) to r̂ij, the strength of interaction is
J(R) � K(R)(J(R)).

As a specific model, let us assume a set of s�i(t), stimulated by
inputs p� i(t), and interactions between them that reflect the
average activity of s�i(t) over previous times. The joint activity of
s�i and s�j contributions can be decomposed into two components,
s�i and s�j, that are parallel to r̂ij or perpendicular to it. Both cases
contribute to the isotropic interaction 2Jij(t) � [s�i�s�j]av., whereas
the component parallel to r̂ij gives rise to the interaction Jij(t) �
Kij(t) � [(s�i�r̂ij)(s�j�r̂ij)]av.. In the initial stages, the couplings are
small, and s�i(t) merely follow the inputs p� i(t). The couplings then
evolve to reflect the statistics of inputs: A tendency for the p� i(t)
and p� j(t) to be parallel leads to a positive Jij, whereas if and only
if these inputs also tend to be collinear, a finite Kij is generated.
Note that if Kij � 0, we have [s�i�s�j]av � 2[(s�i�r̂ij)(s�j�r̂ij)]av due to
equal contribution from s�i and s�j that are parallel to r̂ij, and
perpendicular to r̂ij. As the dynamics proceeds further, the
increased couplings could well freeze s�i to a particular pattern.
The interactions then follow suit and become correlated to the
frozen orientations. Such a scenario could well account for the
correlations between OP and connectivity observed in the tree
shrew (20). Other procedures for obtaining synaptic couplings
from input activities (23–25), once generalized to orientations
with proper correlations, lead to similar results. However, our
intention is not to promote a particular scenario but to empha-
size that any interactions not specifically ruled out by symmetry
will generically be present. In the following, we shall explore
some consequences of joint rotation symmetry on the evolution
of the patterns.

Linear Analysis. To underscore the difference between the two
forms of rotation symmetry, let us consider the regime of linear
evolution, which is analytically tractable. Due to translation
symmetry, the problem is simplified in terms of the Fourier
modes s̃�(q� , t) � 	d2 xeiq�x�x� s�(x�, t), where � � 1, 2 (or x, y) labels
the two components of the vector s̃. After Fourier transforming
the interactions J(R) and K(R) introduced above, the linear
evolution equation takes the form

�t s̃ �
q� , t� � �
	�1,2

�J
q� �
�	 � q�q	K
q� � s̃ 	
q� , t�. [1]

Due to the assumed isotropy, the functions J and K depend
only on the magnitude of the vector q� . For example, they can be
band-pass filters peaked at q� � 2��� to reproduce the power
spectrum of cortical maps. In the case of full rotation symmetry,
invariance of the equations under independent rotations of s� and
r� requires K(q) � 0. However, if s� and r� can only be rotated
together, a finite K(q) is possible and should be generically
present. (One way to see this is that q� �s̃ is invariant under joint
rotations but not separate rotations of s̃ and r�.)

A finite K(q) mixes the evolution of the two components s̃1
and s̃2. This mixing can be removed by decomposing the field s̃
into longitudinal and transverse components. For a given q� , the
longitudinal component is parallel to q� , and the transverse
component is perpendicular to it. Under the action of the linear
operator in Eq. 1, the two components grow as e[J(q)�q2K(q)]t and
eJ(q)t. If K(q) � 0 (full rotation symmetry), the two modes grow
at the same rate, over a time scale �1(q) � 1�J(q). Even a small
K(q) breaks this degeneracy, introducing a second time scale
�2(q) � 1�[q2K(q)], over which the effects of anisotropy become
apparent.

Note that when the two modes grow at the same rate [K(q) �
0], an equal superposition to these modes is compatible with
a rainbow pattern that does not contain any nodes. (Of course,
the rainbow is one of many possible patterns.) However, K(q)
is generically nonzero for a joint rotation symmetry, and one
of the two modes eventually dominates the other. The domi-
nance of transverse or longitudinal components increases the
density of zeros and is incompatible with rainbow patterns. We
repeated the analysis of WG (16) for the density of pinwheels
in the linear regime, in the presence of a small K(q). The
calculation is cumbersome and relegated to the supporting
information, but the final result for the evolution of pinwheel
density is depicted in Fig. 3. The initial random pattern has
a high density that rapidly decreases in a time of order �1 �
J(q�)�1 to the limiting value of ���2 predicted by WG. This is
the case for both isotropic [K(q) � 0] and anisotropic [K(q) �
0] cases. However, pinwheel density then goes up by a factor
of �2 for the anisotropic case on a time scale of �2 � [q�2

K(q�)]�1, whereas it remains as ���2 for the isotropic case. As
explained in the supporting information, the factor of �2 is
the outcome of an approximate evaluation of density, which is
analytically tractable. We also performed simulations that
confirmed an increase in density by a small factor of �1.12.
Although the increase in density is small, it nonetheless implies
(pair) creation of pinwheels in the anisotropic case, a phe-
nomenon that is absent in the isotropic models. Note that the
ultimate density ratio between isotropic and anisotropic cases

Fig. 3. Schematic depiction of the evolution of the density of zeros for
isotropic (red line) and anisotropic (blue line) interactions. Anisotropy results
in an increase of the density of pinwheels in the latter stages of linear regime.
The nonlinear extrapolation is based on simulation results.
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is a universal number, independent of the degree of anisot-
ropy. The strength of K(q) dictates only the time scale over
which the density increases and not its ultimate value.

Simulations. Although the above arguments from the linear
regime strongly suggest that joint rotational symmetry promotes
pinwheel stability, verification of this hypothesis comes from
simulations of the nonlinear evolution. For the latter, {s�i(t)} was
placed on a lattice of points of locations r�i and evolved in time
according to

�ts�i � s�i
1 � �s�i�2� � �
j

�J
rij�s�j � K
rij�
s�j� r̂ ij� r̂ ij, [2]

where r�ij � r�i � r�j has magnitude rij along the unit vector r̂ij. The
nonlinearity appearing in the first term on the right-hand side
stabilizes the magnitude of s�i to unity. The linear evolution is
governed by a vectorial center-surround filter, composed of two
parts: (i) A standard center-surround filter with positive cou-
plings Js in a circle of size R�2 � � and negative values Jl in an
annulus from R�2 to R. (ii) Additional couplings in the annular
region that explicitly depend on orientations relative to the lines
joining lattice points and invariant only under joint rotations. We
use positive long-range couplings K to mimic the preferential
horizontal connectivity of cooriented coaxially aligned receptive
fields, as reported in ref. 20. [Similar kinds of anisotropic
interactions were also used in a model for dynamics of neural
activity in the visual cortex (26). The anisotropic coupling by
lateral neural connectivities was also obtained and associated
with pinwheel structure in ref. 24.]

Simulations are started on an L � L lattice with initial values
of �s�i� � 10�3, equally distributed over all angles, with Js � 0.01,
Jl � �0.0039, and R � 10. As shown in Fig. 4a, undifferentiated
initial conditions quickly develop into a pattern with pinwheels
reminiscent of actual maps. Further evolution depends on the
symmetry of development rules. Full rotation symmetry with
K � 0, and the action of ii above turned off, leads to a rainbow

state with no pinwheels at long times, as in Fig. 4b. However,
reduction of this symmetry by adding interactions in ii with K �
0.0039 above eventually results in a square lattice of pinwheels,
as in Fig. 4c. Naturally, we do not imply that pinwheels in
cortical maps form a square lattice (various inhomogeneities
could easily trap these vortices in a distorted arrangement), but
that they are intrinsically stable under such development rules.
The precise choice of long-range couplings is not important in
this regard, and we observed pinwheel patterns with other
types of anisotropic coupling (some are also available in the
supporting information).

Not surprisingly, the anisotropic couplings lead to correlations
between OP and the topographic angles. We repeated the
histogram analysis of actual maps with those generated by
numerical simulations, and some results are plotted in Fig. 5.
There is no dependence on topography for K � 0, as depicted
in Fig. 5a, which shows two relative angle histograms for 2(�ij �
�j) � 0� and 2(�ij � �j) � 90�. For K � 0, there are positive
correlations in relative angles for 2(�ij � �j) � 0� and negative
correlations for 2(�ij � �j) � 90� (Fig. 5b). The topographic
dependence is robust and does not significantly depend on the
strength of the anisotropic coupling.

Conclusion
Collinearity is a prominent characteristic of line segments in

natural images. It is reasonable to expect that cortical maps
of OP reflect a corresponding tendency. A basic consequence of
the tendency of line segments to be collinear is the absence
of a full rotation symmetry, independent of the underlying
topography. We demonstrate the lack of full symmetry by
analyzing histograms of monkey and cat maps. We then explore
consequences of reduced symmetry on the behavior of evolving
fields of OP. In the linear regime, we find that the interactions
allowed generate a time scale over which the pinwheel density
can actually increase. Numerical simulations confirm that this
tendency persists in the nonlinear regime, resulting in patterns
with stable pinwheels.

Although the stability problem of pinwheels in OP maps is not
widely appreciated, it has been the motivation for two other
recent studies. In ref. 17, a different coupling between neurons
is used based on a wiring length minimization principle, whereas
in ref. 18 higher-order nonlinearities are used in place of the
stabilizing s�i�s�i�2 term in Eq. 2. Although these models lead to
stable patterns of pinwheels, they cannot account for the aniso-
tropic features of actual OP maps, because both have full
rotation symmetry. A potential relation between the symmetries
and correlations of line segments in natural images and the
statistics of OP maps (including stability and arrangement of
pinwheels) may provide further clues to how visual information
is processed by the brain.

We are grateful to F. Wolf and D. Chklovskii for illuminating discussions
and to M. Sur and K. Obermeyer for sharing data. This work was
supported by National Science Foundation Grant DMR-01-18213.

Fig. 4. (a) The development of a random initial condition by typical center-
surround (bandpass) filter leads to a collection of pinwheels. The filter used in
b has full rotation symmetry [K(r) � 0 in Eq. 2]. In this case, the pinwheels
annihilate in pairs, giving way to a rainbow pattern at long times. (c) By
contrast, a model with joint rotation symmetry evolves to a stable pattern of
pinwheels. This figure was generated by the vectorial center–surround filter
in Eq. 2, with a nonzero K(r).

Fig. 5. Histograms of relative angles for 2(�ij � �j) � 0° (solid line) and
2(�ij � �j) � 90° (dotted line) with isotropic (K � 0) (a) and anisotropic (K �

0.0039) (b) interactions.
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