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Abstract
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces
and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD)
fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent
shear force, which is a generalized force to represent the presence of the solid-wall particles and to
maintain locally thermodynamic consistency. We show that this method can be implemented in
both steady and time-dependent fluid systems and compare the DPD results with the continuum
limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow
boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure
value. We study flows over the backward-facing step and in idealized arterial bifurcations using a
combination of the two new boundary methods with different flow rates. Finally, we explore the
applicability of the outflow method in time-dependent flow systems. The outflow boundary
method works well for systems with Womersley number of O(1), i.e., when the pressure and
flowrate at the outflow are approximately in-phase.
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1 Introduction
Dissipative Particle Dynamics (DPD) was introduced as an off-lattice algorithm [1,2] and
has been used to simulate complex fluid systems [3–8] at the mesoscopic level. As a particle
based method, each DPD particle represents a coarse-grained group of molecules and
interacts with other particles within a certain cut-off range through three forces. Specifically,
besides the spatial conservative force term, each DPD pair interaction also consists of a
velocity-dependent dissipative force and a random force term, originated from the coarse-
graining procedure [9,10] of a molecular dynamics (MD) system. In contrast to MD, the
larger spatial and time scales enable the DPD method to be used successfully in simulations
of various soft matter systems, such as the polymer and DNA suspensions [4–6], platelet
aggregation [7], and red blood cells in shear flow [11,8] and in blood flow [12].
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One of the fundamental problems for these hydrodynamic systems is how to impose proper
boundary conditions (BCs) on non-periodic domains, e.g., on the fluid-wall and outflow
boundaries. For bulk systems, the Lees-Edwards boundary method [13] and the reverse
Poiseuille flow method [14] have been proposed to simulate shear and Poiseuille flows,
respectively. These methods employ periodic BCs in order to avoid explicit modeling of
solid walls and to eliminate artificial density fluctuations. For non-periodic systems, where
solid boundaries play an important role, several attempts have been made to simulate the
wall-fluid interface. In general, there exist two main approaches. The first approach is based
on the representation of a wall by frozen particles while the fluid-wall interactions are
prescribed by the conservative and dissipative forces between the fluid and the wall
particles, e.g., simple fluid [15], colloidal suspension [16] and a polymer solution between
bounded walls [17]. In the second approach, the fluid-wall interactions are represented by
certain effective forces with the combination of proper reflections to prevent particle
penetration. In Ref. [18], a continuum-based approximation of the uniformly distributed wall
particles is employed and combined with the bounce-back reflection to enforce no-slip BCs.
In Refs. [19] and [20] a boundary force is computed adaptively to eliminate density
fluctuations and excessive slip velocity near a solid wall, respectively.

However, to the best of our knowledge, little work has been done for the following two
boundary problems. The first problem is how to impose noslip BCs for time-dependent fluid
flows using proper effective boundary forces rather than the wall particle representation. An
oscillatory Stokes flow was simulated in [15] using the wall particle representation with
adjusted force parameters. In Ref. [21], Couette flow with a transient start-up was simulated
by creating a dynamic wall layer, where images of the DPD particles from the fluid layer
next to the wall are inserted into the wall layer with a random shift. Both methods explicitly
employ wall particles introducing additional computational cost and complexity. The second
problem we would like to address is how to impose the outflow BCs for a fully developed
fluid flow. Werder et al. [22] proposed an algorithm based on particle insertion/deletion,
which relies on the knowledge of the velocity profile at the outflow. However, as we know
from continuum CFD, the outflow profiles are rarely known.

In this paper, we focus on the two problems: (i) the no-slip BCs for unsteady flows, and (ii)
the outflow BCs. In Section 2 we briefly describe the DPD method. In Section 3, we derive
an effective boundary force from the total dissipative force on a single DPD particle in
homogeneous shear flow. We show that the effective force can be implemented as the
boundary force in the vicinity of the wall and is sufficient to impose no-slip BCs for
unsteady flows while maintaining thermodynamic consistency near the boundary in contrast
to an abnormal temperature profile in [23]. We validate the method by comparing the
numerical results of transient Couette and oscillatory Stokes and Womersley flows with the
corresponding analytical solutions. In Section 4, we propose the outflow boundary method
which is similar to the Neumann BCs in CFD for fully developed flows. We validate this
method through simulations of the backward facing step and arterial bifurcation flows in
combination with the no-slip BCs introduced in Section 3. Furthermore, we test the outflow
method for the case of a time-dependent flow system by considering the unsteady
Womersley flow. We conclude with a brief summary in Section 5.

2 DPD method
We consider the standard DPD formulation [1] with the motion of each particle governed by

(1)
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where ri, vi, m are the position, velocity, and mass of the particle i, and , ,  are the
total conservative, dissipative and random forces acting on the particle i, respectively. Under
the assumption of pairwise interactions the DPD forces are given by the sum of the pair
interactions with the surrounding particles as follows

(2)

(3)

where rij = ri – rj, rij = ∣rij∣, eij = rij/rij, and vij = vi – vj. rc is the cut-off radius beyond which
all interactions vanish. The coefficients a, γ and σ represent the strength of the conservative,
dissipative and random force, respectively. The last two coefficients are coupled with the
temperature of the system by the fluctuation-dissipation theorem [2] as σ2 = 2γkBT. Here, ξij
are independent identically distributed (i.i.d.) Gaussian random variables with zero mean
and unit variance. The weight functions wD(r) and wR(r) are defined by

(4)

where k = 1.0 in the standard DPD method; however, other values of k have been used to
increase the viscosity of the DPD fluid [5,20]. In the current work we chose k = 0.25, a =
25.0, σ = 3.0, γ = 4.5, and kBT = 1.0. The number density of the fluid is n = 3.0.

3 No-slip boundary conditions
3.1 Boundary method

Generally, we need to impose a certain boundary force on the particles near the solid wall to
impose the no-slip boundary condition. In Ref. [24], the boundary force is extracted from the
fluid-solid interaction for Smoothed Particle Hydrodynamics (SPH). Similarly, we use an
effective force to represent the presence of solid-wall next to DPD fluid. Rather than
computing the force contribution from the wall directly, let us start with a DPD particle in
shear flow. We define the flow direction  in Fig. 1, and the shear rate , where
u(z) = ⟨vx⟩. We calculate the force on the particle i exerted by the particles in the semi-
spherical region satisfying (zj – zi) > h, i.e, the particles in the gray area drawn in Fig. 1.
Using the continuum approximation the total conservative force on the particle i can be
evaluated as

(5)

where g(r) is the radial distribution function of DPD particles, Vs/ Vex(h) represents the
spatial part of the fluid domain shown by the gray area in Fig. 1. The x and y components of
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Fc(h) vanish due to spherical symmetry. We note that the z component fp(h) is exactly the
pressure force proposed in [22] to eliminate density fluctuations in the vicinity of the wall
boundary.

Next, we calculate the total dissipative force on the particle i as follows

(6)

This force depends on the instantaneous velocity difference between particle i and j, but we
notice that in the bulk shear flow the velocity difference satisfies

. Thus, we can calculate the ensemble average of FD(h)
as

(7)

We further simplify this term by taking the continuum limit of the force as follows

(8)

where the y and z components vanish due to spherical symmetry. After the integration over
the angles in the spherical coordinates the x-component is simplified as

(9)

where γd(h) is a function of the height from the particle i to the reference plane and
 corresponds to the average velocity difference between the particle i and the

reference plane. The function γd(h) is shown in Fig. 2 and a best fit is given by

(10)

where C1 = 0.8504, C2 = 9.6 × 10−3, C3 = 4.0 × 10−4 and δh = 0.01.

Now we consider fluid flow above the reference plane replaced by a solid wall. Each fluid
particle within the distance h < rc from the solid wall is subject to the effective forces which
compensate for the interactions with the “missing” particles under the reference plane (solid
wall). A natural choice of the effective shear force is the ensemble average of the dissipative
force as follows

(11)

where vx and U are the velocities of the particle and the wall along the flow direction. The
main approximation we rely on is that the velocity profile near the solid boundary remains
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linear with a quasi-constant shear rate . In addition, for thermodynamic consistency a
thermal random force is required to represent the fluctuation part of interactions with the
“missing” particles, i.e.,

(12)

where ξ is an i.i.d random variable with the Gaussian distribution and σd(h)2 = 2kBTγd(h).
We note that the analytical solution of the effective force shown in Eq. (9) and Eq. (11)
applies only to the fluid near a planar surface, as these equations are not valid for a fluid
system with arbitrary curvilinear boundary geometry. In principle, Eq. (9) should be
replaced with integration over the corresponding curvilinear boundary. However, for
simplicity, we can still use a “piecewise-plane” approximation even for complex geometries.
The main assumption is that the near-wall profile can be approximated linearly. The
corresponding force equation is not going to be “exact” for cases with arbitrary geometries,
but it can be a very good approximation as shown in our numerical tests.

In summary, under the assumption of the linear velocity profile near the solid wall, no-slip
BCs can be enforced through the three effective forces: the pressure force defined in Eq. (5)
acting in the normal direction to the wall, and the dissipative and random forces defined in
Eqs. (11) and (12) acting along the flow direction. Thus, we define the boundary force fnoslip
for the no-slip BCs as follows

(13)

where  corresponds to the shear direction. Finally, to prevent penetration of the solid wall
by fluid particles, specular reflection [22] is imposed for each DPD particle on the fluid-
solid interface.

3.2 Numerical verification
The proposed boundary method is verified through simulations of different prototype flows.
The first test is the steady plane Couette flow. The DPD fluid is confined between two
parallel plates placed at y = 0 and y = 10 with periodic BCs imposed along the other two
directions. The velocity of the upper plate is U = 1.0 and that of the lower plate is U = 0.0.
The parameters of the DPD fluid are specified in section 2. Fluid particles near the two
boundaries are subject to the velocity-dependent force feff (vx – U) described in the previous
section. The system is integrated over 5 × 104 time steps with the time step dt = 5×10−3.
Statistical averaging is performed over the second half of the simulation. Fig. 3 shows the
velocity, density and temperature profiles across the flow. The no-slip BCs are satisfied and
the velocity profile is in excellent agreement with the analytical solution. Moreover, the
density and temperature profiles are uniform across the computational domain showing no
density fluctuations and verifying the thermodynamic consistency of the boundary method.
The effective boundary forces mimic a system which can be viewed as a part of the
unbounded shear flow whose bulk properties are successfully recovered. The boundary
method was also tested for the case of steady Poiseuille flow, and the numerical results
agree well with the corresponding analytical solution.

Next, the no-slip BCs are tested for the three unsteady flows: (i) sudden startup of the
Couette flow; (ii) Stokes flow over an oscillating plate; (iii) plane Womersley flow. For the
first test the DPD fluid is confined between two parallel plates placed at y = 0 and y = 20.
The size of the computational domain is 20 × 20 × 40 with periodic BCs along the x and z
directions. The viscosity of the DPD fluid is equal to ν = 0.54 measured by the periodic
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Poiseuille flow method [14]. To improve the statistical averages of the DPD results we run
ten independent replicas of the DPD system with different initial conditions. The initial state
of each replica is obtained by running them independently for several hundred time steps
with the velocity of both the upper and lower plates set to zero. Then, the velocity of the
upper plate is set to U = 1.0 at the time t = 0, while the velocity of the lower plane is kept at
U = 0.0. The velocity profile of each replica is recorded as a function of time and the final
result is obtained by taking the ensemble average of all replicas. Figure 4 shows the
simulation results and the corresponding analytical solution for the transient Couette flow at
various times. The DPD results agree well with the analytical solution for different times. As
time increases the flow converges to the steady case shown in Fig. 3. Note that the fluid
velocity near the upper plate (y = 20) is very sensitive to the BCs. Thus, even a small slip at
the upper plate would greatly a ect the velocity profiles.

The second test case is the oscillatory Stokes flow over a flat plate, where the velocity of the
lower plate changes according to the time-dependent function U(t) = sin(Ωt) with Ω = 2π/40.
The upper plate has velocity U(t) = 0 and is placed at y = 20 which is far enough from the
lower plate to yield a good approximation for the semi-bounded oscillatory Stokes flow. The
DPD simulations are run over 80 periods and the statistical average of velocity is
accumulated over the last 40 periods at different times. In Fig. 5 the simulation results are
compared with the analytical solution [25] given by

(14)

where Y = y(ν/Ω)−1/2 is the dimensionless distance, and T = Ωt is the oscillation period. Note
that Eq. (14) is derived for a semi-infinite system, however the dimensionless height of the
upper plate in simulations is H = 10.87 which is sufficient to recover the analytical solution
as illustrated in Fig. 5.

Finally, we apply the proposed boundary method to a time-dependent pressure-driven flow.
The computational domain assumes the same size as the plane Couette flow, where DPD
particles are confined between two plates placed at y = 0 and y = 20 with periodic BCs
imposed along the x and z directions. The flow is driven by a time-dependent body force on
each particle in the x-direction fbody = f0 + f cos(Ωt), which is equivalent to a pressure
gradient dP/dx = nfbody, where n is the density of the DPD fluid. The no-slip BCs are
imposed on both plates. In the continuum limit, this flow is called the Womersley flow with
the analytical solution given by

(15)

where p0 = f0n, p* = fn are the amplitude of the steady and oscillating pressure gradient

respectively; h, α, x1 and x2 are defined by , , x1 = cos α cosh α and x2 =
sin α sinh α. For the DPD simulations we choose f0 = 0.0167, f = 0.05 and Ω = 2π/80, and
the statistical average is collected over the last 40 periods. Figure 6 shows the velocity and
temperature profiles of the Womersley flow at different times. The numerical results are in
good agreement with the analytical solution.
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4 Outflow boundary conditions
In this section, we consider different flow systems with non-periodic BCs, where inflow and
outflow boundary conditions have to be imposed. Rather than imposing the strong Dirichlet
BCs with a velocity profile explicitly specified at the outflow boundary [22], we explore the
weak condition as in the standard CFD methods, where the BCs are implicitly imposed
under the assumption that the flow is fully developed. However, unlike the CFD methods, in
DPD it is not straighforward to impose explicitly pressure values at the outflow boundary.
Instead, if the pressure value and the flowrate at the outflow are approximately in-phase, we
can impose the flowrate at the outflow boundary. Imposing the flowrate at the outflows is in
fact common practice in standard CFD. For example, in the so-called “advection-outflow
condition”, the advection velocity is computed so that the total mass is conserved.
Alternatively, the divergence-free constraint is re-enforced in other outflow formulations,
e.g., see [26].

4.1 Boundary method
For a particle fluid system with non-periodic open boundaries the two physical properties
need to be controlled are: the flow rate at the inflow/outflow boundaries and the velocity
gradient at the outflow similarly to the fully developed condition in CFD. Let us consider
the open fluid system shown in Fig. 7. We place a pseudo-plane P perpendicular to the flow
direction. From the macroscopic perspective the flow flux through the plane is determined
by the velocity profile at the plane P. In practice, this plane can be modeled as an inflow
with a specified velocity profile. Inflow at the plane P can be simulated by inserting DPD
particles into a near boundary layer according to the local particle flux. Without loss of
generality, we consider a local area dA on the plane, and define NA as the number of DPD
particles to be inserted into the plane P at the area dA according to the following equation:

(16a)

(16b)

where i is the timestep of the simulation, n is the number density of the DPD fluid, and vn is
the local normal velocity at the inflow plane. When Eq. (16b) is executed (it can be executed
several times if ), one DPD particle will be inserted next to the plane P at the local area
dA. The velocity of the inserted particle is generated according to the Maxwellian
distribution with known temperature of the system and local boundary velocity. In general,
the position of the inserted particle at dA has to be generated by the USHER algorithm [27]
to minimize the local thermal disturbance due to the inserted DPD particle. However, we
omit this procedure in practice since we found that the system remains stable with random
insertions due to the soft interactions between DPD particles. The disturbances on the local
number density due to insertions is on the order of 5%.

Next, we consider the region of the fluid system where the flow is fully developed. Let us
place another plane Q in this region and consider the two regions A and B adjacent to the
plane, as shown in Fig. 7. Physically, there should be no macroscopic difference between A
and B since the flow is fully developed in this region, i.e., the macroscopic velocity should
be identical in the two regions. In practice, we model this pseudo-plane as the outflow BCs.
The DPD particles which pass through this outflow plane are deleted from the system. To
control the flow rate at the outflow and eliminate any velocity differences between the two
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regions (A and B) we apply an adaptive force on the DPD particles near the outflow as
follows

(17a)

(17b)

(17c)

where the first term of the adaptive force eliminates the velocity difference between the two
regions and the second term imposes proper flow rate at the outflow boundary. The
parameters k, ξ, and βk are the iteration number, the relaxation parameter, and the adaptive
coefficient, respectively. Also h is the distance from a particle to the outflow plane, and r0
defines the total width of regions A and B together. In this work, r0 is chosen to be the cutoff
radius of the DPD particle interactions if not specified otherwise; p defines the stiffness of
the adaptive force and p is equal to 6. We choose this value by considering a static single
DPD particle in uniform flow with the average velocity of . We compute the dissipative
force fnorm(h) on the target particle from the particles located in a semi-spherical region
behind the pseudo-plane. The dissipative force scales as fnorm ~ fnu, where fn is best fitted by

(1.0 – h/rc)6. Moreover,  and  in equation above are the average normal velocities in the
regions A and B during the time between the (k – 1)th and kth iterations. Also, q is the total
number of the under-relaxation steps, which is coupled to the number density of the system
as follows

(18)

where nk is the average number density during the kth iteration, and δn is the accepted
deviation of the system’s number density.

The second adaptive force term in Eq. (17a) controls the flow rate at the outflow, where ϕk

represents the instantaneous flux at the outflow and ϕ0 corresponds to the desired flux value;
fpress(h) is the pressure force defined in Eq. (5). We note that for fluid systems with a single
outflow boundary, this term can be neglected. However, for flows with multiple outflows
(e.g., arterial bifurcations), this term is necessary to impose the desired flux value at each
outflow boundary. In addition to fout the pressure force defined in Eq. (5) is applied on fluid
particles near the inflow and outflow planes, which compensates for the “missing” fluid part
outside the computational domain.

We note that our method of inserting particles is different from that in [22], where each
particle that left the system is re-inserted at the inflow boundary, and hence the number
density of the system is strictly conserved. In this work DPD particles are inserted at the
inflow plane with no dependence on the number of particles removed. For the insertion
method of [22] we found that the desired flux prescribed by the velocity profile at the inflow
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depends strongly on the number of particles leaving the system, and therefore the numerical
system may be unstable. In the current method the instantaneous number density is not
strictly conserved, however the converged density remains within the pre-specified tolerance
(δn = 0.002n) as shown in the next section.

4.2 Simulation results
The first test of the described method is the plane Poiseuille flow in combination with the
no-slip method proposed in section 3.1. The computational domain is similar to that shown
in Fig. 7 with periodic BCs in the z direction. The fluid is confined between two walls
placed at y = 0 and y = 10 and the inflow and outflow planes are placed at x = 0 and x = 20,
respectively. DPD particles are inserted at the inflow according to the parabolic velocity
profile given by

(19)

where v0 = 1.0 and H = 10. To impose the no-slip BCs at the walls particles near the walls
are subject to the no-slip force defined in Eq. (13). In addition, particles near the outflow
plane (x = 20) are subjected to the adaptive outflow boundary force. Specifically, the
outflow region was divided into 20 bins across the flow in the y-direction and each bin was
further divided into two sub-volumes, labeled as A and B. The velocity in each sub-volume
vA and vB, as well as the number density of the system, are sampled during the time between
two consecutive iterations. The flow converges within approximately 100 iterations, where
one iteration corresponds to 100 time steps. Statistical averaging is performed during 1×104

time steps after steady state is achieved.

Physically, this system represents a part of the fully developed Poiseuille flow given by Eq.
19. Therefore, a parabolic velocity profile is expected in the downstream region as in
upstream. Fig. 8 shows velocity and density profiles obtained at the planes in the middle of
the system at x = 10.0 and in the outflow region at x = 18.0. The simulation results agree
well with the prescribed inflow profile. The fluid density at the outflow (x = 18.0) is slightly
lower (ρ = 2.94) than the exact number density due to a finite compressibility of the DPD
fluid.

For a more quantitative analysis, we compute the pressure profile along the flow direction
shown in Fig. 9. The DPD results agree well with the analytical prediction given by

(20)

where H = 10, μ = 1.62, and vmax = 1.0. The small fluctuation at the inlet/outlet boundary is
mainly due to the particle insertion and the super-position of the boundary force.

The compressibility of the DPD fluid can be approximated [3] as follows

(21)

where α = 0.101 and therefore dP/dρ = 16. The density difference between x = 10 and x = 18
predicted by Eq. (21) is approximately Δρ = dρ/dPΔP = 0.065, which agrees well with the
simulation results. Moreover, the adaptive force fout applied at the outflow serves as a
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perturbation term on the pressure force fp defined in Eq. (5), which also contributes to the
density fluctuations. Therefore, the proposed boundary method is valid for nearly
incompressible fluid flows since the boundary forces are based on the global number density
of a simulated system. Large density fluctuations due to finite compressibility are likely to
void the method’s applicability.

For the second test we consider the backward-facing step flow at different values of
Reynolds number (Re). The computational domain is illustrated in Fig. 10 where Re is
defined as vmaxH/ν. A parabolic velocity profile defined by Eq. (19) is imposed at the inflow
with vmax = 1.08 and the height of the inlet channel is H = 10, while the step height is chosen

to be . For different Re numbers the height of the inlet and the size of step is scaled
accordingly while vmax is fixed. The no-slip boundary condition is imposed by the
dissipative force for all the DPD particles near the solid wall defined by Eq. (10). We
compare DPD results with Navier-Stokes results obtained by the spectral element simulation
solver NEKTAR [28].

Fig. 10 presents the simulation results obtained with DPD and with the spectral element
method for Re = 20, 40 and 60. The streamlines agree well for the two methods. In addition,
we extract several velocity and pressure profiles at different heights for a more detailed
comparison with the NS solution shown in Figs. 10 and 11. The DPD results are in good
agreement with the NS solution with slight deviations near the inlet and outflow boundaries
within the distance of 4rc. This appears to be due to the density fluctuations near those
boundaries. At the inlet the number density is approximately 5% larger than the global
density due to particle insertions. At the outflow region additional density fluctuations are
introduced due to the adaptive force serving as a perturbation term to the pressure force
term. We note that the velocity deviations at the outflow will not propagate upstream due to
a finite speed of sound [29] in the DPD system. Therefore, the outflow region can be treated
as a “buffer layer” region with perturbed number density, where the results may not be
accurate. Moreover, we note that the shear rate varies (even changes sign) along the lower
wall, which defines the recirculation length. In the inset plot of Fig. 10 we show the
recirculation length of the step flow normalized by the step height S as a function of the
Reynolds number. The values of the normalized recirculation lengths scale linearly with Re
number showing good agreement with the spectral element method results. This further
verifies that no-slip BCs are well imposed locally for different shear rates.

Next, we consider several flow systems with multiple outflow boundaries such as those
encountered in the human arterial tree. Fig. 12 shows a bifurcated channel flow with two
symmetric outflow boundaries. The channel is divided into two branches at L = 30 with the
branch angle θ = π/3. The parabolic velocity profile defined in Eq. (19) is imposed at the
inlet with v0 = 0.72 and H = 20 and periodic BCs are imposed along the z direction. The
outflow BCs are imposed separately at the two outflow boundaries with the adaptive force
updated according to Eq. (17a). Fig. 12 shows velocity contours in both x and y directions.
For comparison we also plot the numerical results of the NS equation with identical pressure
values imposed at the two outflow boundaries The DPD results show good agreement with
the continuum results apart from the regions near the outflow boundaries and near the
bifurcation point due to the density fluctuations. The fluctuations near the outflow are due to
the adaptive force as discussed previously. The fluctuations near the bifurcation point are
mainly due to finite compressibility of the DPD fluid.

Furthermore, we consider a bifurcated system with prescribed flow rate at each boundary as
shown in Fig. 13. The planar channel is divided into two non-symmetric channels at L = 30
with the bifurcation angle θ = π/2. The widths of the two sub-channels scale as . A

Lei et al. Page 10

J Comput Phys. Author manuscript; available in PMC 2012 May 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parabolic velocity profile defined in Eq. (19) is imposed at the inlet with v0 = 0.54 and H =
20. This flow system resembles a small part of the arterial network, where additional
information downstream may be unknown. To this end, we can prescribe the ratio of flow
rates between the two outlets. The specified flow rate at each of the outlet is imposed
through the force defined in Eq. (17a). The different ratio value corresponds to the different
pressure values imposed on the outlets. On the other hand, the total flow rate of the two
outlets is equal to the inflow rate to ensure mass conversation of the system. We consider
two cases where the flow rates at the two outflow boundaries are 1:2 and 1:3, respectively.
For the reference Navier-Stokes results, we use the method described in Ref. [30]. In both
cases, the DPD results are in good agreement with the corresponding Navier-Stokes results
as shown in Figs. 13 and 14.

The different flow rates controlled by our method correspond to different pressure values at
the outflow boundaries. Therefore, we also look at the pressure distribution for different
flow ratios. Fig. 15 presents the pressure distributions along the centerline of the channel
marked as CC’ in Fig. 13. The pressure difference between the two outflow boundaries is
larger for the flow ratio of 1:2, since a larger flow rate for the upper branch corresponds to a
larger pressure drop along the branch. For both cases the DPD results agree well with the NS
solutions. The flow examples used in this study show that the outflow boundary method
usually converges within a few thousand time steps. Therefore, we can extend this method
to unsteady flows with a time-dependent inflow velocity profile. For a test we consider the
pulsatile flow, where the fluid is confined between the plates at y = 0 and y = 20, and the
inflow and outflow planes are placed at x = 0 and x = 20, respectively. The inflow velocity
profile is given by Eq. (15) with f0 = 0.06, f = 0.03 and Ω = 2π/200. The corresponding
Womersley number α is equal to 1.71, which is a typical value for biological flow systems
[31]. The DPD particles are inserted next to the inflow plane using the instantaneous inflow
velocity profile and the boundary force is updated according to Eq. (17a). Statistical average
is taken over the last four periods. Fig. 16 (left) shows velocity profiles extracted at x = 10
and x = 18 at different times. The DPD results are in good agreement with the theoretical
predictions. However, for flows with a higher Womersley number, the current method may
not be sufficient to track instantaneous velocity profile. As shown in Fig. 16 (right) for the
higher frequency Ω = 2π/50 (α = 3.42), the DPD results begin to deviate from the theoretical
predictions. This appears to be due to a finite compressibility of the DPD fluid. Thus, the
boundary information is not able to propagate through the computational domain with such
high frequency.

5 Summary and Discussion
In this work two important issues on boundary conditions for particle simulations of fluid
systems have been addressed: the no-slip BCs at a wall-fluid interface and the outflow BCs
for non-periodic flow systems. We introduced two boundary methods validated for various
flow problems. Starting from a single DPD particle in shear flow we computed the total
dissipative interaction of this particle with surrounding particles. The dissipative interaction
is computed as a function of the distance from the target particle to the pseudo-plane placed
at different positions. For wall bounded systems, no-slip BCs are modeled by imposing the
effective boundary forces (Eq. (13)) on DPD particles near the walls. Originated from the
bulk shear flow, this boundary method can effectively impose no-slip BCs without artificial
density and thermal fluctuations near the walls. The tested unsteady flows of the sudden
start-up Couette, oscillatory Stokes and Womersley flows further validate the proposed no-
slip boundary method. The backward-facing step flow verifies that the method works well
locally for different shear rates. Moreover, this method is free of boundary particles, and
therefore it is more e cient in comparison with the method in [21].
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We developed the outflow boundary method by considering a fully developed flow region of
the bulk system. The BCs are weakly imposed under the assumption of the translational
invariance of the velocity profile along the flow direction. In a non-periodic system the
outflow boundary is modeled by the boundary force, which consists of two adaptive terms
that control the flow rate at the boundary and eliminate the velocity difference in the region
adjacent to the outflow boundary. Combined with the no-slip boundary method for fluid-
wall interactions, the outflow boundary method is verified for the backward-facing step flow
at different Reynolds numbers and for the bifurcated flow with different flow rates, which
correspond to different pressure values at the outlets. The simulation results show good
agreement with the corresponding analytical or reference solutions apart from the narrow
regions near the outflow boundaries, where the velocity fluctuations of maximum 10% are
observed due to the perturbation of the boundary force in that region. For quasi-steady flows
where the pressure value and flow rate on the outlet boundary are approximately in-phase,
the prescribed flow rate corresponds to specified pressure value on the outlet. This is
obvious for a fluid system with a single outlet since the flow rate at the outlet equals to the
inflow rate for mass conservation. However, for a fluid system with multiple outlets, the
different flow ratio prescribed on the outlets corresponds to the different pressure values
imposed on the outlets since the information farther downstream is unknown. Moreover, we
test the current method for a time-dependent non-periodic flow system. The simulation
results agree well with the analytical solution for the flow with Womersley number on the
order O(1), which is in the range of typical biological arterial flows [31]. The numerical
results begin to deviate from the analytical solution for higher Womersley number due to
finite compressibility (sound speed) as well as the out-of-phase condition between the
pressure value and the outflow rate.

As a conclusion, this work provides a general framework to impose different BCs. Even
though we test the method for Newtonian fluids, our future goal is to apply such BCs to
complex fluid systems such as polymer solutions or blood flow, where more sophisticated
methods for inserting molecules or cells have to be developed and both slip and no-slip BCs
may exist. Some related work has already been done in [32,33]. It would be interesting to
further explore how to impose proper BCs for these systems such that the dynamic flow and
rheological properties can be correctly predicted.
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Fig. 1.
A sketch of the shear flow illustrated by DPD particles. The arrows represent the magnitude
and direction of the particles’ average velocities. The solid line represents a reference plane
for the target particle while the total interaction of the target particle with the DPD particles
below the reference plane (the gray area) is calculated using Eq. (8).
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Fig. 2.
The dissipative force coefficient for a single DPD particle in shear flow with respect to the
distance to the reference plane calculated by Eq. (10).
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Fig. 3.
Left: velocity profile of the plane Couette flow. Right: density and temperature profiles. The
triangle symbols represent the numerical results by DPD using Eq. (13). The circle symbols
correspond to the numerical results by Eq. (13) without the random force term. The diamond
symbols show the numerical results by the adaptive boundary method used in [20]. The solid
lines are the analytical solution.
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Fig. 4.
Left: velocity profiles of the sudden start-up of Couette flow at different times. The symbols
correspond to the simulation results, while the solid lines represent the analytical solution of
the Navier-Stokes equation. Right: instantaneous temperature of the system at different
times.
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Fig. 5.

Velocity profiles of the oscillatory Stokes flow at times , where k = 0, 1, 2, …, 7 and
T is the oscillation period. The symbols are the numerical results, while the solid lines
represent the analytical solution given in Eq. (14).
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Fig. 6.
Left: velocity profiles of the flow driven by an oscillating pressure gradient. The symbols,

from the bottom to the top, correspond to the simulation results obtained at , where k
equals to 1, 0, 2, 3. The solid lines represent the exact solution for the Womersley flow
given in Eq. (15). Right: instantaneous temperature of the DPD system at different times.
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Fig. 7.
A sketch of the domain of an open flow system. The solid lines are the wall boundaries. The
plane P represents the inlet through which DPD particles enter the domain with a specified
velocity profile. The plane Q represents a pseudo-plane where the flow is fully developed. A
and B correspond to two regions adjacent to the plane Q, where the flow is also fully
developed.
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Fig. 8.
Velocity profiles (left) and density profiles (right) of the fully developed Poiseuille flow.
The DPD results are shown for the planes x = 10.0 and x = 18.0. The solid lines correspond
to the analytical solution.
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Fig. 9.
Pressure profile for the Poiseuille flow along the x direction. The symbols represent the
numerical results by DPD extracted at y = 5 and y = 8, and the solid line represents the
analytical solution.
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Fig. 10.
Streamlines (left) and velocity profiles (right) for backward facing step flow at Re = 20, 40
and 60. The velocity profiles are extracted at different planes as labeled in the plots. The
symbols correspond to the DPD results and the solid lines represent the numerical solution
of NS equation. The inset plot in the velocity plot of Re = 40 shows normalized recirculation
lengths of the step flow as a function of Re number. The square symbols correspond to the
DPD results and the triangle symbols are the NS results.
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Fig. 11.
Pressure profiles for the step flow for Reynolds numbers Re = 20, 40, 60. The symbols
represent DPD simulations, while the solid lines correspond to the NS results.

Lei et al. Page 25

J Comput Phys. Author manuscript; available in PMC 2012 May 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 12.
(Color) Top: 2D contour plot of velocity for both x (left) and y (right) directions for a
symmetrically bifurcated channel flow obtained by DPD and NS equation. Bottom: 1D plot
of the velocity profile at PP’, DD’, and UU’ cuts. The symbols are the DPD results and the
solid lines represent the NS results.
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Fig. 13.
(Color) Top: 2D contour plot of velocity for both x (left) and y (right) directions for a non-
symmetrically bifurcated channel flow obtained by DPD and NS equation. The flow rates of
the two outflow boundaries scale as 1 : 2. Bottom: 1D plot of the velocity profile at PP’,
DD’, and UU’ cuts. The symbols are the DPD results and the solid lines represent the NS
results.
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Fig. 14.
(Color) Top: 2D contour plot of velocity for both x (left) and y (right) directions for an non-
symmetrically bifurcated channel flow obtained by DPD and NS equation. The flow rates of
the two outflow boundaries scale as 1 : 3. Bottom: 1D plot of the velocity profile at PP’,
DD’, and UU’ cuts. The symbols are the DPD results and the solid lines represent the NS
results.
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Fig. 15.
Pressure distribution along the centerline CC’ of the channel shown in Fig. 13. The flow rate
ratio at the outflow boundaries scales as 1 : 2 (left) and 1 : 3 (right). The solid line
corresponds to the NS results.
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Fig. 16.
The velocity profiles extracted from the Womersley flow with Ω = 2π/200 (left) and Ω = 2π/
50 (right). Left: the solid lines, from top to bottom, represent the theoretical predictions at t
= T/4, 0, 2T/4 and 3T/4. The square and circle symbols represent the numerical results
extracted at x = 10 and x = 18. Right: the solid lines, from top to bottom, represent the
theoretical predictions at t = T/3, 0, 2T/3, the symbols represent the DPD results extracted at
x = 10.
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