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Abstract

During plant-pathogen interactions, the plant may mount several types of defense responses to either block the pathogen
completely or ameliorate the amount of disease. Such responses include release of reactive oxygen species (ROS) to attack
the pathogen, as well as formation of cell wall appositions (CWAs) to physically block pathogen penetration. A successful
pathogen will likely have its own ROS detoxification mechanisms to cope with this inhospitable environment. Here, we
report one such candidate mechanism in the rice blast fungus, Magnaporthe oryzae, governed by a gene we refer to as
MoHYR1. This gene (MGG_07460) encodes a glutathione peroxidase (GSHPx) domain, and its homologue in yeast was
reported to specifically detoxify phospholipid peroxides. To characterize this gene in M. oryzae, we generated a deletion
mutantDhyr1 which showed growth inhibition with increased amounts of hydrogen peroxide (H2O2). Moreover, we
observed that the fungal mutants had a decreased ability to tolerate ROS generated by a susceptible plant, including ROS
found associated with CWAs. Ultimately, this resulted in significantly smaller lesion sizes on both barley and rice. In order to
determine how this gene interacts with other (ROS) scavenging-related genes in M. oryzae, we compared expression levels
of ten genes in mutant versus wild type with and without H2O2. Our results indicated that the HYR1 gene was important for
allowing the fungus to tolerate H2O2 in vitro and in planta and that this ability was directly related to fungal virulence.
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Introduction

Molecular oxygen, itself relatively nontoxic, is important to most

living organisms on this planet. However, its derivatives, reactive

oxygen species (ROS), can lead to oxidative destruction of cells [1]. For

example, in mammals, ROS can accelerate aging by making holes in

membranes, or by stealing electrons from DNA, which may result in

cancer and other severe diseases [2]. However, animals, plants and

fungi have all adapted to use ROS as key signaling molecules [3]. In

plants, ROS play a more positive role as a defense mechanism against

attacking pathogens, and are often produced as a first line of defense

[4]. In the plant-pathogenic fungus, Magnaporthe oryzae, ROS regulation

plays important roles in both development and virulence. ROS itself

has been shown to accumulate in the developing and mature

appressorium, or fungal penetration structure, while the two NADPH

oxidases in M. oryzae, NOX1 and NOX2 are required for proper

development of appressoria, as well as full virulence [5]. The catalase

gene family member, encoded by CATB, was shown to also be involved

in cell wall integrity as well as virulence, as deletion mutants were

altered in hyphal, spore and appressorial morphology [6]. Organisms,

therefore, must carefully balance the toxic effects of ROS and the need

for ROS in cellular signaling.

There are five major types of ROS in plants: superoxide (O2
2),

hydrogen peroxide (H2O2), hydroxyl radical (OH), nitric oxide

(NO), and singlet oxygen (1O2). In plant cells, organelles with an

intense rate of electron flow or high oxidizing metabolic activity

are major sources of ROS generation [7]. These organelles include

mitochondria, chloroplasts and peroxisomes. ROS are also

generated via enzymatic sources, such as membrane-associated

NADPH oxidases, cell wall peroxidases and oxalate oxidases [8].

ROS play a crucial role during plant defense responses.

Oxidative bursts have been detected when plant cells are

inoculated with biotrophic pathogens [9], hemi-biotrophic path-

ogens [10], necrotrophic pathogens [11], and pathogen elicitors

[12]. More recent studies with M. oryzae that causes rice blast

disease, demonstrated that rice produces H2O2 shortly after

inoculation with a virulent strain of the fungus [13,14]. The toxic

effects of ROS can directly kill pathogens, and as a result,

pathogens have developed counter measures [5]. The coexistence

of hosts and pathogens side-by-side determines that the increase of

resistance in a host will be balanced by the change of virulence in a

pathogen, and vice versa. A metabolite fingerprint study of three

rice cultivars infected by M. oryzae provided evidence for

suppression of plant-associated ROS generation during compat-
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ible interactions [9]. Fungal-produced catalase was secreted during

infection, and appeared to play a role in breaking down the plant-

produced H2O2, allowing the disease cycle to occur; in the absence

of catalase, infection was largely blocked by the plant’s ROS [15].

ROS production and mitigation is a multifaceted process,

incorporating many genes and pathways [1]. One mechanism of

sensing and ultimate detoxification of ROS in yeast is via the Hyr1

gene, formerly termed Gpx3/Orp1; this gene, upon ROS induction,

activates its partner protein yAP1, which is a bZip transcription

factor involved in activating cellular thiol-redox pathways, and

arguably one of the most studied ROS-sensing proteins in yeast

[16]. This AP1-like (activator protein) transcription factor

regulates H2O2 homeostasis in Saccharomyces cerevisiae (S. cerevisiae),

which in turn governs the synthesis of glutathione [17]. Hyr1p

plays a key role during the oxidative response in S. cerevisiae [18];

after being directly oxidized by H2O2, it forms an intermolecular

disulfide bond with yAP1 [19]. A conserved cysteine residue at

position 598 in Yap1p becomes active by forming an inter-

molecular disulfide bond with the Cys36 of Hyr1p. This transient

inter-molecular linkage is then resolved to a Yap1p intra-

molecular disulfide bond between the cysteines at positions

C303-S-S-C598. During this process, the Yap1 protein is released

by Hyr1p in its active form, which is then transported to the

nucleus [20]. This conformational change shields its nuclear

export signal from the interacting protein Crm1p, allowing it to

remain in the nucleus and control a suite of antioxidant genes

[21,22]. Although YAP1 gene homologs have been analyzed in

several plant pathogenic fungi such as Aspergillus fumigatus, Alternaria

alternata, Cocholiobolus heterostrophus, Botrytis cinerea and Ustilago maydis

[16,20,23,24,25,26], HYR1 has yet to be studied in filamentous

fungi.

In this study, we closely examined the HYR1 homolog in M.

oryzae as a candidate mechanism for coping with a ROS-intensive

host environment. We demonstrated that HYR1 was indeed

involved in detoxifying or preventing plant basal immune

responses including plant-generated ROS and callose deposits

during initial stages of infection, which was correlated with its role

as a virulence factor.

Results

Identification and characterization of a Glutathione
peroxidase domain-containing gene in the genome of
M. oryzae

As one of the key members during the oxidative stress

response, the yeast Saccharomyces cerevisiae Hyr1/YIR037W

(formerly termed Gpx3) was reported to be a glutathione-

dependent phospholipid peroxidase (PhGpx) that specifically

detoxifies phospholipid peroxides [19]. In order to identify the

corresponding gene in M. oryzae, we performed a BlastP analysis

against the fully sequenced genomic database of M. oryzae

housed at the Broad Institute. Using an E-value of 1e-3 returned

a single hit located on Supercontig 20, with an accession

number of MGG_07460.6. It is 1315 bp long including two

introns, with an open reading frame of 783 bp, which encodes a

172-amino acid protein. A sequence analysis was performed

using Prosite on the ExPASy Proteomics Server (http://ca.

expasy.org/prosite/). Hits revealed a glutathione peroxidase

active site at amino acid positions 27–42, and a glutathione

peroxidase signature at amino acid positions 66–73 (Figure 1A).

When a BlastP search was performed against GenBank at

NCBI, numerous hits were returned with high similarity scores,

from many organisms including fungi and bacteria. An

alignment indicates that the putative GSHPx domains of Hyr1

are highly conserved across different organisms (Figure 1B). The

MoHyr1 protein shares the highest amino acid conservation

with the model, non-pathogenic fungus, Neurospora crassa (93%

similarity and 73% identity), but shares between 81 and 90%

similarity with eight other plant pathogenic filamentous fungi

examined (Table S1 and Figure 1C). Secondary structure of the

HYR1 protein was determined by PSIPRED [27], and consists

of eight b-sheets (or strands) and four a-helices (Figure 2). As

described in Zhang et al [18], the ScHyr1p showed a typical

‘thioredoxin fold’, also consisting of four b-sheets surrounded by

three a-helices [28]. We compared the crystal structure of

ScHyr1p with the predicted tertiary structure of MoHyr1

protein, generated with PyMOL (http://www.pymol.org/). The

MoHyr1 predicted structure appears similar to a canonical

thioredoxin fold, showing four b-sheets, with b1 and b2 running

parallel and b3 and b4 running anti-parallel, surrounded by

three a-helices (Figure 2). We located three positionally

conserved cysteines in our HYR1 protein model compared to

yeast, and these are marked in Figures 1B and 2. Two important

cysteines, Cys39 and Cys88, likely correspond with two active

sites found in the yeast Hyr1p, Cys36 and Cys82. Together, our

in silico data suggest that we have identified the structural

homolog of the ScHyr1 from yeast, and that this gene is highly

conserved across filamentous fungi.

In order to functionally characterize the MoHYR1 gene, we

obtained the ATCC S. cerevisiae Dhyr1 mutant and its wild type

parent for complementation tests. Our hypothesis was that based

on its sequence and predicted tertiary structure, the MoHYR1 gene

would rescue the yeast mutant when grown on non-permissive

concentrations of hydrogen peroxide. As shown in Figure 3, the

yeast mutant and the wild type strain both grow well on 0 and

2 mM H2O2. However, growth of yeast Dhyr1 was significantly

hindered in 4 mM H2O2. The wild type MoHYR1 gene was

transformed into the yeast mutant, which restored partial growth

on this higher concentration. To further support our hypothesis,

we constructed mutations in the two conserved cysteine residues at

positions 39 and 88. Neither of the mutations rescued the yeast

phenotype on hydrogen peroxide (Figure 3).

Author Summary

Reactive oxygen species (ROS) are antimicrobial com-
pounds and also serve as stimulators and products of plant
defense reactions. ROS appear to be active in the critical
zone where pathogens and plants come in contact.
Therefore, understanding the source, the role, and the
destination of ROS in each interacting partner will be
crucial for understanding the pathogen-host molecular
battle. In this study, we focused on one potential fungal
mechanism for ameliorating effects of plant-produced ROS
during the early stages of infection. Characterizing the
MoHYR1 gene from the rice blast fungus Magnaporthe
oryzae, suggested that MoHYR1 was involved in overcom-
ing plant defense-generated ROS. The deletion of this
gene caused a virulence defect in M. oryzae, which we
believe was associated with the mutant’s inability to
detoxify plant-generated ROS. Together, our data suggest-
ed that HYR1 is a virulence factor in the rice blast
pathogen, and its role in virulence was directly related to
sensing and managing plant-generated ROS during early
infection events. HYR1 is part of a ROS scavenging and
sensing pathway that is well characterized in yeast, and
our study is the first to examine this important gene in
filamentous fungi.

Characterization of HYR1 in the Rice Blast Fungus
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Targeted deletion of MoHYR1
To explore the biological role of the MoHyr1 protein in the

development and pathogenicity processes of M. oryzae, the deletion

mutant Dhyr1 was generated through homologous recombination of

the MoHYR1 open reading frame with a gene conferring

hygromycin resistance (hygromycin phosphotransferase; HPH)

(Figure S1A). A gene deletion fragment was generated by nested

PCR amplification of the 59 flanking region of MoHYR1, the HPH

gene, and 39 flanking region of MoHYR1, using adapters to link the

three pieces together. This gene deletion fragment, which contained

flanking regions homologous to the MoHYR1 gene, was introduced

into protoplasts of M. oryzae via PEG-mediated fungal transforma-

tion. After PCR screening of successful knockouts and ectopics using

primer pairs outside the flanking regions and inside the HPH gene,

two Dhyr1 knockout mutants (B25, B33) and two ectopic mutants

(B40, B60) were identified (Figure S1B) and confirmed with

Southerns (Figure S1C). Real-time qRT-PCR was also employed

to confirm full deletion of the MoHYR1 gene and no transcripts were

detected. Deletion mutant Dhyr1 (B33) was complemented with a

full-length copy of the MoHYR1 gene linked to the cerulean

fluorescent protein (Figure S1D, see Materials and Methods).

MoHYR1 is required for vegetative hyphal growth in a
ROS-rich environment

HYR1p in yeast was reported to not only be a sensor of ROS, but

to have scavenging properties as well [19]. To investigate the role of

MoHYR1 in scavenging H2O2 during vegetative hyphal growth, we

inoculated the same amount of initial mycelia into complete media

(CM) containing 0, 5 and 10 mM H2O2. No significant differences

were detected among wild type, the Dhyr1 knockout mutants and the

ectopics when growing in 0 mM H2O2. However, the mycelial

growth of the Dhyr1 knockout mutants was severely and significantly

affected at 10 mM H2O2 (Figure S2A and B). By contrast, the wild

type and ectopics did not display much difference in mycelial growth

at any concentration. The complemented mutant line grew slightly

better than wild type in all concentrations of H2O2, and upon

Southern analysis, we found that four copies had inserted into the

genome (Figure S1E). Together, these data indicated that MoHYR1

was responsible for the H2O2 growth tolerance phenotype.

The MoHYR1 gene contributes to virulence in M.oryzae
To determine the role of MoHYR1 in virulence, we drop-

inoculated detached leaves of three week-old blast-susceptible

Figure 1. MoHYR1 is a putative thioredoxin peroxidase protein and highly conserved among filamentous fungi. (A) A Prosite search
of the amino acid sequence revealed two glutathione peroxidase domains, the first of which is an active site, and the second, a signature (image was
drawn with DomainDraw, [45]). (B) Alignment of the M. oryzae HYR1 with nine filamentous fungi. Shaded boxes below the alignment indicate degree
of conservation. Open boxes indicate locations of domains in A. Arrows indicate the conserved cysteines. (C) Dendrogram of HYR1 from eleven
filamentous fungi, one copy from yeast and one from human.
doi:10.1371/journal.ppat.1001335.g001

Characterization of HYR1 in the Rice Blast Fungus
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barley cultivars with conidia from two independently generated

Dhyr1 mutants, B25 and B33 (Figure 4A). The mutants were still

able to cause disease lesions, but there was a measurable and

significant reduction in lesion size compared to those produced by

wild type, ectopics, and the complemented line (Figure 4B). The

complemented line, hyr1- C, restored full virulence to the Dhyr1

mutant, B33. All pathogenicity assays were repeated on the

susceptible rice cultivar Maratelli, with similar results (Figure 4C)

using the spray-inoculation technique. Disease was also quantified

on rice using a ‘‘lesion type’’ scoring assay [29] and error bars show

that while lesion types 1–3 do not differ between the mutants,

ectopics and wild type, lesion types 4 and 5 (severe, coalescing) did

not form on mutant-inoculated plants (Figure 4D) Interestingly, no

other developmental phenotype examined was compromised in the

Dhyr1 mutant, including growth rate, conidia production and shape,

germ tube and appressorial formation (Table 1).

MoHyr1 is required for breaking down ROS in planta
during infection but not for internal ROS levels

A fundamental question we wanted to assess was whether

MoHYR1 was required for infection-related activities in planta.

The M. oryzae’s disease cycle is initiated when the conidium

contacts a hydrophobic surface, inducing it to germinate. The

germinated conidium forms a germ tube and appressorium that

penetrates the plant surface via turgor pressure and forms a thin

penetration peg into the first plant cell [30]. Thus, we first

examined whether ROS was present during any of these processes,

and if so whether MoHYR1 was involved in coping with it. We

inoculated susceptible rice and barley cultivars with the Dhyr1

mutants, ectopics and wild type. ROS was detected using the

indicator 29,79-dichlorodihydrofluorescein diacetate (H2DCFDA)

[31]. Conidia of wild type, ectopics and the Dhyr1 mutant all

elicited some degree of ROS when inoculated onto barley leaves

(Figure 5A–C), whereas ROS was undetectable under the same

imaging conditions when non-inoculated leaves were stained (data

not shown). The Dhyr1 mutants showed the strongest ROS signal

24 hours post inoculation (hpi) compared to the others. The signal

continued in this manner through 48 hours (data not shown).

These experiments were repeated six times and the results were

consistent across the two independent Dhyr1 mutant lines. ROS

signals were quantified via counting the number of ‘ROS haloes’

found around appressoria and expressing this as a percentage of

appressoria counted per sample; a significant difference in signals

was observed between the mutants, wild type, and ectopics

(Figure 5D). These results indicate that in the absence of the

MoHYR1 gene, the fungus can no longer manage the ROS that is

generated during initial infection events, or loses the ability to

effectively cope with it.

To better understand the reason for reduced virulence in the

Dhyr1 mutant, we wished to determine whether internal fungal

levels of ROS were altered in the absence of the gene. The

deletion mutant and wild type were grown on complete media and

stained with nitroblue tetrazolium (NBT) for production of

superoxide anions (Figure S3). Results showed little differences

between mutant and wild type when examining the entire colony

(Figure S3E and F) or aerial hyphae (Figure S3A–D).

Fungal internal ROS patterns are different from those
generated in planta

Figure 5C suggested that reactive oxygen species localized

mainly around the appressoria. Upon closer inspection, we

observed that the ROS ‘‘haloes’’ around the appressoria usually

localized directly underneath the appressoria (Figure 6). Previous

Figure 2. M. oryzae HYR1 shares similar tertiary structure with
yeast HYR1. The predicted tertiary structure of MoHYR1 from M.
oryzae was constructed with the PyMOL program. Helices, sheets and
termini are tentatively labeled according to the yeast HYR1 structure;
the two connecting cysteines are in red, while the cysteine (Cys 39) that
would form an intermolecular bond with the HYR1-interaction protein,
YAP1, is shown in purple and labeled.
doi:10.1371/journal.ppat.1001335.g002

Figure 3. MoHYR1 complements the S. cerevisiae Dhyr1 mutant.
The yeast strains BY4741 (wild type) and BY4741 YIR037W (Dhyr1) were
obtained from the ATCC. The mutant was complemented with the wild
type copy of itself, the MoHYR1 gene, and the MoHYR1 containing
mutations at each of the two cysteine residues (cys39Ala and cys88Ala).
All strains were spotted onto YPD plates containing 0 mM, 2 mM and
4 mM hydrogen peroxide. Neither the YIR037W strain, nor the two
cysteine residue mutants grow at the non-permissive concentration
however the yeast mutant is partially rescued by the MoHYR1 copy. This
experiment was repeated ten times with similar results.
doi:10.1371/journal.ppat.1001335.g003

Characterization of HYR1 in the Rice Blast Fungus
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Figure 4. Dhyr1 exhibits a virulence defect. Dhyr1 mutants display a decrease in pathogenicity compared to wild type, on susceptible barley and
rice. (A) Conidia of two Dhyr1 mutants, B25 and B33, were drop-inoculated onto barley cultivar Lacey and show a virulence defect compared to
ectopics (B40 and B60), the complemented line (Dhyr1 - C), or 70-15 (wild type), as manifested by smaller lesions at 7dpi. (B) Quantification of lesion

Characterization of HYR1 in the Rice Blast Fungus
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studies had demonstrated that the rice blast fungus also generates

internal ROS during infection-related development, particularly

during appressorial maturation and furthermore, that ROS can be

secreted from the fungus itself [5]. In order to identify the source of

the reactive oxygen species detected in our experiment, we

inoculated M. oryzae onto the hydrophobic side of gel-bond, which

can mimic the plant surface and induce ROS production in vitro

[32]. The result shown in Figure 7 indicated that first, M. oryzae

does generate ROS during germ tube and appressorial formation;

second, the reactive oxygen species generated by M. oryzae were

mostly intracellular and did not appear to be secreted or defused;

and finally, that ROS were relatively weak in the fungal structures

by 24 hpi. These observations occurred in the wild type, ectopic

and mutant lines, indicating little difference in internal ROS levels

regardless of the presence of HYR1. Altogether, these results were

different from what we observed in planta, which was a strong ROS

signal from 24–48 hpi.

Three lines of evidence suggest ROS is most likely plant-
generated

In order to identify the source of the ROS detected during

susceptible interactions, we used diamino-benzidine (DAB) to

study the ROS distribution pattern. Barley leaves were inoculated

with Dhyr1 mutant then stained with DAB and imaged using

confocal reflected light signal to visualize the DAB deposits from a

top view of an interaction site (Figure 8A). The leaf samples from

this same interaction site was processed further and embedded in

epoxy resin to obtain a cross-section using a correlative microcopy

approach. The confocal images suggested that the dark region

(DAB) was localized immediately adjacent and inside the plant cell

wall (Figure 8B) centered around the penetration peg (arrowhead -

Figure 8B).

The second piece of evidence resulted from scavenging for ROS

with ascorbic acid, an antioxidant that detoxifies hydrogen

peroxide [33]. When 0.5 mM ascorbic acid was mixed with Dhyr1

mutant conidia, inoculated onto plants and stained with

H2DCFDA, ROS haloes were clearly observed (Figure 9A).

However, when barley leaves were pre-treated with ascorbic acid,

then inoculated and stained with H2DCFDA, almost no ROS

haloes were detected (Figure 9B). This experiment was repeated

with another ROS-inhibitor called DPI (diphehyleneiodonium

chloride), with similar results (data not shown). Ascorbic acid-

treated leaves were also inoculated with mutant conidia and

allowed to incubate in the growth chamber for six days, after

which time we observed wild type lesions (Figure 9C). This

suggested that the ROS haloes observed in this experiment are

likely originated from the plant.

Futhermore, we analyzed previously characterized nox1 and

nox2 mutants for ROS haloes; in M. oryzae, NOX1 and NOX2 code

for NAPDH oxidases, and are largely responsible for producing

internal ROS [5]. We hypothesized that if ROS was emanating

from the plant, than the loss of the NOX genes should have no

effect on haloes. Overall, haloes can still be produced when either

of the nox mutants, or its parental strain, Guy11 was inoculated

onto barley leaves (Figure S4A–F). While there was a slight

significant difference among the number of haloes observed when

looking at the individual mutants (nox1 made slightly more than

nox2), there was no significant difference between mutants and wild

type (20–30 appressoria were counted per strain, and the

percentage of those with haloes, reported; Figure S4G).

MoHyr1 has an effect on later, but not immediate, plant-
produced ROS

Since our data strongly suggested that Dhyr1 mutants had a

lower capacity to eradicate plant-generated ROS during early

stages of infection. Our next goal was to determine whether this

gene played a role in fungal tolerance to ROS generated

immediately following inoculation. In order to carry out this

experiment, we inoculated susceptible barley leaves with either the

Dhyr1 mutants or the wild type conidia, and imaged them 1 hpi.

The ROS dye H2DCFDA was injected directly into the leaves, so

the result only showed the redox status inside the leaves, and not

inside the fungus, which might have skewed the results. Our data

revealed that ROS was detected 1 hpi, which indicated that the

plant detected and responded to the pathogen at an early time

point (indicated by ROS fluorescence in the mesophyll cells;

Figure S5A). A quantitative analysis of the signal intensities by

ImageJ (available at http://rsb.info.nih.gov/ij; developed by

Wayne Rasband, National Institutes of Health, Bethesda, MD)

revealed no significant differences when inoculated with the Dhyr1

Table 1. Development characteristics of the Dhyr1 mutant are similar to ectopics and wild type.

Growth rate (cm) Conidiation1 % GT2 formation % AP3 formation Conidia shape

Strain

70-15 (WT) 5.03+0.32 21.33+11.06 0.91+0.08 0.93+0.06 normal

Dhyr1 mutant 5.13+0.06 19+1.73 0.95+0.09 0.92+0.02 normal

Ectopic 4.9+0.44 20+0 0.93+0.08 0.97+0.05 normal

1concentration equals 16105conidia/ml.
2GT = germination tube.
3AP = appressorium.
doi:10.1371/journal.ppat.1001335.t001

size reveals a significant difference in virulence between wild type and ectopics, and the mutants. Different letters over the bars indicate a significant
difference as determined by a student’s t-test, and a p-value of #0.01. (C) Rice plants (cultivar Maratelli) were spray-inoculated with the mutants,
ectopics and wild type (as above) and scored for lesion type 7 dpi. (D) Quantification of lesion type (0 = no symptom; 1 = pinhead-sized brown specks;
2 = 1.5 mm brown spots; 3 = 2–3 mm gray spots with brown margins; 4 = many elliptical gray spots longer than 3 mm; 5 = coalesced lesions infecting
50% or more of the leaf area), reveals no difference in lesion types 1-3 however the two mutants do not make any lesion types 4 and 5. Lesions were
photographed and measured or scored 7dpi and experiments were repeated twice with similar results. Different letters over the bars indicate a
significant difference as determined by a student’s t-test and a p-value of ,0.05.
doi:10.1371/journal.ppat.1001335.g004
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mutants or with the wild type conidia (Figure S5B). We thus

concluded that the MoHYR1 gene does not play a role in

ameliorating an early, or immediate, plant defense response.

To test whether MoHYR1 had any impact on plant-produced

ROS that may occur later during infection, we inoculated Dhyr1

mutant conidia or wild type conidia onto barley leaves and stained

with DAB at 24 hpi (Figure 10). Results indicated that the Dhyr1

mutant was unable to block ROS produced at 24 hpi, where the

ROS was both detected in an entire plant epidermal cell, as well as

in plant cells that were not in direct contact with the pathogen

(Figure 10).

ROS generated during the infection process are related
to cell wall appositions (CWAs)

It has been documented that the presence of reactive oxygen

species around CWAs is a biochemical marker for non-penetrated

cells during the interaction between barley and barley powdery

mildew, Blumeria graminis [34]. To determine whether the ROS

observed during a susceptible barley-M. oryzae was related to

CWAs, we performed aniline blue staining on inoculated leaves.

At 24 hpi, we found callose deposits specifically localized around

the appressoria and penetration sites (Figure 11). Sequential

correlative staining with H2DCFDA for ROS followed by analine

blue for callose, showed a strong positional correlation between the

two host responses when overlaid (Figure 11C).

CWAs are believed to physically block pathogen penetration

[34]. To further characterize the CWAs formed during the barley-

M. oryzae interaction, we examined leaves that had been inoculated

with M. oryzae 24 and 40 hpi with either mutant or wild type

conidia. The result showed that classical CWAs were formed

within 24 hpi in both strains and no other differences in CWA

morphology could be detected (Figure 12).

MoHYR1 regulates other ROS-related genes in M. oryzae
Given the fact that increased ROS accumulation occurs in the

absence of MoHYR1, we next tried to determine whether the

ROS scavenging system was impaired in the Dhyr1 mutants. We

used real-time quantitative real time reverse transcription PCR

(real-time qRT-PCR) to compare the expression of general

antioxidant and redox control gene orthologs in both M. oryzae

wild type and Dhyr1 strains (Figure 13). Primer pairs for the

following genes were employed to examine gene expression:

YAP1 (MGG_12814.6), GSH1 (c-glutamylcysteine synthetase;

MGG_07317.6), GSH2 (glutathione synthetase; MGG_06454.6),

GLR1 (glutathione reductase; MGG_12749.6), GTT1 (glutathione

transferase 1; MGG_05677.6), SOD1 (Cu/Zn superoxide dismu-

Figure 5. More ROS was produced when leaves were inoculated with Dhyr1 mutant conidia, versus wild type. (A) Conidia of wild type
(70-15), (B) ectopic (B40) and (C) Dhyr1 (B25) were inoculated onto the surface of a barley leaf and then stained with calcofluor white for fungal cell
walls and DCF for the ROS, 24 hpi and imaged by confocal microscopy. (D) Around 35 Appressoria were counted for each line, along with the number
of appressoria showing ROS haloes, and percentages were generated. This experiment was repeated ten times with similar results. Different letters
over the bars indicate a significant difference as determined by a student’s t-test, and a p-value of #0.05. Scale bar = 20 mm for all images.
doi:10.1371/journal.ppat.1001335.g005
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tase; MGG_03350.6), CAT1 (catalase 1; MGG_10061.6), GTO1

(omega class glutathione transferase 1; MGG_05367.6), and cyt c

per (cytochrome c peroxidase; MGG_10368.6). The house-

keeping gene encoding Ubc (ubiquitin conjugating enzyme;

MGG_04081.6) was used as an internal control. We also included

the gene MoHYR1 (MGG_07460.6) in this experiment to confirm

its deletion in the mutant lines. The expression patterns of these

ten genes were placed into two categories. The first category

(Figure 13A) is comprised of four genes that show increased

expression in the wild type strain after induction with hydrogen

peroxide, while expression in the mutant line is low and

unchanging. GTT1, GR and GSH1 belong to this category, along

with the HYR1 partner protein YAP1; YAP1 also shows slight but

significant differences in expression in the Dhyr1 mutant line with

and without H2O2, and has a higher expression level compared to

the wild type strain without ROS. The second category contains

genes whose expression does not significantly change, both in

response to H2O2, as well as in the presence of the MoHYR1 gene.

This category includes six genes: cyt c per, CAT I, Cu/Zn SOD, GTT

I, GSHII and MoHYR1 (Figure 13B). HYR1 shows no expression at

all in the mutant line, which was to be expected.

Hyr1 cellular localization
We evaluated the sub-cellular localization pattern of the

MoHYR1 protein during infection, conidia of a M. oryzae deletion

line (Dhyr1 B33) transformed with cerulean-MoHYR1 N-terminal

fusion (the same construct that was used for complementation),

was inoculated onto barley leaves and observed during the

following time points: 1 hpi, 6 hpi, 12 hpi, 24 hpi and 72hpi. At 1

hpi, MoHYR1 was mainly localized in the conidial vacuoles and

with low levels in the cytoplasm. When the germ tube formed, the

protein was present throughout the germ tube (Figure 14A). At 6

hpi, the MoHYR1 protein showed increased cytoplasmic locali-

zation in the appressorium and conidium and at 12 hours, a

concentration of HYR1 in the appressorial cytoplasm (Figures 14B

and C). At the later time point, 24 hpi, the protein appeared to be

localized in the vacuoles with reduced levels in the cytoplasm

(Figure 14D), and a later, invasive stage time point suggests the

protein was again cytoplasmically localized (Figure 14E).

Discussion

During the interaction between the pathogens and plants, plants

mount defense mechanisms to protect themselves from pathogens.

The cellular environment within the host can represent a major

source of stress towards the invaders [16]. Pathogens, on the other

hand, must possess adaptive mechanisms in order to survive. In

this study, we hypothesized that the M. oryzae HYR1 protein

defines one such mechanism, the glutathione synthesis pathway,

involved in coping with the oxidative environment generated by

plant defenses.

MoHYR1 is necessary for ROS detoxification and full
virulence

In M. oryzae, MoHYR1 is the only sequence homolog of the yeast

glutathione-dependent peroxidase, HYR1p, formerly termed Gpx3

[35]. In yeast, HYR1p senses H2O2 through two highly conserved

cysteines that are redox sensitive. Mutations in either of these two

cysteines leads to a non-functional HYR1 [18]. Indeed, we found

that the wild type MoHYR1, but not the MoHYR1 cysteine

Figure 6. The ROS observed after inoculation with Dhyr1 conidia as a disk-shaped halo located beneath appressoria. (A) A 3-D
projection of confocal images with the ROS stain H2DCFDA showed a halo (green) of ROS around and beneath the appressoria (blue; AP), which
emanated from two nearby conidia. (B) A side-view of panel A showed that the halo was a thin layer of ROS located beneath the appressoria. The
ROS halo sits directly between the AP and the plant surface. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1001335.g006
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mutants, was able to partially rescue the yeast HYR1p mutant on

non-permissive levels of H2O2. This result is similar to Dyap1 yeast

mutants complemented with homologs from two pathogenic

filamentous fungi, Cochliobolus heterostrophus and Ustilago maydis, as

both homologs partially complemented the yeast mutation

[20,23]. These data suggested that MoHYR1 may function

similarly during redox sensing and the subsequent signaling that

leads to ROS detoxification. This model was further supported by

the presence of ROS haloes located underneath appressoria

during infection with a much greater frequency in the Dhyr1

mutant compared to the wild type strain.

The increase in ROS haloes in Dhyr1 mutants correlated with

significantly smaller lesions sizes when inoculated on susceptible

rice and barley plants, suggesting that ROS scavenging regulated

by MoHYR1 was required for full virulence. This was supported

by a rescuing of the Dhyr1 mutant phenotype to wild type lesions

by scavenging plant-derived ROS with ascorbic acid or disrupting

plant-derived ROS generation with DPI. These results were

similar to a gene recently reported on in the rice blast fungus called

DES1 for Defense Suppressor 1 [14]. DES1 was also involved in

virulence and triggers a stronger plant response upon infection,

manifested by both an increase of the oxidative burst, as well as

expression of two plant defense genes. Intriguingly, DES1 has no

known functional domains and from sequence analysis, its function

cannot be predicted, although it is well-conserved throughout

fungi. It is also noteworthy that expression of MoHYR1 was tested

in the Ddes1 mutant, and found to be slightly down-regulated. This

could suggest that HYR1 and DES1 represent two semi-redundant,

semi-dependent mechanisms evolved to cope with the plant

defense response. Equally interesting is a gene recently identified

in the plant and human fungal pathogens, Alternaria brassicicola and

Aspergillus fumigatus, respectively, called tmpL [16]. This membrane-

localized gene contains a FAD/NADP-binding domain and had

Figure 8. Dhyr1 appressorial-localized ROS appeared to be plant-generated. (A) Reflection confocal imaging with the ROS stain DAB shows
a wide ROS signal (arrow) around and beneath the appressorial attachment site (AP). In the middle of the appressorium attachment site was the
putative penetration peg site (arrowhead). (B) The same interaction site as Fig. 8A, embedded in epoxy resin and imaged under confocal microscopy
revealed DAB deposited (arrow) beneath and surrounding an attempted penetration site (arrowhead). The deposit was located up against the plant
cell wall (PC) on the inside of the cell. Scale bar = 5 mm.
doi:10.1371/journal.ppat.1001335.g008

Figure 7. Dhyr1 (B25) conidia on gel-bond were similar to wild
type in terms of ROS production. Staining was performed 24 hpi;
Calcofluor White was used to stain the cell walls (blue) and H2DCFDA
was used to stain the ROS (green). Conidia of (A) Dhyr1 (B25), (B) wild
type (70-15) and (C) ectopic (B40). A transmitted light image was taken
as well, and overlaid with the fluorescent image. The inset in panel A
showed the fluorescence image of the conidium (1) and appressorium
(2). Images were taken using confocal microscopy. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1001335.g007
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not yet been studied in fungi. A deletion of tmpL resulted in a

severely reduced virulence defect and hypersensitivity of exoge-

nous oxidative stresses, however when the YAP1 gene was over-

expressed in the deletion line, it rescued these and other mutant

phenotypes, suggesting tmpL, YAP1 and presumably HYR1 may act

in a concerted pathway to sense and trigger ROS scavenging

pathways.

MoHYR1 helps the fungus negotiate a hostile host
environment

A successful pathogen, which has the ability to detoxify ROS,

will subsequently have fewer barriers to overcome before reaching

its ultimate goal, which are the cell contents. Our results with the

MoHYR1 gene suggest that while there might be no effect of

MoHYR1 on ROS that’s produced immediately by the plant

(Figure S3), there is subsequent ROS production which MoHYR1

clearly helps the fungus overcome (Figure 10). Metabolic profiling

performed by Talbot and colleagues (2008) provides support for

this concept, revealing a M. oryzae-induced host metabolism re-

programming that suppressed or delayed plant-produced ROS

during susceptible interactions.

Although supporting evidence has shown that M. oryzae can

produce ROS during infection related development [5], through

scavenging experiments, the ROS observed in our studies appear

to be largely plant-generated. Internal fungal ROS was unaffected

by the absence of the MoHYR1 gene in vitro. Furthermore, ROS

haloes were not disrupted by the ROS scavenger, ascorbic acid,

when applied only to conidia, but were disrupted when ascorbic

acid was specifically applied to leaves. Several pathways for plant-

generated ROS include cell wall-bound peroxidases [1]. Plants

defend themselves against pathogens by a battery of cell wall-

associated defense reactions, including generation of ROS and

cross-linking of lignin compounds [34]. During the interaction

between a French bean (Phaseolus vulgaris) and a cell wall elicitor

from Colletotrichum lindemuthianum, ROS appears to originate from

cell wall peroxidases [36]. Apoplastic alkalization has been shown

to be important in this process [34]. ROS generated from cell wall

peroxidases also serve as key molecules required for lignification

and cross-linking of cell walls [34]. In a study carried out between

barley and the powdery mildew fungus, barley cell wall localized

peroxidase HvRBOHA is responsible for generating H2O2, which

was only present in non-penetrated cells [37]. Our results,

particularly in Figure 8B, suggest ROS localized up against the

plant cell wall. Further investigations into M. oryzae-host

interactions will include analyzing plant defense-related genes,

including the barley cell wall peroxidase.

Callose and ROS are two plant defensive compounds known to

be involved in cell wall appositions, which are deposited during

both compatible and incompatible interactions [34]. H2O2 played

an important role in this process and enzymatic removal of H2O2

by catalase significantly reduces the frequency of phenolic

deposition [34]. Several components were reported to be essential

for this oxidative burst: peroxidases, a calcium influx and K+ Cl2

efflux, extracellular alkalization, and post-Golgi vesicles [38]. ROS

around the CWA areas might function as signal compounds to

gather the vesicles and components needed for mature CWAs. We

observed that ROS and callose deposits were positionally related

during attempted penetration by both wild type and Dhyr1

mutants, immediately below the appressorium. From this result,

we hypothesize that ROS generated by plant defenses activates

CWA formation in a susceptible host and experiments to

determine the timing of deposition of ROS versus callose are

currently underway.

Figure 9. ROS scavenging in the plant rescued the hyr1 mutant phenotype. (A) Conidia of Dhyr1 (B25) were mixed with 0.5 mM ascorbic
acid and inoculated onto the leaf surface. Infected leaves were stained for ROS 24 hpi. (B) Conidia were mixed with water and inoculated onto the
leaf surface. Leaves were first treated with 0.5 mM ascorbic acid for 1 hour and stained for ROS 24 hpi. (C) From left to right: Dhyr1 (B25), Dhyr1 (B33)
(where susceptible barley leaves were treated with 0.5 mM ascorbic acid for 1 hour and then inoculated with mutant spores in water) ectopic (B40),
ectopic (B60), wild type (70-15). Scale bar = 20 mm for all confocal images.
doi:10.1371/journal.ppat.1001335.g009
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A hypothesis that follows from these data is that when the

MoHYR1 gene is deleted, the plant responds as though it’s being

challenged with an avirulent pathogen. As early as 12 hours post

inoculation, we observed that barley leaves inoculated with Dhyr1

mutants showed higher ROS signals compared with leaves

inoculated with wild type. These data were consistent using two

staining methods, H2DCFDA and DAB. In leaves inoculated with

wild type, ROS was detected around appressoria but was mostly

Figure 10. Mutants have more DAB staining than wild type revealed a stronger plant reaction. DAB staining was performed on wild type
(70-15) conidia (A, C, E) and Dhyr1 (B25) mutant conidia (B, D, F) 24hpi. Wild type (70-15) conidia on the leaf surface shows DAB staining mostly the
fungal structures while Dhyr1 (B25) mutant conidia elicit a stronger ROS plant reaction. Images were generated with a transmitted light microscope.
Scale bars = 100 mm.
doi:10.1371/journal.ppat.1001335.g010

Figure 11. Two plant defense responses overlap when the Dhyr1 mutant conidia were inoculated onto leaves. Correlative images show
plant reaction underneath appressoria 24 hpi. (A) ROS staining; (B) aniline blue staining; (C) merged image of panels A and B. Images were processed
sequentially (ROS followed by aniline blue), imaged by confocal microscopy and correlated. Scale bar = 2.5 mm.
doi:10.1371/journal.ppat.1001335.g011
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observed inside fungal structures. However, ROS was seen both

around appressoria and adjacent cells when inoculated with the

Dhyr1 mutants. Whole cells filled with ROS were also observed

when inoculated with Dhyr1 mutants, which was related with HR-

type cell death. All these data indicated that HYR1 might function

to suppress later plant-generated ROS, either by detoxifying it

directly, or manipulating plant ROS secretion-related gene

expression.

MoHYR1 regulates several genes involved in
ROS-scavenging

While our data showed that HYR1 likely played an important

role in ROS-detoxification processes, our experiments did not

preclude other ROS tolerance mechanisms in the fungus,

particularly since mutants were reduced in virulence, but not

completely non-pathogenic. Such mechanisms might involve the

aforementioned DES1 and tmpL genes. Currently, we are

characterizing the MoYAP1 homolog in M. oryzae; our initial

Dyap1 mutant data suggested this gene was dispensable for

pathogenicity, much like what has been found in Botrytis cinerea,

Aspergillus fumigatus and Cochliobolus heterostrophus [23,25,26]. Intrigu-

ingly, YAP1 did appear to be essential for virulence in Ustilago

maydis and Alternaria alternata [20,25], suggesting that fungal lifestyle

(i.e. necrotrophic vs. biotroph) had little to do with this particular

oxidative stress pathway, and further supporting redundant

pathways. Our real-time qRT-PCR data showed that YAP1

increases in expression when wild type was challenged with H2O2

and we also noted a decrease in YAP1 gene expression in the Dhyr1

mutant background. One interpretation of this result was that the

fungal cell might be compensating for the absence of HYR1, by

boosting expression of its partner gene.

The glutathione pathway-related genes GLR1, GTO1 and GSH1,

all increased during H2O2 challenge in the wild type however had

extremely decreased expression in the mutant line, regardless of

ROS. This suggested that these genes were reliant upon HYR1,

which was not unexpected, since the glutathione pathway was

shown to be regulated YAP1, which occurs after interacting with

HYR1 [17]. Our results were also in keeping with the C.

heterostropus Yap1 homolog mutant Dchap1, which showed extremely

low levels of both GLR1 and GSH1 [23]. Interestingly, we did not

observe any of the other genes increasing in expression in the

mutant background; this suggested that at least for the genes that

we chose such as CAT1 and SOD1, they did not provide

compensatory mechanisms for a loss of HYR1. While this is one

hypothesis, it is also possible that these genes are regulated at the

protein level, as was found in the A. fumigatus mutant, DAfyap1;

both CAT1 and SOD1 were among the proteins down-regulated in

the mutant [39], and this could also hold true for the Dhyr1

mutant. Likewise, catalase, SOD and peroxidase activities were

measured in the A. alternata mutant DAaAp1 [25]. A transcriptomic

study on the Dhyr1 deletion mutant would answer many of these

questions; further, such a study would uncover redundant

pathways of ROS detoxification masked by the presence of

MoHYR1.

Localization of the MoHYR1 protein
While numerous studies have examined localization of the

Yap1p, we were unable to find any studies on the localization of

HYR1 either in yeast or filamentous fungi. Our data revealed that

the HYR1 protein mostly localized either to the cytosol or to

vacuoles, during early stage infection events on barley (germ tube,

early appressorial formation, appressorial maturation and pene-

tration). At one hpi, MoHYR1 was mainly moving through the

germ tube, although it was difficult to definitively ascertain which

organelle it might be associated with. At twelve hpi, the MoHYR1

protein shows cytoplasmic localization, mainly expressed in the

cytosol of the appressorium. We suspect that by twenty-four hours,

the fungus had penetrated and gained ingress to the first epidermal

cell; indeed cell biology studies on events following initial

penetration suggested that M. oryzae bulbous hyphae fill an entire

rice leaf sheath cell and were in the process of moving onto the

next one by twenty-seven hours post-inoculation [40]. Its vacuolar

localization at this time-point could reflect that fact that it was no

longer needed by the fungus, which had circumvented the plant’s

oxidative burst and at that point growing in the first epidermal cell.

We examined a later time-point at 72 hpi and found the HYR1

Figure 12. Putative plant-generated cell wall appositions surround the penetration sites 40 hpi. Confocal 3-D maximum intensity
projections of aniline blue stained infected leaves showed cell wall appositions. (A) A representative cell wall apposition (yellow) shown here was
detected in barley 40 hpi with Dhyr1 (B25) mutant conidia. (B) Comparable cell wall appositions (yellow) were also detected in barley 40 hpi after
inoculation with wild type (70-15). Transmitted light images were merged with 3-D confocal data to aid in visualization of plant and fungal structures.
Scale bars = 5 mm.
doi:10.1371/journal.ppat.1001335.g012
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gene to be once again cytoplasmically localized, perhaps indicating

a requirement for this pathway at the invasive growth stage.

Conclusions and future directions
In conclusion, we identified and characterized the MoHYR1

gene, a functional homolog of the yeast Hyr1 (or Gpx3) gene.

Although MoHYR1 does not cause dramatic effects in the disease

phenotype, it nevertheless played an important role in virulence.

This effect appeared to be related to the deletion mutant’s inability

to tolerate plant-generated ROS, or at least to do so in a timely

and effective manner to cause wild type levels of disease. Together,

our results help to define a mechanism that, while well-studied in

yeast, has not yet been examined in filamentous fungi; further-

more, our studies pose additional questions to be answered

regarding the role of the glutathione pathway in scavenging ROS

in filamentous fungi, how this aids in pathogenicity and what other

underlying redundant scavenging pathways exist.

Materials and Methods

M. oryzae strains and growth conditions
Rice-infecting M. oryzae, strain 70–15 (Fungal Genetics Stock

Center 8958) was used as the wild type strain throughout this

project, and the strain from which mutants and transgenics were

derived. All strains were maintained at 25uC under constant

fluorescent light on complete medium (CM 1 liter: 10 g sucrose,

6 g yeast extract, 6 g casamino acid, 1 ml trace element). Oatmeal

agar medium (OAM 1 liter: 50 g oatmeal and 15 g agar) was used

for sporulation. Conidia were harvested 10–12 days after plating.

Yeast strains and complementation assays
Yeast strains BY4741 (wild type) and BY4741 YIR037W (Dhyr1

mutant) were ordered from the American Type Culture

Collection, grown out and maintained on YPD medium.

Constructs for transformation were built using standard PCR

reaction conditions and programs; briefly, pJS371 used overlap-

ping primers to make an intron-free version of the MoHYR1 gene

in pJS318. Using the intron-free plasmid, overlapping primers

were used to make Cys39Ala and Cys88Ala mutant versions of the

coding sequence. These were cloned into pCRScript (pJS372 &

pJS373, respectively). The yeast HYR1 gene (ScHYR1) was then

amplified from Sc46 and cloned into pRS423, the His3 episomal

plasmid, pJS374. These plasmids then form the basis of the genes

to be tested: MoHYR1 wild type, the 2 cysteine mutants of

MoHYR1 and the ScHYR1 gene. These four genes are under the

same promoter and terminator. Therefore ScHYR1 was engi-

neered to have an NcoI site at the ATG and a BamHI site at the

beginning of the terminator (pJS375). Since the Magnaporthe gene

has a natural NcoI site at the ATG, the 3 genes of the MoHYR1

are cloned into pJS379 as NcoI/BamHI fragments (pJS381,

pJS382, pJS383).

For the complementation assays, five-microliter drops from

serial dilutions from cultures with anOD600 of 0.5 were spotted on

plates with and without 0, 2 and 4 mM H2O2 and grown for 2

days at 30uC. This experiment was repeated 10 times. In total, the

following plasmids were used in this part of the study:

pSM387 ( = pRS423) HIS3 yeast episomal plasmid; pJS374

pSM387 + ScHYR1;

pJS381 ScHYR1-Pro::MoHYR1::ScHYR1Term;

Figure 13. Antioxidant gene orthologs have altered expression in the Dhyr1 mutant versus wild type. Wild type (70-15) and Dhyr1
mutant (B25) were grown in 0 mM and 5 mM hydrogen peroxide and collected 1 hour after immersion. RNA was extracted and real-time qRT-PCR
performed on three biological replicates. (A) The YAP1, GTO1, GLR1 and GSH1 all increase in expression in wild type upon H2O2 challenge, but the
latter three display low levels in the mutant. (B) CAT1, SOD1, GSH2, GTT1 and cyt c peroxidase do not display significant changes in expression.
MoHYR1 expression is abolished in the mutants. Letters over bars represent statistically significant differences between expression changes of the
genes (statistics were generated using student t-test with p-value ,0.05).
doi:10.1371/journal.ppat.1001335.g013

Figure 14. MoHYR1 changed localization during pre-penetration events on the surface of a leaf. The MoHYR1 coding sequence was
fused to the cerulean fluorescent protein to study protein localization during early infection. (A) HYR1 at 1 hpi with putative vacuole location and low
level cytoplasmic distribution; the germ tubes has formed, but no appressorium. (B) HYR1 at 6 hpi with increased cytoplasmic localization where it is
likely to be required to function in ROS scavenging; an immature appressorium was apparent. (C) HYR1 at 12 hpi with cytoplasmic location; a mature
appressorium was apparent. (D) HYR1 at 24 hpi with vacuole and low level cytoplasmic localization in the appressorium. (E) HYR1 at 72 hpi again
showing cytoplasmic localization. Images were taken with confocal microscopy and all experiments were done on the surface of barley leaves. Scale
bar shown = 10 mm for all images.
doi:10.1371/journal.ppat.1001335.g014
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pJS382 ScHYR1-Pro::MoHYR1_Cys36Ala::ScHYR1Term;

pJS383 ScHYR1-Pro::MoHYR1_Cys82Ala::ScHYR1Term.

Plants cultivars and growth conditions
Rice cultivar Maratelli (a gift from the Dean Lab; Raleigh, NC)

and barley cultivar Lacey (Johnny’s Selected Seeds; Winslow, ME)

were used throughout this study, as both are susceptible to M.

oryzae strain 70–15. Rice was grown in a growth chamber at 80%

humidity, and 12 h:12 h day:night cycles, at 28uC. Barley was

grown in a growth chamber at 60% humidity, and 12 h:12 h

day:night cycles, at 24uC (day) and 22uC (night).

Targeted deletion of Hyr1
The targeted gene deletion was accomplished using the

homologous recombination method. We amplified 59 and 39

flanking regions of Hyr1 using primer pairs #1 and 2 (Table S2).

Flanking regions were then linked via adaptor-mediated PCR to a

1.3 kb HPH coding sequence, providing resistance to the antibiotic

hygromycin (Alexis Biochemicals, San Diego, CA). The entire

length of the deletion fragment was 3.7 kb. Fungal protoplasts of

the wild type 70-15 were directly transformed with the nested PCR

product (primers used were forward primer of primer pair #1 and

reverse primer of primer pair #2). Protoplast generation and

subsequent transformation were conducted by following estab-

lished procedures [41]. To confirm the knockout mutant, the

genomic DNA of candidate strains was extracted and amplified

with primer pairs #3, 4 and 5 (Table S2).

In vitro H2O2 growth assessment of Dhyr1 mutants
Equal-sized pieces of mycelia were cut with #3 cork-borer tool

(0.7 cm in diameter), and immersed in 10 ml of liquid CM at 25uC
in darkness. Colonies were grown in CM containing H2O2 at

concentrations of 0 mM, 5 mM and 10 mM. Colonies were

removed from each well, vacuum filtered to dryness, and

measured on a scale one week post-immersion.

Pathogenicity assays
For point or drop inoculations, conidia were harvested from 12-

day-old cultures grown on OMA in 20 ml of a 0.2% gelatin (Acros

organics, New Jersey) suspension, for a final concentration of 1–

56105 conidia/ml. Point two percent gelatin was used as a non-

inoculated control for pathogenicity assays. For drop inoculations,

three week old leaves of Maratelli or Lacey were detached and laid

flat in a humid chamber (90 mm Petri dish with moist filter paper).

Twenty microliters of conidial suspensions, or gelatin alone, were

dropped onto each leaf and kept in darkness overnight at ,25uC.

The next day, remaining water drops were wicked off and moved

to a growth chamber under constant fluorescent light. For spray

inoculations, conidial suspensions (10 ml; concentration as above)

in 0.2% gelatin were sprayed onto three week old Maratelli or

Lacey seedlings. Inoculated plants were placed in a dew chamber

at 25uC for 24 hours in the dark, and then transferred into the

growth chamber with a photoperiod of 16 h:8 h light:dark cycles.

Disease severity was assessed seven days after inoculation.

Quantitative real-time RT-PCR of ROS-related genes and
data processing

Quantitative real time reverse transcription PCR (real-time

qRT-PCR) was carried out using primer pairs for the following

genes: YAP1 (MGG_12814.6), GSH1 (MGG_07317.6), GSH2

(MGG_06454.6), GLR1 (MGG_12749.6), GTT (MGG_06747.6),

GTO1 (MGG_05677.6), GTT1 (MGG_09138.6), SOD1

(MGG_03350.6), CAT1 (MGG_10061.6) and cytochrome c

peroxidase (MGG_10368.6). The housekeeping gene encoding

ubiquitin conjugating enzyme (MGG_00604.6) was used as an

internal control. We also included the gene MoHYR1

(MGG_07460.6) to confirm its deletion in the mutant lines.

Primer pairs are listed in Table S3. Seventy-five nanograms of

cDNA generated from mycelium grown as per the H2O2

experiments described above (generated from the 0 mM and

5 mM H2O2 samples), was used as templates for each reaction.

The mycelia were fragmented in a blender as per the protocol by

Mosquera et al [42], before being inoculated into liquid complete

medium. After 2–3 days, the mycelia were blended again to ensure

the largest amount of actively growing fungal tips. The H2O2

experiment was performed 24 hours after the 2nd blending, and

RNA was extracted. PCR reaction conditions were as follows for a

25 ml reaction: 13 ml H2O, 10 ml 5 Prime SYBR Green Master

Mix (Fisher Scientific, Waltham, MA), 0.5 ml Forward Primer (for

a final concentration of 2 mM; Integrated DNA Technologies,

Coralville, IA), 0.5 ml Reverse Primer (for a final concentration of

2 mM) and 1 ml template DNA. Conditions for real-time

quantitative RT-PCR conditions were as follows: 95uC for

2 min; 95uC for 15 sec, 58uC for 15 sec, 68uC for 20 sec (cycle

40 times); 95uC for 15 sec; 60uC for 15 sec (melting curve); 60uC –

95uC for 20 min; 95uC for 15 sec; lid temperature constant at

105uC. The 22DDCt method was used for generating the data.

DDCt is defined as DCt treatment - DCt calibrator. cDNA from

the strain 70-15 in 0 mM H2O2 was used as the calibrator for

comparison of gene expression in 5 mM H2O2 in both the Dhyr1

deletion lines as well as the wild type For both the DCt treatment

and DCt calibrator, DCt is defined as Ct gene - Ct housekeeping-

gene. For the calibrator, which is 0 mM H2O2, this value would be

220 or 1. These experiments were repeated twice with similar

results.

Cloning of MoHYR1 and generation of fusion protein
A HYR1 N-terminal cerulean fusion construct was generated by

fusion PCR. Briefly, using M. oryzae genomic DNA as a template, a

1 kb promoter region of HYR1 was amplified with primers 6 and 7

(Table S2). Another set of primers, 8 and 9, were used to amplify

the 2.4 kb HYR1 open reading frame. Three resulting fragments,

the 1 kb promoter fragment, the 1328 bp ORF (including 709 bp

of terminator sequence) and 740 bp cerulean fluorescent protein

coding sequence [43], were mixed and subjected to a second

fusion PCR with primers 7 and 8. The resulting 3.1 kb PCR

product was generated with BamHI and NotI restriction enzymes

(New England Biolabs, Beverly, MA) and cloned into pBlueScript

II SK+. The construct was fully sequenced and found to be

correct, hence was co-transformed into the M. oryzae Dhyr1

knockout mutant protoplasts to make Cerulean-HYR1 fusion

transformants. Transformants with expected genetic integration

events were identified by PCR using primers pairs 6 and 10 (Table

S2). Properly transformed Dhyr1 mutants were also used as the

complemented lines, in Figures 3 and 4, designated as ‘‘hyr1-C’’.

Detection of ROS
Ten-fourteen day old rice and eight day old barley plants were

used and collected 24 hours after being inoculated with 10–12 day

old conidia (methods as described above). All staining procedures

were performed with both rice and barley, however barley was

best-suited for microscopy, hence all micrographs shown in this

study are of barley. For experiments with 29,79-dichlorofluorescin

diacetate (H2DCFDA) (Invitrogen, Carlsbad, CA), inoculated

tissue were collected and incubated for 60 min at room

temperature in 5–20 mM H2DCFDA dissolved in DMSO (less

than 0.005% final concentration), then washed with 0.1 mM KCl,
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0.1 mM CaCl2 (pH 6.0) and left for 60 min at 22uC before

experimentation. Dye excitation was at 488 nm; emitted light was

detected with a 500–550 band pass emission filter. DAB staining

was carried out using the protocol developed by Thordal

Christensen et al [44]. Briefly, leaves were cut at the base with a

razor blade and placed in a 1 mg/mL solution of DAB for 8 h

under darkness at room temperature. Leaves were decolorized by

immersion in ethanol (96%) for 4 h followed by 2 hours in PBS

buffer before imaging. A third method of ROS detection was

employed for examining ROS internal to, or secreted from, the

fungus. Nitroblue tetrazolium (Sigma-Aldrich, St. Louis) was used

at 4 mg/mL (in deionized water) and the staining performed for

5 min,30 min at room temperature prior to observation.

ROS scavenging treatments
In order to eliminate the ROS generated by fungus, conidia of

Dhyr1 (B25) and wild type (70-15) were mixed with 0.5 mM

ascorbic acid (AsA) and inoculated onto the leaf surface. Leaves

were stained for ROS at 24 hpi. In order to eliminate ROS

generated from the plant, leaves were first treated with 0.5 mM

ascorbic acid for 1 hour. To remove excess AsA, leaves were then

washed with 0.1 mM KCl, 0.1 mM CaCl2 (pH 6.0) buffer three

times for 5 minutes each. Finally, leaves were inoculated with

conidia 1hpi and stained for ROS 24 hpi. Additionally, barley

leaves were injected with 5 mM DPI (diphenyleneiodonium;

Sigma, St Louis), then washed and inoculated, as above.

Detection of fungal cell wall
Calcofluor White M2R (Fluorescent brightener 28, F-6258,

Sigma, St Louis) was used for detection of the fungal cell wall. We

made 10,000-fold dilutions from a saturated Calcofluor White

stock solution. For experiments involving conidia on gel-bond

(VWR, Arlington Heights, IL), Calcofluor White was applied 1, 4,

8, 12, and 24 hours post inoculation, incubated for 15 minutes,

then gently rinsed off with 1X PBS buffer. For experiments

involving inoculated plants, inoculated or non-inoculated (control)

leaf tissue was collected and immersed in working solution for 15

minutes, then gently rinsed with 0.1 mM KCl, 0.1 mM CaCl2
(pH 6.0).

Detection of Cell Wall Appositions (CWAs)
For CWAs staining, we cleared inoculated or non-inoculated

(control) leaves in ethanol:acetic acid (6:1 v/v) overnight and

washed them with water. Subsequently, cleared leaves were

incubated in 0.05% aniline blue (w/v) in 0.067 M K2HP04 buffer

at pH 9.2 overnight and rinsed gently in sterilized deionized water

for microscopy.

Localization of DAB
Inoculated barley leaves were stained using DAB and rinsed

several times in PBS. Thereafter, samples were fixed in 2%

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA)

and 2% glutaraldehyde (Electron Microscopy Sciences, Hatfield,

PA) in sodium cacodylate (Electron Microscopy Sciences, Hatfield,

PA) buffer for 1 hour overnight. Samples were then rinsed three

times, 15 min each, in sodium cacodylate and post-fixed with 2%

OsO4 in sodium cacodylate for 3–5 hours on a rotator. Again,

samples were then rinsed three times for 15 min each, with water

on a rotator. Samples then underwent an ethanol dehydration

series (25%, 50%, 80% ETOH; 20 min each) on a rotator.

Samples were primed with 1% gamma-glycidoxylpropyl tri-

methoxysilane in 80% ETOH overnight at room temperature

and then washed three times for 15 min each in 100% ETOH on

a rotator. Samples then underwent a series of infiltrations on a

rotator as follows: 100% ETOH/n-BGE (Electron Microscopy

Sciences, Hatfield, PA) (1:1) for 30 min, 100% n-BGE for 30 min,

n-BGE/Quetol-651 (Electron Microscopy Sciences, Hatfield, PA)

(1:3) for 1 hour, n-BGE/Quetol-651 (1:1) for 1 hour, n-BGE/

Quetol-651 (3:1) for 1 hour, 100% Quetol-651 for 1 hour, 100%

Quetol-651 for 1 hour, 100% Quetol-651 overnight and 100%

Quetol-651 for 1 hour. Finally, samples were embedded and

polymerized in an oven at 60uC for about 24 hours.

Bioinformatic and statistical analyses
BlastP analysis was done against the fully sequenced genomic

database of M. oryzae housed at the Broad Institute, using an e-

value of 1e-3. ClustalW (X2) was used to perform the full

alignment and generate the phylogenetic tree. The final tree image

was generated with Tree Viewer. The HYR1 protein secondary

structure was predicted using the PSIPRED protein structure

prediction server. The structural image of the HYR1 protein was

created using the PyMOL molecular viewer. All student t-tests

were performed using JMP8 (SAS Institute Inc. 2007. ,Title..

Cary, NC: SAS Institute Inc.).

Confocal microscopy
Confocal images were taken with Zeiss LSM510 or Zeiss LSM5

DUO using a C-Apochromat 40X (NA = 1.2) water immersion

objective lens. H2DCFDA ester was excited at 488 nm and

fluorescence was detected using a 505–550 nm band pass filter.

Calcofluor white was excited at 405 nm and detected using 420–

470 nm band pass filter. Cerulean was excited at 458 nm and

detected using a 475 long pass filter. We also used transmitted light

and reflected light for some confocal experiments.

Supporting Information

Figure S1 Successful deletion of the HYR1 via homologous

recombination of a single insert. (A) Diagram of strategy used for

homologous recombination of HYR1. The arrow depicts direc-

tionality of gene MMG_07460.6, and FS stands for flanking

sequence. HygR is the hygromycin phosphotransferase gene

(HPH) that confers resistance to organisms that express it. Physical

positions of the gene and flanking regions (from supercontig 20)

are shown above the diagram. Bottom diagram shows the gene

deletion construct that was PCR-ed and linked via adapters.

Purple arrows indicate primer sites for determining insertion site

(result shown in C). The bottom-most line indicates HindIII cut

sites for the Southern blot, and positioning of the HPH probe. (B)

External flanking region PCR indicates the insert is located in the

correct position in the genome (lane loading from left to right:

Dhyr1 B25, Dhyr1 B33, Dhyr1 B54, ectopic B40). The size product

is the expected ,1.5kb, as based upon the primer positions in A.

Gene specific primers indicate that the knockout mutant does not

have HYR1 gene. HPH specific primers indicate the HPH inserted

in the genome. (C) Southern blot indicates a single insertion of the

construct in the Dhyr1 mutants. (D) Diagram of the construct used

to complement the Dhyr1 mutant; the cerulean fluorescent protein

(CFP) is driven by the native MoHYR1 promoter and linked the N-

terminus of the MoHYR1 gene. (E) Southern blot on the

complemented mutant line hyr1 -C probed with the MoHYR1

gene, which revealed four insertions.

Found at: doi:10.1371/journal.ppat.1001335.s001 (1.25 MB TIF)

Figure S2 Dhyr1 cannot grow at increased levels of hydrogen

peroxide. (A) Dhyr1 (B25, B33) growth was inhibited at increased

levels of hydrogen peroxide (top = 0mM; middle = 5mM;

bottom = 10mM) compared to the complemented strain (hyr1-
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C), wild type (70-15) and Ectopic (B40, B60). (B) Quantification

(dry weight) of samples grown in hydrogen peroxide. This

experiment was repeated in triplicate with similar results. Different

letters over the bars indicate a significant difference as determined

by a student’s t-test and a p-value of , 0.05.

Found at: doi:10.1371/journal.ppat.1001335.s002 (1.90 MB TIF)

Figure S3 Dhyr1 accumulated similar levels of ROS to wild type

in vitro. Hyphae of wild type and Dhyr1 were grown on complete

media plates and stained with nitroblue tetrazolium (NBT) and

exhibited similar staining. A, B, C, and D are microscope images

of panels E and F. A, C, and E represent Dhyr1 (B25) and B, D, F

represent wild type (70-15). Scale bars = 100 mm.

Found at: doi:10.1371/journal.ppat.1001335.s003 (3.72 MB TIF)

Figure S4 nox1 and nox2 mutants have same ROS production

with wild type on plant 24hpi. A loss of NADPH oxidases in M.

oryzae does not appear to have a significant effect on ROS haloes.

(A-F) Confocal images of the nox1, nox2 and wild type parent lines

stained with Calcofluor White (CW) for cell wall visualization and

the ROS detector H2DCFDA. The left-most panels show multiple

spores and appressoria, while the right-hand panels focus on a

representative appressorium (bottom-left: H2DCFDA, bottom-

right: CW, top: merge). (G) Graphical representation of the data

collected in A showing no significant difference between ROS

haloes amongst the strains. Experiments were repeated three times

with similar results. Different letters over the bars indicate a

significant difference as determined by a student’s t-test and a p-

value of , 0.05. Scale bar = 10mm.

Found at: doi:10.1371/journal.ppat.1001335.s004 (1.08 MB TIF)

Figure S5 Dhyr1 displays similar levels of ROS to wild type

immediately after inoculation. (A) ROS signals are detected in

barley leaves 1 hpi with either the Dhyr1 mutants or the wild type

strain. Dhyr1 mutants did not show a defect compared to wild type.

Leaves treated with pathogens are significantly brighter than

untreated leaves. (B) Quantification of ROS signal intensity reveals

a significant difference between inoculated and untreated barley

leaves. This experiment was repeated in triplicate with similar

results. Different letters over the bars indicate a significant

difference as determined by a student’s t-test, and a p-value of

, 0.05. Images are taken with confocal microscope. Scale bar =

20 mm.

Found at: doi:10.1371/journal.ppat.1001335.s005 (0.77 MB TIF)

Table S1 HYR1 amino acid sequence of M. oryzae is most closely

related to N. crassa. Percent identities and similarities were

determined using BlastP for ten filamentous fungi, one yeast and

one mammal.

Found at: doi:10.1371/journal.ppat.1001335.s006 (0.01 MB

XLSX)

Table S2 Primers pairs used to generate the HYR1 deletion

construct and to test the targeted deletions.

Found at: doi:10.1371/journal.ppat.1001335.s007 (0.01 MB

XLSX)

Table S3 Primers pairs used in real-time qRT-PCR experiments.

Found at: doi:10.1371/journal.ppat.1001335.s008 (0.01 MB

XLSX)
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