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Abstract

Background: Macrophages infected with Mycobacterium tuberculosis (M.tb) are known to be refractory to IFN-c stimulation.
Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind
to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-cresponsiveness. However, it is
unclear whether this effect is limited to infected macrophages. We have previously shown that M.tb-infected macrophages
release exosomes which are 30–100 nm membrane bound vesicles of endosomal origin that function in intercellular
communication. These exosomes contain mycobacterial components including the 19-kDa lipoprotein and therefore we
hypothesized that macrophages exposed to exosomes may show limited response to IFN-c stimulation.

Methodology/Principal Findings: Exosomes were isolated from resting as well as M.tb-infected RAW264.7 macrophages.
Mouse bone marrow-derived macrophages (BMMØ) were treated with exosomes +/2 IFN-c. Cells were harvested and
analyzed for suppression of IFN-c responsive genes by flow cytometry and real time PCR. We found that exosomes derived
from M.tb H37Rv-infected but not from uninfected macrophages inhibited IFN-c induced MHC class II and CD64 expression
on BMMØ. This inhibition was only partially dependent on the presence of lipoproteins but completely dependent on TLR2
and MyD88. The exosomes isolated from infected cells did not inhibit STAT1 Tyrosine phosphorylation but down-regulated
IFN-c induced expression of the class II major histocompatibity complex transactivator; a key regulator of class II MHC
expression. Microarray studies showed that subsets of genes induced by IFN-c were inhibited by exosomes from H37Rv-
infeced cells including genes involved in antigen presentation. Moreover, this set of genes partially overlapped with the IFN-
c-induced genes inhibited by H37Rv infection.

Conclusions: Our study suggests that exosomes, as carriers of M.tb pathogen associated molecular patterns (PAMPs), may
provide a mechanism by which M.tb may exert its suppression of a host immune response beyond the infected cell.

Citation: Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS (2011) Exosomes Released from M.tuberculosis Infected Cells Can Suppress IFN-c Mediated Activation of
Naı̈ve Macrophages. PLoS ONE 6(4): e18564. doi:10.1371/journal.pone.0018564

Editor: David M. Ojcius, University of California Merced, United States of America

Received November 15, 2010; Accepted March 12, 2011; Published April 14, 2011

Copyright: � 2011 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported through grants AI056979 and AI052439 from the National Institute of Allergy and Infectious Diseases. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: schorey.1@nd.edu

Introduction

Interferon-c plays a critical role in host response to M. tuberculosis

infection [1]. It activates macrophages to control intracellular M.

tuberculosis (M.tb) by inducing the expression of nitric oxide synthase 2

[2] and phagocyte oxidase [3] thus triggering the production of

reactive nitrogen and oxygen intermediates respectively. Moreover, it

facilitates antigen processing and presentation by macrophages to

CD4+ T cells by upregulating MHC class II expression [4]. It has also

been reported that IFN-c induces autophagy which facilitates M.tb

killing and this is due, at least in part, to the activation of IFN-c
inducible immunity relatedGTPase Irgm1, also known as LRG-

47[5,6,7]. However, although IFN-c treatment promotes macrophag-

e’s ability to control infection, it has been shown that M.tb-infected cells

are partially resistant to IFN-c stimulation. This includes infected

macrophages being refractory to IFN-c killing of M.tb. [8]. At least two

different mycobacterial components have been identified that inhibit

macrophage response to IFN-c, namely lipoproteins including the 19-

kDa lipoprotein and the mycolylarabinogalactanpeptidoglycan

complex (mAGP complex) [9,10,11]. However, it is unclear if the

effect of these mycobacterial components is limited to infected

macrophages or whether mycobacterial components can gain access

to adjacent uninfected macrophages and if so what is the mechanism

involved?

Previous studies by Johnstone and coworkers identified an

alternative pathway for extracellular release of transferrin

receptors during reticulocyte differentiation [12]. They showed

that multivesicular bodies (MVBs) that are formed by the

invagination of the limiting endosomal membrane and are

known to transport membrane proteins and lipids to the

lysosome for degradation, could also fuse with the plasma

membrane and release the intraluminal vesicles into the

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18564



extracellular environment. These vesicles, which have been given

the name exosomes, are secreted by cells of hematopoietic and

non-hematopoietic origin and are generally thought to function

in intercellular communication [13]. It has been shown

previously that mycobacterial components including the 19-

kDa lipoprotein are trafficked to the MVBs and subsequently

released from cells via exosomes [14,15]. The exosomes released

from M.tb-infected macrophages can interact with cells of the

immune system stimulating macrophage production of pro-

inflammatory mediators such as TNF-a as well as activation of

naı̈ve antigen-specific T cells in vivo [16]. However, exosomes

containing mycobacterial components may also modulate

macrophage function to promote mycobacterial survival. One

possible mechanism in this context is the potential for exosomes

to render macrophages refractory to subsequent activation by

IFN-c. Indeed, we found that exposure of naı̈ve macrophages to

exosomes derived from M.tb-infected cells renders the macro-

phages refractory to subsequent IFN-c activation for a subset of

genes. This list partially overlaps with IFN-c-induced genes

suppressed by M.tb infection and suggest that the ability of M.tb

infection to suppress IFN-c stimulation may not be limited to

infected cells.

Results

Exosomes derived from H37Rv-infected macrophages
inhibit IFN-c-induced MHC Class II and CD64 surface
expression on naı̈ve murine macrophages

Exosomes were isolated from RAW264.7 macrophages infected

with M. tuberculosis H37Rv or from uninfected cells. Naı̈ve C57BL/

6 bone marrow-derived macrophages (BMMØ) were stimulated

with exosomes for 18 hours followed by IFN-c treatment for an

additional 18 hours. Exosomes were removed prior to IFN-c
treatment. The cells were harvested and analyzed for MHC class

II and CD64 surface expression by flow cytometry. As expected,

treatment of macrophages with IFN-c markedly upregulated the

number of macrophages expressing MHC class II (Fig. 1A and

1B)and CD64 (Fig. 1C and 1D) in comparison to resting cells.

Prior treatment with exosomes from infected cells mitigated this

IFN-c-induced MHC class II and CD64 expression (Fig. 1A–D).

Exosomes from uninfected cells did not inhibit the MHC class II

or CD64 upregulation by IFN-c nor did treatment with these

exosomes alone lead to any significant increase in the surface

expression of these proteins. In contrast, exosomes released from

infected cells when added to BMMØ increased expression of

MHC class II and CD64 approximately 2 fold but no further

increase was observed upon IFN-c stimulation.

The inhibition of IFN-c induced MHC class II and CD64
expression by M.tbexosomes was partially dependent on
the presence of lipoproteins but completely dependent
on TLR2 and MyD88

It is known that purified M.tuberculosis 19-kDa lipoprotein

inhibits the induction of a subset of IFN-c responsive genes

through a TLR2 dependent manner. However, live virulent M.tb

inhibits macrophage response to IFN-c independent of mature

mycobacterial lipoproteins [17]. We therefore hypothesized that

exosomes derived from infected cells might also not require

lipoprotein. To test this hypothesis, we compared the ability of

exosomes released from cells infected with either wild-type or

LspA-deficient H37Rv to inhibit the IFN-c-induced surface

expression of MHC-II and CD64. The lspAgene encodes for a

prolipoprotein signal peptidase II that cleaves the signal sequence

from diacylatedprolipoproteins at a site that precedes the

lipidatedcysteine residue. This cleavage exposes the primary

amine group on the N-terminal cysteine that leads to final

acylation and formation of mature triacylated lipoproteins.

Disruption of lipoprotein signal peptidase results in loss of all

Figure 1. Exosomes isolated from M.tb infected cells inhibit IFN-c induced surface expression of MHC class II and CD64 on BMMØ.
Exosomes were isolated from uninfected RAW264.7 cells (Un exo) or RAW264.7 cells infected with M.tb H37Rv (Rvexo). BMMØ were treated with
exosomes for 18 hours or left untreated (RC) followed by +/2 IFN-c stimulation for an additional 18 hours. Cells were stained with either PE
conjugated anti-MHC class II or anti-CD64 and analyzed by flow cytometry. Shown are the number of cells stained with MHC class II (A) or CD64 (B)
and representative FACS plots for each treatment; MHC-II (C) and CD64 (D). Isotype control antibody was used to define background staining. Results
are representative of three individual experiments plus standard deviations; asterisk (*) indicates a p value #0.05 between +/2 IFN-c treatments.
doi:10.1371/journal.pone.0018564.g001

Exosomes Block Macrophage Activation by IFN-c
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mature lipoproteins. We found that exosomes from H37Rv lspA-

infected cells alone induced a limited increase in MHC class II

expression similar to what was observed for exosomes from wild-

type H37Rv-infected cells. Moreover, both exosome preparations

inhibited the IFN-c induced MHC class II expression (Fig. 2A and

2C). In contrast, the exosomes from H37Rv lspA- infected cells

neither induced CD64 expression nor were they able to inhibit the

IFN-c-induced CD64 expression, suggesting differential inhibition

of IFN-c responsive genes in presence/absence of mycobacterial

lipoproteins (Fig. 2B and 2D). The reason for this difference is not

clear but may reflect a quantitative difference in TLR2 ligation in

the presence or absence of lipoproteins. This may lead to

differences in the level of NF-kB activation or other signaling

changes resulting in the distinct responses observed with the

exosomes.

Nevertheless, exosome-mediated suppression of IFN-c-induced

MHC class II and CD64 expression was completely dependent on

TLR2 (Fig. 3A and 3B) and MyD88 (data not shown) as

macrophages deficient in either protein were refractory to the

exosome-mediated inhibition of IFN-c activation. Interestingly,

the limited upregulation of MHC class II expression induced by

exosomes was not dependent on TLR2 (Fig. 3A).

Since M.tb-infected macrophages secrete IL-6 which may

contribute to their inhibition of IFN-c activation [18], we tested

the cell culture supernatants from exosome-treated BMMØ for IL-

6 levels. We found that although treatment of BMMØ with

exosomes from infected cells resulted in higher levels of IL-6 in

comparison to treatment with exosomes from uninfected cells,

neither supernatants were capable of suppressing IFN-c-induced

MHC-II and CD64 expression (data not shown).

Exosomes from M.tb-infected cells do not block IFN-c
induced STAT1 phosphorylation but do block CIITA
expression

To determine if exosomes block the initial steps in the JAK-

STAT pathway we looked at STAT1 phosphorylation following

IFN-c stimulation. As observed previously with M.tb and its TLR2

Figure 2. Exosome-mediated inhibition of MHC-II and CD64 expression is partially dependent on exosomes containing
mycobacterial lipoproteins. Exosomes were isolated from RAW264.7macrophages infected with wild-type or LspA-deficient M.tb. BMMØ were
treated with the exosomes or left untreated (RC) for 18 hours and then incubated for an additional 18 hours +/2 IFN- c. Cells were stained with PE-
conjugated anti-MHC class II or anti-CD64 antibody and analyzed by flow cytometry. Isotype control antibodies were used to define background
staining. Shown is the mean fluorescence intensity for each sample with isotype control values subtracted from each value for MHC-II (A) and CD64
(B). Also shown are the representative FACS plots for MHC-II (C) and CD64 (D) expression. Results are representative of two independent experiments
plus standard deviation and p value ,0.05 between +/2 IFN-c treatments are indicated by asterisk (*).
doi:10.1371/journal.pone.0018564.g002
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ligands [19,20], we found that exosomes from wild-type or LspA-

H37Rv-infected cells did not inhibit phosphorylation of STAT1 at

Tyr 701 (Fig. 4A). Previous studies have shown that the M.tb 19-

kDa lipoprotein inhibits class II major histocompatibity complex

transactivator (CIITA) expression normally induced by IFN-c
treatment [20]. CIITA is a master regulator of MHC class II

expression and appears to promote transcription factor binding to

the MHC class II promoter facilitating transcription [21]. To

determine whether pre-treatment of macrophages with exosomes

also blocks IFN-c-induced CIITA expression, real time PCR was

performed to measure CIITA mRNA levels. The results showed

that exosomes from wild-type or lspA- H37Rv-infected cells

inhibited IFN-c induced CIITA mRNA expression by 5 fold

and 3 fold respectively in comparison to treatment with IFN-c
alone (Fig. 4B). The CIITA mRNA levels on macrophages were

defined relative to the housekeeping gene GAPDH. Exosomes

from uninfected cells did not inhibit the IFN-c induced CIITA

mRNA expression (Fig. 4B).

Exosomes from M.tb-infected cells inhibit a subset of
IFN-c regulated genes

A microarray study was undertaken to define the gene

expression profile in response to exosome treatment on a global

scale. Primary C57BL/6 derived BMMØ were treated with

exosomes or infected with M.tb followed by incubation with or

without IFN-c. There were 8 treatment groups which included

BMMØ: +/2 IFN- c, Uninfected exosomes +/2 IFN-c, H37Rv

exosomes +/2 IFN- c and H37Rv infection +/2 IFN- c.

Macrophages were harvested for RNA which was converted to

double stranded cDNA, labeled with Cy3 and 4 mg of labeled

cDNA hybridized to Musmusculus 4672 whole genome array.

Results were drawn from three independent experiments and

expression values for treatment groups were normalized to

untreated macrophages. Genes were filtered on the basis of fold

change $2 and p value #0.05. Treatment of macrophages with

IFN-c induced the expression of 295 genes and suppression of 355

genes (Fig. 5A and B). Included in the upregulated genes are those

involved in antigen presentation such as MHC-II and CD64 as

well as CD40, CIITA, CD86 and H2-Mb2. Other genes

upregulated by IFN-c include those involved in cell attachment

and recruitment (e.g. ICAM-1, CCR2 and CCR5) and GTP

binding proteins (e.g. guanylate binding proteins 2, 4 and 5, IRG-

47, LRG-47 and Interferon-c induced GTPase). Infection of

macrophages with M.tb resulted in the induction of 393 genes and

suppression of 300 genes whereas treatment with exosomes from

H37Rv-infected cells induced and suppressed 89 and 78 genes

respectively. A number of genes suppressed by exosomes are

involved in immune responses such as the nitric oxide synthase,

PGE2 synthase and HSP-70. Exosomes from uninfected cells

induced the expression of 5 genes that were all listed as

hypothetical and no suppressed genes were defined. M.tb infection

induced expression of many the same genes previous defined [22]

including Formyl peptide receptor, SOCS-3, TRAF-1 and Fas as

well as suppressed expression of Ccr2, Cyclin D1, Lymphocyte

specific protein, CD39 and CD83. There was a limited overlap in

up-regulated and down-regulated genes between any two

treatments with most of overlap observed between IFN-c
treatment and H37Rv infection. A complete list of the microarray

data associated with IFN-c, M.tb-infection and exosome-treatment

of BMMØ has been included as supplementary data (TableS1)

and submitted to Gene Expression Ominbus (GEO).

In this study, we were particularly interested in evaluating how

exosomes affect the macrophage response to IFN-c and how this

compares to M.tb-infected macrophages. We observed that of the

295 genes induced by IFN-c, 90 were not inhibited by any

treatment or infection (Fig. 5C). However, there were a significant

number of IFN-c inducible genes (94 in total) that were suppressed

by either pretreatment with H37Rv exosomes orH37Rv infection.

Interestingly, an additional 65 genes induced by IFN-c, were

specifically suppressed by H37Rv exosomes and similarly 46 IFN-

c inducible genes were uniquely suppressed in H37Rv infected

cells. Importantly, pretreatment of macrophages with exosomes

released from uninfected cells did not significantly affect any of the

genes induced by IFN-c. We also analyzed the genes suppressed

by IFN-c to determine if pre-treatment with H37Rv exosomes or

prior infection with M.tb‘‘rescued’’ gene expression. We found that

among the 355 genes suppressed by IFN-c, a significant number of

genes (165 in total) were not rescued by exosome treatment or

infection (Fig. 5D). However, there were a number of genes (73 in

total) rescued by either pretreatment with H37Rv exosomes or by

M.tb infection. An additional 68 genes were rescued only in

BMMØ treated with H37Rv exosomes and another 49 genes were

rescued only in M.tb-infected cells. Again, pretreatment with

exosomes from uninfected cells had no effect on IFN-c regulated

gene expression. A complete list of the microarray data associated

with IFN-c-regulated genes affected by exosomes treatmentand

M.tb infection can be found in supplementary data (Table S2) and

has been submitted to GEO.

Figure 3. Theinhibition of MHC class II and CD64 by
Rvexosomesis dependent on macrophage expression of
TLR2. Untreated or exosome-treated BMMØ isolated from TLR2-
deficient mice were stimulated +/2 IFN-c. Macrophages were
harvested, stained with PE-conjugated anti-MHC class II or anti-CD64
antibody and analyzed by flow cytometry. Shown are the mean
fluorescence intensity values for MHC-II (A) and CD64 (B) expression.
Results are representative of two independent experiments plus
standard deviation and p value ,0.05 between +/2 IFN-c treatments
are indicated by asterisk (*).
doi:10.1371/journal.pone.0018564.g003

Exosomes Block Macrophage Activation by IFN-c
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Table 1 shows a list of IFN-c- regulated genes whose expression

are affected by H37Rv exosome treatment and includes the genes

most altered by exosome treatment based on fold differences in

gene expression. Also included is a subset of genes likely associated

with M.tb immunity taken from the complete list of IFN-c-

regulated genes modulated by H37Rv exosome treatment. These

genes fall into various categories including genes important in

antigen presentation (i.e CIITA, class II MHC, CD86), apoptosis

(i.eFas, caspase 3) and complement components. Of note, the

majority of the genes listed were also suppressed by M.tbinfection.

We were particularly interested in the exosome-mediated

suppression of Irgm mRNA expression which was confirmed by

qRT-PCR (data not shown). Irgm is a GTP-binding protein which

appears to play a critical role in the anti-mycobacterial response

induced by IFN-c [5].

To categorize the differentially regulated genes functionally, we

initiated a KEGG pathway analysis using web based Pathway-

Express program of the Onto-tools Suite. This led to identification

of 6 major pathways that were down-regulated in cells treated with

H37Rv exosomes and IFN-c compared to IFN-c treatment alone

(Table 2). These pathways were selected on the basis of corrected

gamma p value #0.05 and a minimum input of 4 genes. Most

significantly affected pathways included those involved in Cell

adhesion and Cytokine-cytokine receptor interaction. Other

affected pathways include the antigen processing and presentation

pathway, Toll-like receptor signaling pathway, apoptosis and

complement and coagulation pathway.

Discussion

Our results suggest that exosomes released from M.tb H37Rv-

infected cells when added to BMMØ can partially block the cells

response to IFN-c stimulation, including inhibiting MHC class II

expression. The mechanism by which exosome inhibit the IFN-c
response appears similar to what has been shown with the 19-kDa

lipoprotein and M.tb infection, as the proximal step in STAT1

activation appear not to be affected but expression of CIITA is

down-regulated [19,20,22,23,24,25]. This inhibitory effect of

exosomes is partially dependent on the presence of M.tb

lipoproteins but completely dependent on the macrophage

expression of TLR2 and MyD88. Finally, in line with previous

studies with M.tb-infected macrophages or purified lipoprotein, the

exosomes only block a subset of IFN-c inducible genes [22].

Although a significant body of research has addressed the

mycobacterial components that can inhibit IFN-c stimulation

as well as define the mechanism behind this inhibition

[9,10,11,20,22,25], it remains unclear whether these components

would be acting only in the context of whole mycobacteria and

therefore only within infected cells or if they may function outside

this sphere. The latter requires that the components are shed while

the mycobacteria remain extracellular or that they are released

from infected cells. Although, published data indicates that M.tb

may remain extracellular during a latent infection [26], studies

suggest that only limited number of bacilli remain extracellular

during an active infection [27]. Nevertheless, it is clear that

Figure 4. Exosomes from M.tb-infected cells do not block IFN-c induced STAT1 phosphorylation but do inhibit IFN-c induced
expression of CIITA. BMMØ were treated +/2 exosomes isolated from RAW264.7 macrophagesas described for figure 1 followed by a 30 minute
incubation with IFN-c. Cells were lysed and analyzed by Western blot for p-STAT1 (Tyr701) (A). The p44/42 MAP Kinase antibody was used as a
loading control as described previously (17). BMMØ were treated with exosomes and stimulated +/2 IFN-c for 18 hours. Cells were harvested for qRT-
PCR using specific primers for target gene (CIITA) and reference gene (GAPDH). Shown is the relative mRNA expression compared to untreated cells
for CIITA normalized to GAPDH (B). Results are representative of two separate experiments plus standard deviation and p value ,0.05 shown by
asterisk (*).
doi:10.1371/journal.pone.0018564.g004

Exosomes Block Macrophage Activation by IFN-c
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mycobacterial components can be found extracellular. Cord factor

can be found at high concentrations within TB granulomas in

human patients and likely functions in promoting caseatinggra-

nulomas and secondary tuberculosis [28]. How cord factor

accumulates in the extracellular environment is unclear, although

experiments by Beatty et al. indicate that it is released from infected

macrophages on small membrane-bound vesicles [29]. However,

most studies to address mechanisms by which mycobacterial

components are released from infected cells have focused on

apoptosis. Apoptotic vesicles isolated from BCG-infected macro-

phages can activate both CD4+ and CD8+ T cells in vivo [30].

Earlier studies have shown that apoptotic bodies from infected

macrophages carry a number of mycobacterial antigens [31]. Our

recent work indicates that mycobacterial proteins and glycolipids

are present on exosomes released from macrophages infected with

M.tbor other mycobacteria [32].

Exosomes are small 30–100 nm membrane vesicles derived

from the fusion of MVBs with the plasma membrane and release

of the intraluminal vesicles as exosomes. The exosomes are

released from both hematopoietic and non-hematopoietic cells and

function in transporting proteins, lipids and RNA to other cells

and in doing so may modulate their cellular functions [33]. The

role for exosomes in biological processes has garnered considerable

attention recently, mostly in the context of tumor antigen

presentation and activation of CD4+ and CD8+ T cells

[34,35,36]. However, exosomes have also been shown to inhibit

immune responses. Studies by Pecheet al. demonstrated that by

injecting donor-haplotypeexosomes from bone marrow DCs

before transplantation one could significantly prolong heart

allograft survival in congenic and fully MHC mismatched Lewis

rats [37]. Exosomes may also be involved in promoting tolerance

to oral antigens [38]. Therefore, whether exosomes promote or

suppress an immune response depend on various factors including

source and composition of the exosomes as well as the system

under investigation. In previous studies we have shown that

exosomes from M.tb-infected macrophages can stimulate naı̈ve

Figure 5. Exosomes isolated from M.tb-infected cells inhibit a subset of IFN-c inducible genes which partially overlaps with those
inhibited by an M.tb infection. BMMØ were treated with exosomes isolated from RAW264.7 cells (uninfected/infected)or were infected with M.tb
followed by incubation +/2 IFN-c. RNA was isolated, converted to double-stranded cDNA, labeled with Cy3 and hybridized to Musmusculus 4672
whole genome array. Genes up-regulated or down-regulated by each treatment were identified on the basis of $2 fold change in gene expression
and a p value #0.05 as defined through three independent microarray experiments. Results are represented as Venn diagrams showing the total
number of genes identified as well as the number of genes which overlap between treatment groups (A and B). Genes induced by IFN-c were further
analyzed for suppression by exosome pre-treatment or H37Rv infection. Similar analysis was performed on genes suppressed by IFN-c whose
expression was ‘‘rescued’’ by exosome pre-treatment or H37Rv infection. Results are depicted as pie charts showing the number of IFN-c-induced
genes not inhibited by any treatment, those inhibited by treatment or infection and those common to both groups (C). Similarly, results are shown
for genes rescued by exosomes or H37Rv infection (D).
doi:10.1371/journal.pone.0018564.g005

Exosomes Block Macrophage Activation by IFN-c
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macrophages to produce limited amounts of TNF-a, IL-6 and

other pro-inflammatory mediators [15]. In the present study we

have shown they can also enhance MHC class II cell-surface

expression. Nevertheless, pre-treatment of BMMØ with exosomes

from M.tb-infected but not from uninfected cells can render these

macrophages partially refractory to IFN-c stimulation.

In previous studies by Paiet al. they observed a significant

number of macrophage/host genes whose expression was

modulated by exposure to the M.tb 19-kDa lipoprotein (459 genes

in total). Interestingly, despite the known presence of the 19-kDa

lipoprotein on exosomes, we did not observe such modulation of

macrophage gene expression upon exposure to exosomes from

M.tb-infected macrophages (167 genes in total). This might be due

to differences in the concentration of the 19-kDa lipoprotein as the

exosomes would likely contain significant less of the lipoprotein

then used in the studies by Paiet al. The variation may also stem

from differences in the experimental systems, as the previous

microarray studies used macrophages exposed to the 19-kDa

lipoprotein during the entire experiment while in our studies, the

BMMØ were exposed to exosomes only during the first 18 hours

and removed during the 18 hour incubation with IFN-c. It is

important to note that our study was not specifically designed to

Table 1. List of genes suppressed or rescued by exosomes isolated from M.tb infected cells following stimulation with IFN-c.

IFN- c inducible genes suppressed by Rvexosomes Genes rescued by Rvexosomes from IFN- c mediated suppression

Ten most regulated genes

Gene Fold change Gene Fold change

Cnn3, calponin 3, acidic 221.67* Edg1,endothelial differentiation 15.06*

Bcl2l14, Bcl-2 like14 217.09* sphingolipid G-protein coupled receptor1

(apoptosis facilitator) Ccl9 11.75*

Mpa2l,macrophage activation 2 like 214.49* Clec4d, C-type lectin domain4 11.03*

Cxcl10,(chemokine C-X-C motif) 213.15* Lhfpl2,lipoma HMGIC 10.7*

Ligand 10 fusion partner like 2

Cd274 29.54* Igf1, insulin like growth factor1 10.28*

Slamf8,SLAM family member8 27.39* Fabp4,fatty acid binding protein4 10.14*

Gbp5,guanylate nucleotide binding protein5 27.04* Igfbp4,insulin like growth factor binding protein4 9.75*

Lrrc8c, Leucine rich repeat containing 8 family member C 26.96* cbr2, carbonyl reductase2 7.78*

TimD4,T-cell immunoglobulin 26.82* Emp1,epithelial membrane protein1 7.28*

Cd40 26.70* Xylt2, xylosyltransferase2 6.68*

Ten most interesting genes

C2ta, classIItransactivator 24.41* C5ar1,complement component 5a receptor1 4.3*

Cd86 23.55* Cd14 4.19*

Fas, Tnfrsf6 (TNF receptor superfamily member) 23.38 Mrc1, mannose receptor C,type1 4.04

H2-DMb2, histcompatibility2,classII, locusMb2 23.08* Ccr3 3.98*

irf1,interferon regulatory factor1 22.87* Pik3cg 3.34*

Ccl5, RANTES 22.97 Cd84 3.24*

irgm, LRG-47,immunity related GTPase 22.35* Ccl3 2.90*

Caspase3 22.43 Ccl4 3.1*

C3, complement component 3 22.62 Ets-1 2.25*

C1r, Complement component1,r 22.25 Cxcr4 4.44*

*Genes common to both treatment with Rv exosomes/H37Rv infection.
doi:10.1371/journal.pone.0018564.t001

Table 2. IFN-c stimulated pathways significantly inhibited by Rvexosomes.

Pathway No of genes Gamma p value Representative genes

Cell adhesion molecules 10 2.26E-06 Itgb7, CD40, CD274, CD86, Icam1

Cytokine-cytokine receptor interaction 10 9.11E-05 Il15ra, il18, ccl12, ccl5, cxcl10

Antigen processing and presentation 6 0.001 H2-T22, ciita, H2- DMb2, H2-Oa,Tap1, H2-DMa

Toll-like-receptor signaling pathway 8 0.002 Irf-7, tnf, CD40, Tlr9

Complement and coagulation cascades 4 0.003 Clr, c3, c1s, cfb

Apoptosis 7 0.005 Fas, TNF, Casp3, Bid

doi:10.1371/journal.pone.0018564.t002

Exosomes Block Macrophage Activation by IFN-c
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look at early changes in gene expression induced by exosomes.

Nevertheless, it is clear that exosomes can modulate macrophage

gene expression and that this is specific to exosomes from infected

cells as exosomes from uninfected macrophages were relatively

inert. As expected, infection of macrophages with H37Rv induced

significant changes in gene expression and was comparable to

what was observed in earlier studies [22].

Our study indicates that exosomes from M.tb-infected macro-

phages can block a significant number of IFN-c-induced or

suppressed genes. A majority of these IFN-c regulated genes were

also blocked in M.tb-infected macrophages and include genes

involved in antigen presentation and macrophage activation (see

Table 1). Indeed all 10 genes which showed the highest change in

gene expression between IFN-c treatment +/2 exosomes were

also affected by infection with M.tb. Nevertheless, there were also

IFN-c regulated genes specifically affected by treatment with

exosomes or infection with H37Rv. This likely stems from the

different receptors engaged by H37Rv and exosomes and the

continued presence of the mycobacteria and mycobacterial

components during the course of the experiment. Our previous

studies indicate that exosomes function through TLR2 and

MyD88 to induce macrophage production of TNF-a and other

cytokines [15] and this engagement also appears important in

modulating the macrophage response to IFN-c; however, we

cannot rule out the importance of other receptors potential

engaged by exosomes.

In summary, the present as well as our previous studies suggest

that the exosome’s effect on the immune response is dynamic and

multifactorial. Exosomes released from M.tb-infected macrophages

can both promote and inhibit aspects of mycobacterial immunity.

To what extent exosomes perform such functions during the

course of an in vivo infection awaits further study and will require

manipulation of both the production and composition of exosomes

during an infection.

Materials and Methods

Ethics Statement
The University of Notre Dame is credited through the Animal

Welfare Assurance (#A3093-01). All animal studies were con-

ducted according to the Institutional Animal Care and Use

Committee (IACUC) guidelines. The protocol for the isolation of

macrophages from mice was approved by the University’s IACUC

(March 26, 2009, protocol # 11-034).

Macrophage culture and bacterial strains
Bone marrow derived macrophages (BMMØ) were isolated

from 6–8 weeks old female C57BL6 mice and cultured in vitro as

previously described [39]. The mouse macrophage cell line RAW

264.7 was maintained in RPMI supplemented with 10% fetal

bovine serum, 10 mM sodium pyruvate and 25 mM HEPES.

wild-type and the LspA-deficient H37Rv (kindly provided by Joel

Ernst, NYU, New York) were each grown in Middlebrook 7H9

broth supplemented with OADC until mid logarithmic growth

phase and frozen down as stocks in growth media plus 15%

glycerol. Prior to use, H37Rv stocks were thawed and the

mycobacteria were de-clumped bya brief sonication and passing

through syringe fitted with 27 gauge needle at least ten times.

Isolation of exosomes from cell culture supernatants
Confluent monolayers of RAW 264.7 mouse macrophage cell

line were infected with mycobacteria or left uninfected as controls.

Before infection, the bacterial cultures were incubated for 2 hours

with normal horse serum for complement opsonization. Infections

with M.tb were titrated to obtain approximately 80% infectivity.

The RAW 264.7 cells were infected with bacteria for 4 hours

followed by washes with 1X DPBS. The cells were cultured in

RPMI containing exosome free FBS (10% final concentration) and

exosomes were isolated from the culture supernatants of infected

and uninfected RAW 264.7cells after 72 hours and purified on

linear sucrose gradient as previously described [40].

Treatment of macrophages with exosomes and IFN-c
BMMØ were seeded in six well tissue culture plates @ 7.56105

cells/well and allowed to adhere for 24 hours. The cells were

treated with exosomes isolated from uninfected and infected RAW

cells at 10 mg/well for 18 hours. The media was removed and

replenished with fresh media +/2 recombinant mouse IFN-c
(eBioscience Inc. San Diego, CA) at 200 U for an additional

18 hours.

Flow cytometry
The cells were rinsed with DPBS and gently scraped and

counted on hemacytometer using trypan blue to assess viability.

The cells were washed in FACS buffer and blocked with 10%

mouse serum and stained with PE conjugated anti-mouse I-A/I-E

or FccR1 (CD 64) or isotype control (BD Pharmingen, San Jose,

CA). Cells were analyzed for protein surface expression using a

Beckman Coulter flow cytometer. Cellular fluorescence was also

quantified by the geometric mean (Gmean). For this fluorescence

analysis, the GMean fluorescence for isotype control was deducted

from the GMean fluorescence for the specific antibody.

Immunoblot
To study phosphorylation of STAT1, the bone marrow

macrophages were treated with exosomes for 18 hours as described

above. Cells were treated with 200 U recombinant mouse IFN-cor

left untreated for 15 minutes to an hour. Cells were then lysed on ice

in immunoprecipitation buffer with protease and phosphatase

inhibitors (20 mMTris.HCl, 50 mMNaCl, 1 mM EGTA, 1% NP-

40, 1% Sodium deoxycholate, 2.5 mM sodium pyrophosphate,

1 mM sodium vanadate, 1 mM EDTA, 1 mM Dithiothreitol,

1 mM PMSF 0.1% SDS and 10 mM sodium fluoride). The protein

lysates were quantified by Micro BCA protein assay and equal

concentrations of each group were loaded on 10% SDS-PAGE gels,

electrophoresed and transferred onto polyvinylidenedifluoride

membranes (Milipore, Bedford, MA). The membranes were probed

with (1/1000 dilution) p-Stat1 (Tyr 701) (Santa Cruz Biotechnology

Inc. Santa Cruz, CA) and with goat anti-mouse HRP (1/15000

dilution) and developed using Super Signal West Pico chemilumi-

niscent substrate (Pierce, Thermo Fisher Scientific, Rockford, IL).

The p44/42 MAP Kinase antibody (Cell Signaling Technology Inc.

Beverly, MA) was used as a loading control as previously described

[41].

Quantitative Real time PCR
RNA was isolated using RNeasy columns (Qiagen Inc.

Valencia, CA) following manufacturer’s instructions and quanti-

fied by Nanodropspectrophotometric method. 1 mg of RNA was

converted to cDNA using Verso cDNA kit (Thermoscientific). One

tenth of the resulting cDNA template was used for Real-time PCR

using Absolute QPCR SYBR Green Mix (Thermo Scientific) and

7500 Fast Real Time PCR system (Applied Biosystems). The

following primers were obtained commercially from Invitrogen:

CIITA sense, 59-ACG CTT TCT GGC TGG ATT AGT-39;

CIITA antisense,59-TCA ACG CCA GTC TGA CGA AGG-39

and GAPDH sense, 59-AAC GAC CCC TTC ATT GAC-39,
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GAPDH antisense,59- TCC ACG ACA TAC TCA GCAC-39

[25]. PCR amplification efficiencies were determined for each

gene prior to the relative quantification and were similar for the

target gene (CIITA) and the endogenous control (GAPDH).

Dissociation curve analysis was also run for each reaction to detect

nonspecific amplification in cDNA samples. The relative mRNA

expression of the target gene normalized to the endogenous

reference gene was quantitated using the comparative Ct method

and the formula 2-DDC
T.

Nimblegen Microarray gene expression studies
Macrophages were treated with exosomes at10 mg/well,

infected with M.tb H37Rv or left untreated for 18 hours followed

by +/2 IFN-c at 200 U/ml for an additional 18 hours. Cells were

harvested and RNA was isolated using RNeasy columns (Qiagen).

Double stranded cDNA was synthesized using the Invitrogen

Superscript Double-Stranded cDNA synthesis kit and was

subsequently labeled using Nimblegen one color DNA labeling

kit (Roche Nimblegen Inc. WI). 4 mg of Cy3-labeled cDNA from

each group was hybridized onto Musmusculus 4672 Nimblegen

microarray using Nimblegen Hybridization system 4 according to

manufacturer’s instructions (Roche). Arrays were scanned and

chip images were collected on a Nimblegen MS200 station

running Nimblegen 1.0 software. The microarray gene expression

analysis was performed using data generated from three

independent experiments. All genes that fell within one standard

deviation of the average chip background in at least two thirds of

treatment conditions were removed from consideration before any

other analysis was performed. P values for differences in individual

gene expression values were calculated using the student t-test.

Separate gene lists were constructed for up- and down-regulated

genes for each of the three treatment conditions by screening with

the criteria of mean expression value of $2 fold over untreated

cells and a p value #0.05. From the list of IFN-c induced genes

(determined by the above criteria) a gene was considered

suppressed by exosome treatment or H37Rv infection if it showed

at least 2 fold down regulation relative to IFN-c treatment with p

value ,0.05. Similarly, an IFN-c suppressed gene was considered

rescued if it showed at least 2 fold increase in expression level

relative to IFN- c treatment with a p value ,0.05.

Pathway analysis was performed with the Pathway-Express

program [42] of the Onto-tools Suite. For this analysis, genes were

selected based solely on the criterion of a 2 fold cut-off. The

analysis was performed assuming a hypergeometric distribution

and using the Bonferroni multiple testing correction. Affected

KEGG pathways were ranked in order of classical p-values as well

as gamma corrected p-values, which refers to pathway impact

analysis or a measure of the probability of a pathway being

significantly regulated.

Statistical analyses. Data was analyzed by a one-tailed or

paired Student’s t test. Statistical significance was assumed at p

#0.05. Each experiment was conducted 2 or 3 times and error

bars represent standard deviation values.

Supporting Information

Table S1 List of genes suppressed or rescued by exosomes

isolated from M.tb infected cells following stimulation with IFN-c.

(XLSX)

Table S2 IFN-c stimulated pathways significantly inhibited by

Rvexosomes.

(XLSX)
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