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Abstract

Association analysis has led to identification of many genetic variants for complex diseases. While
assessing the association between genes and a disease, other factors can play an important role.
The consequence of not considering covariates (such as population stratification and
environmental factors) is well-documented in genetic studies. We introduce a nonparametric test
of association that adjusts for covariate effects. Specifically, the adjustment is realized through
weights that are constructed from genomic propensity scores that summarize the contribution of
all covariates. The benefit of our test is demonstrated through an important dataset on bipolar
disorder (BD) collected by the Wellcome Trust Case Control Consortium (WTCCC). When
compared to other tests, our test identified an un-reported region with three single nucleotide
polymorphisms (SNPs) on chromosome 16 that show strong evidence of association (p-value <
5x1077). This region is near the RPGRIP1L gene known to be associated with bipolar disorder. A
haplotype block including these three SNPs was further discovered to be strongly associated with
bipolar disorder. It is also interesting to note that our nonparametric test did not reveal strong
signals at two SNPs that were detected by a covariate-adjusted parametric test. This suggests that
different methods of covariate adjustment can complement each other. Thus, we recommend using
both parametric and nonparametric testing. Additionally, we performed simulation studies to
compare our proposed test with the unadjusted test and an adjusted parametric test. Our finding
underscores the importance of accommodating and controlling for covariate effects in discovering
genetic variants associated with complex disorders.
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INTRODUCTION

Over the past several years, genome-wide association studies (GWAS) have been successful
in localizing and identifying important genes that contribute to common human diseases
[Klein et al., 2005; Arking et al., 2006; Duerr et al., 2006; Chen et al., 2007]. To test the
association between a genetic variant and a disease, it has become increasingly clear that
environmental factors may have important confounding effects [Amos et al., 1996; Lu and
Cantor, 2007; Vansteelandt et al., 2009]. For example, population stratification is a special
case of confounding caused by ethnicity or ancestry differences that a failure to account for
this stratification can lead to a spurious association. There are many methods specifically
designed to address population stratification such as genomic control, structured association,
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and the principal component method [Devlin and Roeder, 1999; Pritchard and Rosenberg,
1999; Price et al., 2006]. It remains important, however, to develop a general method to
assess association in the presence of covariates.

A common method of accounting for covariates is to regress phenotypic values against the
covariates, and then to perform an association analysis using the residuals against the
genotypes [Wang et al., 2006; Lu and Cantor, 2007]. While this two-step approach is
convenient, the theoretical properties of this approach are difficult to study due to the lack of
an integrated model. Additionally, this framework may not be suitable when the covariates
themselves are correlated with the genes. Another useful approach is to fit a parametric
model of the relationship between phenotype and all risk factors. Here, the risk factors
include both genotypes and covariates. For example, logistic regressions are typically used
to test genetic contribution while adjusting for the covariates in a case-control study. The
underlying assumptions of parametric models however, can be difficult to verify, especially
so for discrete outcomes that usually involve the choice of link function. The shortcomings
of these parametric methodologies motivate our nonparametric approach that tests the
association between the phenotype and a genetic variant, while adjusting for the covariates.

Score tests are particularly useful in genetic studies and many of them are unified under the
U-statistics [Laird et al., 2000; Zhang et al., 2010]. Most of these statistics evaluate the
direct association between the phenotype and a genetic variant without adjusting for the
covariates. Meanwhile, the concept of propensity score has been proven useful to remove
the bias of the treatment effect caused by confounding variables, enabling causal inference
[Rosenbaum and Rubin, 1983; Zhao et al., 2009]. Recall that the balance property of
propensity scores [Rosenbaum and Rubin, 1983, Theorems 1-2] indicates that if a subclass
of units is homogeneous in propensity score, then the treated and control units in that
subclass will have the same distribution of covariates.

Thus, we propose a weighted nonparametric statistic of association by using propensity
scores. Instead of exactly matching the samples using propensity scores, we choose to weigh
each sample pair in the U-statistic in Zhang et al. (2010) according to their propensity
scores. In this way, we are aiming to achieve the balance property without losing power of
the test. In particular, we use propensity scores to summarize the contribution of all
covariates, and then derive the weights from these scores. From the viewpoint of U-statistic,
the weights increase the contribution of each sample pair if they share similar propensity
scores, and they reduce that contribution otherwise. Taking into account the covariates, we
use this weighted statistic to test the null hypothesis that there is no association between the
phenotype and a genetic variant conditional on the covariates.

MATERIALS AND METHODS

Bipolar Disorder Dataset and Quality Control

We were given permission to use the bipolar disorder data set collected by WTCCC to
demonstrate the utility of our test. The data contain 1998 cases and 3004 controls. The
control samples came from two sources: half from the 1958 Birth Cohort (58C) and the
remainder from a new UK Blood Service (UKBS) sample. The genotyping was performed
using GeneChip 500K arrays at the Affymetrix Services Lab (California). After proper
quality control/quality assurance (QC/QA), WTCCC (2007) identified a strong signal (p-
value < 5x1077) for bipolar disorder at SNP rs420259 on chromosome 16p12, and 13 other
SNPs with moderate association (p-value between 107> and 5x10~7) genome-widely.

Following the same QC/QA procedure as in WTCCC (2007), we used a quality score
threshold for inclusion of SNPs at 0.9, treating the genotype as missing when the most
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probable call fell below this threshold. Furthermore, we removed 130 samples from the BD
cohort, 24 samples from the 58C cohort, and 42 samples from the UKBS cohort, due to low
call rates, overall heterozygosity, and evidence of non-European ancestry. Additionally,
SNPs were excluded from our analysis according to the exclusion list provided by WTCCC,
including missing data rates and departures from Hardy-Weinberg equilibrium. We
performed further quality controls based on minor allele frequency (MAF > 5%) and Hardy-
Weinberg equilibrium in both cases and controls (p-value > 0.0001). As the WTCCC
investigators, we set 5x10~7 as the genome-wide significance threshold for strong
association, and p-values between 107> and 5x10~7 as moderate association.

Unadjusted Association Test

First, the SNP association is evaluated using the unadjusted association test in Zhang et al.
(2010). To introduce the notation, suppose that we have data from n subjects, and for subject
i, let Y; denote the trait and G; a genotypic score. Here, Y can be the case/control status or a
quantitative trait, and G can be the number of mutant alleles. The association test is based on
the U-statistic generalized from Kendall’s tau to measure the association between Y and G,

-1
n .
Uz( ) ) D (Gi=G(¥i - Y)) _ -
namely, i< . In the absence of covariates, the test statistic U

follows an asymptotically normal distribution under the null hypothesis conditioning on all
phenotypes [Rabinowitz and Laird, 2000]. Once the asymptotic mean and variance of U are
evaluated, it can be used to test the null hypothesis Hg that there is no association between Y
and G.

Covariate-Adjusted Nonparametric Association Test

Before we propose the covariate-adjusted nonparametric test of association, we provide a
brief review of genomic propensity scores [Zhao et al., 2009]. For a SNP marker with two
alleles A and a, the genomic propensity score is the probability of an individual having a
particular test-locus genotype (AA, Aa, or aa) based on each specific individual’s covariates
Z, py(2) = P(G =g | Z =2z), where g and z are observed values of G and Z. Specifically, for a
dominant or a recessive model with g = 0 or 1, the propensity score becomes p(z) = p1(z) = P
(G =1JZ = z), where pg(z) = 1 — p1(2). For an additive model with g = 0, 1, or 2, the
propensity score p(z) is a vector p(z) = (p1(2),p2(2)) = (P(G = 1|Z = 2),P(G = 2|Z = 2)), where
Po(2) =1 = p1(2) = p2(2).

As in matching subjects according to their propensity scores [Rosenbaum and Rubin, 1984],
we propose a weighted U-statistic by imposing weights to each observation pair (i, j). In
particular, the propensity scores are used to summarize the contribution of all covariates;
weights are then derived from these scores. Sample pairs that share similar propensity scores
are more heavily weighed than sample pairs that do not share similar propensity scores. That
is, for the sample pair (i, j), we first evaluate p(z;) and p(zj), then a weight function is derived
using a positive weight function, W : w(p(z;),p(zj)) = W(p(zi) — p(zj)). Thus, the proposed

-1
Uw:( . ) (Gi = G = Yjw(p(zi), p(z;))-
weighted test statistic is: 2 ; ’ ! j.

To account for covariates, this weighted test statistic is used to test the null hypothesis, Hy',
that there is no association between the phenotype and the genetic marker conditional on the
covariates, that is, Y and G are independent conditional on the covariates, Z. The mean and
variance of the weighted test statistic under this null hypothesis can be calculated
conditioning on all phenotypes and covariates. Then the calculations become similar to those
in Zhang et al. (2010) except that we need to evaluate P(G; = g|Z; = z;) for each subject i,
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which are exactly the genomic propensity scores pg(z;). After calculating the mean and
variance, a y? test statistic can be obtained from U, for testing purpose.

When analyzing the bipolar disorder data set, the propensity scores were estimated from the
data using proportional odds logistic model as log it(P(Gj < g | Zj = zj)) = Ag + B'zj, i = 1,
...,N, using covariates gender and age at recruitment, with g = 0,1. The weight function was

chosen as W(u;, ug):exp(—uf /2~ zz§/2) after standardizing the corresponding propensity
scores such that they have a unit sample standard deviation.

Genome-wide Association Results

Our analyses confirmed previous results by WTCCC (2007) and further revealed other
regions associated with bipolar disorder. Using the non-weighted test statistic U under the
null hypothesis Hyp, Table 1 suggests that three SNPs show strong evidence of association.
One of these three SNPs is rs420259 on chromosome 16 which was detected by WTCCC
(2007); the other two SNPs are rs9378249 on chromosome 6 and rs12938916 on
chromosome 17, which to the best of our knowledge, have not been reported previously
using the same data.

Next, we considered gender and age at recruitment as covariates. Compared with the
previous test, the adjusted nonparametric test confirmed rs9378249 and rs420259 as signals
with strong association, but did not pick up rs12938916. Moreover, the adjusted
nonparametric test identified three additional SNPs (rs2387823, rs1344485, and rs11647459,
all on chromosome 16) with strong evidence of association. These three SNPs were neither
detected by the unadjusted test nor reported by WTCCC (2007). It is noteworthy that the
three additional SNPs are in strong linkage disequilibrium, but not with the reported
rs420259 (Figure 1).

To make our comparisons more comprehensive, we further analyzed the bipolar disorder
data set using a logistic regression model, adjusting for gender and age at recruitment. The
results corroborated the results of the nonparametric method. The results of the logistic
regression confirmed the genome-wide significance of exactly the same two SNPs and
excluded the other SNP identified by the unadjusted test (see Table 1).

Two additional strong signal SNPs were detected using the logistic regression as opposed to
the nonparametric adjusted test: rs4815603 and rs3761218, both on chromosome 20. Note
that WTCCC (2007) identified rs3761218 as showing moderate evidence of association and
rs4815603 had a p-value between 104 and 10~°. Additionally, both SNPs showed only
moderate associations using unadjusted and nonparametric adjusted tests. Nonetheless, the
logistic regression model missed the three SNPs (rs2387823, rs1344485, rs11647459) on
chromosome 16 that were identified by our nonparametric approach as discussed above.
These findings show that different methods of adjusting for covariates can lead to different
insights. Although parametric adjustment is commonly used in the literature, nonparametric
adjustment can be more robust to the model specification. Thus, these two approaches serve
as complements to each other in the identification of important SNPs.

We further examined the three new SNPs rs2387823, rs1344485, and rs11647459 (all on

chromosome 16) that were identified by the covariate-adjusted nonparametric test, and also
the two new SNPs rs4815603 and rs3761218 (both on chromosome 20) that were identified
by the parametric test. Recall that we fitted the proportional odds logistic model to estimate
the genomic propensity scores. Thus we can evaluate the correlations between the genotype
and the covariates through this model. On one hand, the three SNPs on chromosome 16 did
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not appear to be associated with the covariates, implying that almost no confounding effect
exists. The adjustment was mainly for the effects of covariates on trait, producing a more
significant p-values than the unadjusted test (this phenomenon is supported by the
simulations reported here). One the other hand, the two SNPs on chromosome were
associated with the covariates, resulting confounding effects and increasing the p-values of
the weighted test (see Table 1). However the logistic regression achieved the genome-wide
significance, possibly because of the efficiency of the parametric method when the
underlying model assumption is valid (see more discussions for the simulation results).

In addition to Table 1, Table 2 lists all SNPs showing moderate evidence of association
identified by any of the above three methods (with p-values between 107 and 5x10~7).
Although there exist some non-overlapping results, most findings are consistent among
these three methods.

Haplotype Analysis Results

Among all SNPs showing strong or moderate evidence of association, we found that some
SNPs are in close proximity within a chromosome. This motivates a haplotype analysis for
these SNPs. We focus on the SNPs on chromosome 16 that are tabulated in Tables 1 and 2.
The linkage disequilibrium (LD) heat map in Figure 1 displays that seven out of the eleven
SNPs were in a 29kb region. They were identified as a haplotype block [Barrett et al., 2005].
Using the seven SNPs within the block, the haplotype frequency was estimated [Zhao,
2004]. The top haplotypes are “GGTTCGG”, “ACCCGAA”, “GCTTCGG”, and
“GGTTGGG”, with probabilities 0.535, 0.381, 0.049, and 0.027, respectively. Next, a pair
of haplotypes was estimated for each subject using EM algorithm, and the haplotype
association analysis was performed. We chose to dichotomize haplotype Has 1 or 0
according to whether it is equal to “ACCCGAA”. Then, the previous association tests can be
applied simply by replacing genotype G with haplotype H. Using the non-weighted test
under Ho, the p-value was 3.45x1076. The weighted test determined the p-value at
2.64x1077 as a genome-wide strong association between this block and bipolar disorder,
highlighting the power of the weighted test and further confirming the importance of this
region. Moreover, using the logistic regression model adjusting for the covariates
determined the p-value of this block at 2.16x1078, which did not achieve the genome-wide
significance. We note that this region is close to the RPGRIP1L gene, which encodes the
protein that localize to the basal body-centrosome complex or to primary cilia and
centrosomes in ciliated cells. The RPGRIP1L gene was previously identified to be
associated with schizophrenia as well as bipolar disorder [O’Donovan et al., 2008;Riley et
al., 2009].

SIMULATIONS

Simulation Settings

To further evaluate our method, we performed a proof-of-principle simulation study to
assess the influences of the weighted test to the confounding effects. First, a continuous
covariate Z° was simulated from N(0,1) distribution, and a categorical covariate Z¢ was
simulated as P(Z°@ = 1) =1 — P(Z°@ = 0) = 0.7. To then introduce the correlation between
the covariates and the test-locus genotype G, we generated G according to Binomial
distribution Binomial(2, p) with probability p satisfying it(p) = p +vgg Z%© + vaZ@ where vgq
and v control the correlation between the genotype and the covariates, and u ~ N(0,1) is
random noise. Lastly, conditional on the genotype G and the covariates Z°° and Z°?, a binary
trait Y was generated according to a logistic model including genetic effect, environmental
effects, and gene-environment interactions, logit(P(Y = 1)) = o + Byg + Poz® + Pcaz®® +
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Bg,co92®° + By,cagz®® + &, where £ ~ N(0,1). The interaction terms were added purposely to
evaluate the robustness of different testing methods.

In the simulation, we set u = a. = —0.5. The choices of the coefficients (veo,vca) and
(Bg:BcosBcasBg,corBg,ca) Were provided as in Table 3 as different settings and models. The

weight function was chosen as W(u;, u;):exp(—uf/z - u§/2) after standardizing the
corresponding propensity scores such that they have a unit sample standard deviation. We
compared our weighted test to the non-weighted test to assess the influence of adjustment
for covariates. In addition, as in the analysis of bipolar disorder data, we provided results
from logistic regression model including marginal effects from both gene and covariates.

Simulation Results

Tables 4, 5 and 6 report the empirical type | error and power of the three tests: the non-
weighted test using Hg, the weighted test using Hy', and the test from the logistic regression.
Tables 4, 5 and 6 correspond to Settings S1, S2 and S3 (see Table 3), respectively.

From the perspective of type I error, for model N1, since Bg = Beo = Bea = Bg,co = Bg,ca = 0,
there was neither genetic effect nor covariate effect. We found that all three tests behaved
fairly well in terms of the accuracy for type | errors as noted in all three settings (Tables 4, 5
and 6). For model N2, since Bg =0, Beo = Bea = 1, Bg,co = Bg,ca = 0, there was no genetic
effect but there were covariate effects. If there are correlations between the genotype and
covariates, we expect that the non-weighted test using Hg cannot control the type I error at
the significance level because of the confounding effects caused by the covariates. In Table
4, since there were no correlations between the genotype and the covariates, all three tests
performed reasonably well. However, in Tables 5 and 6, the type | errors of the non-
weighted test were always much higher than the significance level. By contrast, the
weighted test using Ho' and the logistic regression performed well in controlling the type |
errors.

From the perspective of power, we considered a collection of models representing different
situations. Models Al and A2 only have marginal effects from both genotype and
covariates, while Models A3-AG6 all include gene-environment interactions. Since the non-
weighted test using Hg cannot control the type | error in Tables 5 and 6, the power is not
truly comparable. Nonetheless, we tabulated the power results for all three tests. The non-
weighted test using Hg sometimes had a higher power (as seen in Table 5), and sometimes
had a lower power (as seen in Tables 4 and 6). In Setting 2, due to the confounding effects
enhancing the overall genetic effects, a false positive occurred. We have the opposite
situation in Setting 3 as the false negative occurred. This suggests that to adjust for
confounders, the null hypothesis must be conditional, as is Hy'. It is noteworthy that, even if
there were no confounders as in Setting 1, we still observe the advantage of adjusting for
covariates when there exist environmental effects to the trait.

The comparison between the weighted test using Hg' and the logistic regression falls into the
classic framework of comparing nonparametric and parametric tests. In Models Al and A2,
due to the correctness of underlying model assumptions, the logistic regression performed
slightly better than the weighted test. By contrast, when the underlying model assumptions
were violated as in Models A3-A®6, the nonparametric test performed better than the
parametric test due to its robustness to model specifications. In summary, the weighted test
is robust to the model assumptions compared with the logistic regression, and it performed
consistently well in our simulation studies.
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DISCUSSION

In conclusion, we applied a propensity score-based nonparametric test to analyze an
important data set on bipolar disorder made available to us by the WTCCC. By analyzing
the bipolar disorder data, we not only confirmed the results reported by the WTCCC (2007),
but also identified other regions at the genome-wide significance level, including the
haplotype block identified on chromosome 16. It is important to note that the identified
haplotype block is near the RPGRIP1L gene that was reported to be associated with bipolar
disorder. Simulation studies provide further supporting evidence for the weighted test.
Compared with the non-weighted test, the weighted test can not only correctly control the
type | error at the significance level to avoid false positives, but also increase the power
when false negatives occur. Compared with other parametric test such as logistic regression,
the weighted test has the merit of robustness to model specifications. Our approach provides
a promising way of adjusting for general covariates in genome-wide association studies, and
has demonstrated its usefulness in an existing GWAS data set. In this analysis, we examined
age and gender as two potentially important covariates. There are likely other covariates that
are worthy consider investigation.
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Figure 1.
Linkage disequilibrium heat map for the identified SNPs on chromosome 16
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Table 3

Simulation Settings and Models

Coefficients
Setting S1 Voo = Vea = 0
Setting S2 Veo = Vea = 0.5
Setting S3 Veo = Vea = —0.5
Model N1 By = Beo = Bea = Bgco = Bgca = 0
Model N2 | By =0, Beo = Bea =1, Bgco = Bgca =0
Model Al | By =0.5, Beo = Bea = L, Bgco = Bgca =0
Model A2 | By =0.5, Beo = Bea = 2, Bgco = Bgca =0
Model A3 | By=0, Beo = Bca =0, Bgco = Bgca =1
Model A4 | By =0, Beo = Bea =1, Bgco = Bgca=1
Model A5 | By=0.5, Beo = Bea = 0, Byco = Bgca = L
Model A6 | By=0.5, Beo = Bea = 1, Bgco = Bgca = 1
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