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MCMC Estimation of Markov Models for Ion Channels
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ABSTRACT Ion channels are characterized by inherently stochastic behavior which can be represented by continuous-time
Markov models (CTMM). Although methods for collecting data from single ion channels are available, translating a time series
of open and closed channels to a CTMM remains a challenge. Bayesian statistics combined with Markov chain Monte Carlo
(MCMC) sampling provide means for estimating the rate constants of a CTMM directly from single channel data. In this article,
different approaches for the MCMC sampling of Markov models are combined. This method, new to our knowledge, detects
overparameterizations and gives more accurate results than existing MCMC methods. It shows similar performance as QuB-
MIL, which indicates that it also compares well with maximum likelihood estimators. Data collected from an inositol trisphosphate
receptor is used to demonstrate how the best model for a given data set can be found in practice.
INTRODUCTION
Ion channels regulate the flow of ions across the cell
membrane and across the membranes of internal organelles
such as the endoplasmic reticulum (ER). For example,
ryanodine receptors and inositol trisphosphate (IP3) recep-
tors are calcium channels located on the ER that release
calcium from the ER into the cytoplasm. When open, an
ion channel generates a flow of ions resulting in small
currents which can be measured by patch-clamp techniques
(1); with these methods, currents from single ion channels
can be collected.

In measurements from IP3 receptors, the currents—
neglecting fluctuations due to noise—seem to jump at
random between two conductance levels. One is ~0 pA
(which means that the receptor is closed as no ions flow
through). When the receptor is open, a small negative
current is observed which results from positive Ca2þ ions
being released from internal stores. Therefore, it is assumed
that each data point corresponds to a closed (C) or an open
event (O). Instantaneous stochastic transition between open
and closed states of an ion channel can be represented by
a continuous-time Markov model. In fact, a short time after
patch-clamp techniques became available, Markov models
were applied to single-channel data by Colquhoun and
Hawkes (2), and since then have been the method of choice
for modeling ion channels. Nevertheless, the estimation of
a suitable Markov model Q from experimental data is the
subject of ongoing research.

The two main approaches which are in use today rely on
defining and investigating a conditional probability distribu-
tion P(QjI) of models Q for given measurements I of ion
channel currents. Despite its abstract mathematical defini-
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tion, the probabilityP(QjI) indeed captures a rather intuitive
concept, answering the question: How likely is a model
Q when a data set I has been observed?

Unfortunately, analytical representations of P(QjI) can
rarely be obtained because its computation often involves
integrals which can only be calculated approximately. One
possible solution is to determine statistical parameters rather
than the full distribution. In the ion channel literature, this is
represented by the maximum likelihood estimators (MLEs)
which are based upon models in the literature (3–5).
MLE-approaches aim to find the model Q for which the
probability P(QjI) is maximal, therefore the full probability
distribution is reduced to a point estimate.

Alternatively, Markov chain Monte Carlo (MCMC)
methods can be applied which aim to approximate a statis-
tical distribution by drawing a large number of samples; for
general introductions to MCMC methods, see Gamerman
and Lopes (6) and Gilks et al. (7). MCMC is more ambitious
in the sense that it avoids a collapse of the full probability
distribution to a point estimate. Nevertheless, all point
estimators, the MLEs in particular, can be calculated from
the approximated P(QjI) found by MCMC. In this article,
the software QuB-MIL (http://www.qub.buffalo.edu/),
which implements one of the most widely used MLEs
by Qin et al. (3,4), will be compared with our MCMC
approach.

Completely independent of the different ideas of studying
a probability distribution P(QjI) is the choice between two
alternatives for definingP(QjI). Because it is equally impor-
tant to understand the advantages and disadvantages of
defining P(QjI) for dwell times as opposed to events, we
will devote some space to discuss this question. Typically,
it is found that, for generating a time course similar to the
measured currents, not one but several hidden Markov states
standing for particular types of behavior of the ion channel
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are required; therefore, the current state of the Markov
model cannot be determined directly by observing opening
or closing.

Two ideas have been pursued for overcoming this
difficulty: The two most widely used maximum likelihood
estimators (MLEs) (3–5) as well as an early MCMC method
from Ball et al. (8) estimate the exact times of the contin-
uous transitions between the classes O and C. Because
open and closed time distributions can be calculated from
a given Markov model of Colquhoun and Hawkes (2), this
method does not depend on finding a sequence of hidden
Markov states which corresponds to the observations.

However, this further idealization of the data leads to the
so-called missed-events problem: If, for example, a short
closing between two observations of open events remains
undetected, a long open time is seen which might not repre-
sent the typical behavior of the ion channel and therefore
degrades the accuracy of the estimation of the open times.
As brief events occur in single channel measurements so
often, that they cannot be neglected, considerable effort
was devoted to removing the influence of missed events
(9–16). Most notably, Hawkes et al. (17,18) found an analyt-
ical solution to the problem as well as approximations which
are easier to compute.

The missed events problem can be avoided by directly
using the discrete measurements of open and closed events
without further idealization but this requires the construc-
tion of a sequence of hidden Markov states. This is the
main idea behind an alternative MCMC method which
was developed by Rosales and co-workers in a series of
articles (19–22).

Their algorithm estimates a discrete Markov model which
describes the transition probabilities between states during
a sampling interval—no assumption is made on the state
of the Markov model within a sampling interval, thus, in
principle, no events can be missed for this and similar
methods including our approach. A disadvantage of Ro-
sales’ approach is that calculating a corresponding contin-
uous time Markov model from the matrix of transition
probabilities is problematic because, in general, inverting
the matrix exponential function is difficult. For this reason,
Rosales and co-authors use an approximation that requires
a small sampling interval which, however, is not realistic
for all experiments.

Gin et al. (23) were the first to describe a MCMC
method for directly estimating rate constants of a contin-
uous-time Markov model from a sequence of open and
closed states. Their approach is restricted to the case that
either for the open or the closed class only one state is
needed, and under these conditions, a highly efficient algo-
rithm is obtained.

This article combines the MCMC algorithms of Gin et al.
(23) and Rosales et al. (19) to allow for fitting to continuous-
time Markov models with arbitrary numbers of open
and closed states. After a short introduction to the theory
Biophysical Journal 100(8) 1919–1929
of Markov models and Bayesian statistics, two MCMC
methods for sampling Markov models are developed. The
new algorithm is tested and compared with the previous
MCMC approaches of Gin et al. (23) and Rosales and
co-workers (19,20) as well as with QuB-MIL (http://www.
qub.buffalo.edu), an implementation of the MLE method
described in the literature (3,4). Finally, single-channel
data collected from an IP3 receptor by Wagner et al. (24)
is fitted to give an example how the method can be used
in practice. (For a more extended review on modeling of
the IP3 receptor based on single-channel data, see (25).)
THEORY

Continuous-time Markov models for ion channels

Data from patch-clamp recordings are measured at sampling
intervals [tk, tkþ1] of fixed length t, i.e., tkþ1 – tk ¼ t for
consecutive sampling times. Therefore, a trace can be repre-
sented as a sequence of single channel currents

I ¼ �
Ik
�N
k¼ 1

;

where N is the number of samples and Ik ¼ I(tk). The
simplest way for determining whether the receptor is
currently open or closed is thresholding. Although more
powerful methods for idealizing single-channel data are
available (20,26–31), we do not describe filtering of the
currents for simplicity and because the focus of this study
is on channel kinetics. Nevertheless, filtering can be easily
incorporated in our approach as described in the literature
(19,20). Thresholding classifies each data point Ik either as
a closed (C) or an open event (O):

Ek ¼ E
�
Ik
� ¼ �C; if jIkj<jIo=2j;

O; if jIkjRjIo=2j; k ¼ 1;.;N; (1)

where IO is the open current of the receptor. By Eq. 1,
a sequence (Ek) of events is obtained which shall be repre-
sented by a continuous-time Markov model.

A Markov model consists of a set of states, S ¼ {S1, .,
SnS}, forming the vertices of a graph whose bidirectional
edges are valued with nonnegative rate constants qij; see
Fig. 1 for examples.

Whether a channel is open or closed is usually repre-
sented in the model by more than one state, i.e., several
Si may correspond to one event O or C. Thus, the likelihood
of a given sequence of events (Ek) cannot be calculated
without knowing the sequence (Mk) of corresponding model
states. The approach followed here for overcoming this
difficulty is the construction of a probability distribution
P((Mk)j(Ek),Q) from which a realization (Mk) will be
sampled. Fig. S1 in the Supporting Material shows the pro-
cessing of data points I via events E to model states M.

The graph of aMarkovmodel is represented inmatrix form
by the infinitesimal generator Q ¼ (qij), i, j ¼ 1, ., nS.

http://www.qub.buffalo.edu
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FIGURE 1 Examples for Markov models.
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In thismatrixQ, each qij is thevalue of the transition rate from
the state Si to Sj or zero if the two states are not connected. The
model is assumed to be conservative; i.e., for the diagonal
elements qii, we have

qii ¼ �
X
jsi

qij; i ¼ 1;.; nS: (2)

The initial distribution p0 specifies the probabilities of the
Markov model being in any of the states S1, ., SnS at time
t ¼ 0. Therefore, p0 must be a stochastic vector whose
nonnegative components sum to 1, i.e.,

p0 ˛PnS ¼
(
p ˛RnS

�����XnS
i¼ 0

pi ¼ 1; 0% pi%1

)
: (3)

Starting from the initial distribution p0, the time course of
the probabilities p(t) is obtained as the solution of the differ-
ential equation

dpðtÞ
dt

¼ pðtÞQ; p0 ˛PnS ; (4)

which is given by

pðtÞ ¼ p0 expðQtÞ; (5)

where exp denotes the matrix exponential. In most cases, we
need transition probabilities from a state Si to a state Sj
during a sampling interval t. Therefore, we define

At ¼ expðQtÞ ¼ �
rij
�
; i; j ¼ 1; . ; nS: (6)

For large t, the probability p(t) tends to the stationary
distribution

p ¼ limt/N pðtÞ;
which can be calculated from Eq. 4 by solving the system of
linear equations
pQ ¼ 0;PnS
p ¼ 1: (7)
i¼ 1
i

Under the assumption that the Markov model is at equi-
librium, the detailed balance conditions hold, which are
given by

piqij ¼ pjqji; i; j ¼ 1;.; nS: (8)

If the graph which is represented by Q is acyclic, Eq. 8 is
automatically fulfilled.
Bayesian framework

For a continuous-time Markov model with infinitesimal
generator Q, the rate constants are to be estimated from
a sequence of events (Ek). Whether a model with a given
matrix Q is a good or a bad representation of the data is
expressed by the conditional probability P(QjE). This prob-
ability is not evaluated directly. Instead, we consider

PðQjEÞ ¼
X
M˛M

PðQ;MjEÞ; (9)

whereM is the set of all possible sequences of model states�
Mk
�N
k¼ 1

of length N; the probability of a sequence E of open and
closed events is thus determined by taking into account all
realizations of Markov states M ˛ M. Equation 9 can be
further refined to explicitly include the influence of the
stationary distribution p if P(Q,MjE) is replaced by
P(p,Q,MjE). Of course, the evaluation of P(Q,MjE) for
all M is infeasible in practice for large lengths N. Instead,
we take advantage of M as an auxiliary variable which,
eventually, will enable us to generate samples for Q from
P(Q,MjE). The transition probabilities from a Markov state
Mk to the next state Mkþ1 are available from the matrix At

(see Eq. 6); therefore, the probability

P
��

Mk
�N
k¼ 1

����Ek
�N
k¼ 1

;Q
�

can be calculated iteratively. Due to the Markov property,
the transition probability to the state Miþ1 depends only
on the current state Mi. Thus, we have

P
��

Mk
�N
k¼ 1

����Ek
�N
k¼ 1

;Q
�

¼ P
�
M1
��E1;Q

�
,

QN�1

i¼ 1

P
�
Miþ1

��Mi;
�
E1;.;Eiþ1

�
;Q
�
; Mi˛S:

(10)

Equation 10 is the most important part of our algorithm
because it will be used not only to generate realizations M
but also for sampling Q. (See section 1 of the Supporting
Material for an algorithm for generating (Mk) from this
probability distribution.)
Biophysical Journal 100(8) 1919–1929
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In the following, we define prior distributions for the rate
constants of a model Q as well as for its stationary distribu-
tion p. Note that whereas the prior for the rate constants will
be used for both MCMC algorithms MH and MHG which
will be introduced in the next section, the prior for p will
only be used for the MHG algorithm. The prior probability
P(Q) is chosen to capture the assumption that rate constants
of a model Q cannot have arbitrarily large values. This is
ensured by an exponential prior

PðQÞfexp

�
TrðQÞ
l

	
; l˛Rþ; (11)

where

TrðQÞ ¼
XnS
i¼ 1

qii

is the trace of the matrix Q. Here and in the following,
the symbol f will be used if left- and right-hand sides are
equal up to a multiplicative constant. Equation 11 assigns
a low probability should rate constants be much larger than
l (we used l ¼ 30 ms�1). Explorations of different values
for l suggest that the algorithm is relatively insensitive to
this parameter. Only if very low values, say l ¼ 0.03 ms�1,
are chosen, the influence of the prior becomes so strong that
some test data sets are not fitted correctly; in this case, rate
constants with values above 1 are assigned decreased values
in the fit. However, this behavior was expected and merely
demonstrates that the prior adequately serves its purpose.

For the stationary distribution p, we choose the Dirichlet
density prior

PðpÞ ¼
YnS
i¼ 1

pbi�1
i

(
G

 XnS
i¼ 1

bi

!,YnS
i¼ 1

GðbiÞ
)
; (12)

where G is the gamma-function

GðzÞ ¼
Z N

0

tz�1e�tdt: (13)

The hyperparameters bi are assigned low values (bi ¼ 10�6)
to obtain an uninformative prior. The choice of the prior Eq.
12 may seem arbitrary. In fact, the main motivation is the
idea that, conveniently, together with the corresponding
likelihood which will be defined below, p is distributed
according to a Dirichlet distribution which can be sampled
from directly. This strategy of choosing a conjugate prior
was introduced by Raiffa and Schlaifer (32).
METHODS

In this section, we develop Markov chain Monte Carlo (MCMC) methods

for sampling sequences of model states M and models Q from the proba-

bility distribution P(M,QjE). Two algorithms will be presented, one of

which samples the full set of rate constants whereas the second version finds

the stationary distribution p and half of the rate constants which together

determine the remaining rates.
Biophysical Journal 100(8) 1919–1929
A Metropolized Gibbs sampler

Our goal is to sample from the probability distribution P(M,QjE), i.e., we
will generate a sequence of pairs

ðMðlÞ;QðlÞÞLl¼ 1

(where L is the number of iterations). This can be achieved by alternating

sampling from the conditional distributions

MðlÞ � PðMjQðlÞ; EÞ; (14)

QðlÞ � PðQjMðl� 1Þ; EÞ; (15)

instead of sampling directly from P(M,QjE). This is an example of the

Gibbs sampler (33), one of the classical MCMC algorithms.

To sample a realizationofmodel statesM as inEq. 14, theprobability distri-

butionP(MjE,Q) has to be calculated using Eq. 10. Then, the sequenceM can

be sampled iteratively with a variant of the well-known forward-backward

algorithm (34) (details can be found in the Supporting Material). Sampling

Q fromEq. 15 requires an additionalMetropolis-Hastings step (35,36), which

is the reason why our algorithm is called a Metropolized Gibbs sampler.
Sampling of all rate constants (MH)

Unfortunately, it is not possible to sample Q directly from P(M,QjE), but it
shows thatP(M,QjE) can instead be calculated by evaluating Eq. 10 and the
prior P(Q) from Eq. 11:

PðQjM; EÞfPðMjQ; EÞPðQÞ: (16)

Now, from a given Q, a new sample ~Q can be generated in two steps using

a Metropolis-Hastings algorithm (35,36).

First, we generate a proposal ~Q ¼ ð~qijÞ by changing the set of rate

constants

~qij ¼
�
qij þ uij; if qij>0; uij � Uð�d; dÞ;
0; if qij%0;

(17)

where U(�d, d) is the continuous uniform distribution on the interval [�d,

d]. Of course, after applying Eq. 17 the matrix ~Qmust be adapted so that Eq.

2 and Eq. 8 hold.

In a second step, it has to be decided whether the proposal generated by

Eq. 17 is accepted as a sample from the probability distribution P(M,QjE).
The model ~Q is accepted with probability

a ¼ min

(
1;
P
�
~Q
�
P
�
M
���~Q; E�

PðQÞPðMjQ; EÞ

)
; (18)

where the right-hand sides of evaluating Eq. 16 for Q and ~Q appear in the

quotient. Equation 18 shows that a proposal ~Q is accepted for sure if its like-

lihood is greater than for the sample Q.
Rate constants and stationary distribution (MHG)

The detailed balance conditions, Eq. 8, allow for an alternative to Metrop-

olis-Hastings sampling of all rate constants: If the stationary distribution p

can be determined, only half of the rate constants—say, for example, the

subdiagonal rates qij with i > j—have to be sampled using Eqs. 17 and

18. The remaining rate constants can then be calculated by Eq. 8. Adding

an additional Gibbs step for sampling p requires only minor changes: Eq.

16 is replaced by

PðQjp; M; EÞfPðMjp; Q; EÞPðQÞPðpÞ; (19)

which indicates that an additional prior P(p) (Eq. 12) is required.
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Assuming that the conditional probability of p only depends on the

sequence of model states M, we obtain

pðlÞ � PðpjMðlÞ; QðlÞ; EÞ ¼ PðpjMðlÞÞ: (20)

The likelihood PðpjMÞ can be modeled by a Dirichlet distribution

PðpjMÞ ¼ DnS�1ðS1ðMÞ;.; SnSðMÞÞ; (21)

where Si(M) gives the number of occurrences of the state Si in the sequence

M. This choice ofP(pjM) gives the correct distribution for p if each compo-

nent pi is binomially distributed B(N,pi) where N is the length of the

sequence M. This is true provided that the Markov chain is at equilibrium.

With the prior defined above (see Eq. 12), p can be sampled from the Di-

richlet distribution

p � DnS�1ðGðMÞÞ (22)

with

GiðMÞ ¼ SiðMÞ þ bi: (23)

RESULTS

The two MCMCmethods MH and MHG, which were devel-
oped in the preceding sections, will now be applied to test
data which was generated from a Markov model. The
samplers are compared with earlier algorithms by Gin
et al. (23) and Rosales and co-workers (19,20). Finally, we
demonstrate how our algorithm performs on single-channel
data collected from an inositol trisphosphate receptor.
Testing the method

First, we apply the method to test data which has been
generated from model M2 (see Fig. 1 b), a Markov model
with two open and three closed states. A trace of 2000 ms
is simulated using the Gillespie algorithm (37) for the
parameters given in Table 1.

If the model is in one of the two open states, a single
channel current of L1 ¼ �20 pA is given; if in one of the
closed states, the current is L2 ¼ 0 pA. Normally distributed
white noise with a variance of s2 ¼ 7.5 pA is added and the
trace is sampled with a sampling time of 0.05 ms, thus each
data set consists of 40,000 data points. Both MH and MHG
sampler (after a burn-in time of 10,000 iterations) converge
to distributions whose mean values are close to the correct
rate constants (compare to Table 1). Histograms showing
the results of the MHG sampler for all rate constants are pre-
sented in Fig. 2.
TABLE 1 Parameters for models M1, M2, and M3 (see Fig. 1)

Model M1 Model M2 Model M3

q12 ¼ 0.058 q21 ¼ 0.3 q12 ¼ 0.058 q21 ¼ 0.3 q12 ¼ 0.058 q21 ¼ 0.3

q23 ¼ 1.7 q32 ¼ 0.6 q23 ¼ 1.7 q32 ¼ 0.6 q23 ¼ 1.7 q32 ¼ 0.6

q24 ¼ 4.9 q42 ¼ 0.8 q24 ¼ 4.9 q42 ¼ 0.8 q24 ¼ 4.9 q42 ¼ 0.8

q45 ¼ 0.3 q54 ¼ 0.1 q35 ¼ 0.3 q53 ¼ 0.1

All values given in ms�1.
So far, we have demonstrated that our algorithm finds the
correct set of rate constants from a given test data set if the
graph of the Markov model which was used for generating
the data is known. For single-channel data, it is not clear,
however, how many open and closed states should be
included in the Markov model and how they should be con-
nected. The second part of this question is a difficult
problem which cannot be discussed in full detail here.
Although the possibilities for connecting open and closed
states grow rapidly with the number of states, many of these
seemingly different models are equivalent in the sense that
they are capable of modeling the same dwell-time distribu-
tions. Thus, it is impossible to uniquely determine the model
with the correct connections between open and closed states
for a given data set because, almost always, several models
which differ in the connections between states fit the data
equally well. The reader is referred to Bruno et al. (38)
for a more detailed discussion.

We will now demonstrate that our MCMC algorithm
shows encouraging results if fits to overparameterized
models are attempted: For this purpose, test data is simu-
lated from model M1 (Fig. 1 a) and fitted to the models
M2 and M3 (Fig. 1, b and c), which have one more open
state. If the MH sampler is used for fitting to model M2,
a typical convergence plot is shown in Fig. 3. Although
the six rates q12, q21, q23, q24, q32, and q42 that are present
in the correct model with only one open state tend to approx-
imately correct values, it seems that the rates q45 and q54
wander around in a large range.

The histograms for these two rate constants show a wide-
spread multimodal distribution (see Fig. 3 c), which is
another strong hint that the five-state model is not supported
by the data. Thus, if a data set is fitted to amodel consisting of
toomany states it is expected that not all rate constantswill be
fixed. Using the MH algorithm for fitting the same data set to
model M3 leads to even more promising results: Only after
a few thousand iterations, the stationary probability of the
extra-state O5 tends to zero (see Fig. 4). This clearly shows
that the algorithm detects that the state O5 is superfluous.

IfMHG is used to fit data generated fromM1with eitherM2

or M3, the stationary probability of the additional state O5

tends to zero after only a few ten or hundred iterations; even-
tually, the algorithm terminates due to the criterion described
in section 3 of the Supporting Material. Because under such
circumstancesMHG typically terminates after a few seconds,
it can be used for a quick exploration of the number of states
which a suitable model should have. Similar results are ob-
tained for both algorithms when data generated from M1 is
fitted to other models which have more open states thanM1.

In summary, these results suggest that our algorithm
behaves appropriately if the model which was chosen for
fitting is too complex for representing a given data set. In
future, reversible jump MCMC (39) and stochastic variable
selection could be used to discriminate different models on
a more formal basis.
Biophysical Journal 100(8) 1919–1929
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FIGURE 2 Histograms for the algorithm MHG

after 50,000 iterations and a burn-in time of

10,000 iterations. MHG was run on a test data set

consisting of 40,000 data points generated from

model M2 (see Table 1, M2 columns). (Vertical

dotted lines) True values of the rate constants.

(Asterisks) Means of the histograms and (Arrows)

standard deviations.
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Comparison with themethod by Rosales et al. (19)

The performance of both methods is compared for a test
data set of 100,000 data points at a sampling interval of
t ¼ 0.05 ms generated from model M2 shown in Fig. 1. In
contrast to our algorithm, the Gibbs sampler by Rosales
Biophysical Journal 100(8) 1919–1929
et al. (19) estimates transition probabilities during the

sampling interval t, i.e., the matrix At ¼ exp(Qt) rather

than the matrix of rate constants Q. With our own imple-

mentation of the Gibbs sampler by Rosales et al. (19), an

estimate At
G is computed while we use both versions of
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FIGURE 3 Model M2 is fitted to test data of

40,000 data points generated from the simpler

modelM1 using the MH sampler. The convergence

plots (a and b) show that the rates connecting to the

extra state O5 wander around whereas the others

tend to the correct values (compare this to Table

1, M1 columns). Histograms for q45 and q54 are

shown in panel c. The wide-spread multimodal

posterior distributions for both rate constants

clearly indicate that the state O5 is not supported

by the data.
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our algorithm for calculating estimates QMH and QMHG,
respectively.

From each of these samples, we calculate the matrix
exponentials At

MH and At
MHG so that the probability distri-

bution of the true matrix exponential At is obtained. In
Fig. 5, representative examples for histograms of At

G and
At

MH can be compared. Fig. 5 b shows that, especially,
smaller entries of At are generally overestimated by
Rosales’ algorithm. This is also demonstrated quantitatively
in Table S1 which can be found in the Supporting Material.
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FIGURE 4 Model M3 is fitted to test data (40,000 data points) generated

from the simpler model M1 using the MH algorithm. The stationary prob-

ability of the additional open state O5 quickly tends to zero. This suggests

that the sampler detects when a model is too complex for representing

a given data set and reacts by switching off transitions to the additional

state.
Comparison with the method by Gin et al. (23)

As our proposed new approach, the method described by
Gin et al. (23, section 2.5), estimates the rate constants of
a Markov model Q but the algorithm depends on the fact
that either the open or the closed state of the ion channel
can be represented by a single Markov state. Therefore,
we use model M1 with the set of rate constants from Table
1 (M1 columns) for a comparison. The resulting rate
constants are not very different; thus, results are not pre-
sented here. However, the method due to Gin et al. (23) is
much more efficient because sampling a sequence (Mk) of
Markov states is not necessary.
Comparison with the MLE technique
by Qin et al. (3,4)

Maximum-likelihood estimators (MLEs) provide point
estimates for the rate constants of a Markov model for
a given data set. The uncertainty of these estimates is quan-
tified by the variance which can be computed together with
the MLEs. In contrast, MCMC makes available the full
posterior distribution of a model depending on a given
data set while, nevertheless, maximum likelihood estimators
as well as other statistical parameters like the expected
value and the variance can still be determined. Quantitative
comparisons of MLE and MCMC are only possible
by reducing the probability distributions obtained by
MCMC to point estimates. Therefore, in principle, such
a comparison disadvantages MCMC. Nevertheless, we
Biophysical Journal 100(8) 1919–1929
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FIGURE 5 Rosales’ Gibbs sampler and the MH

algorithm are compared for a test data set of

100,000 data points. As representative examples,

we show histograms for components r11 and r15
of the matrix exponential At (plotted in red) of

model M2 (see Fig. 1) with results from Rosales’

Gibbs sampler (plotted in green). (Vertical dotted

line) Exact value of the matrix component. Both

methods give very similar results for the diagonal

of At, as can be seen in panel a, for example.

Mean and standard deviations for MH algorithm

(purple) and Rosales’ Gibbs sampler (green) are

similar. The histograms for the off-diagonal

elements found by Rosales’ method are distributed

over a wide range and are therefore much less

accurate than the estimates found by MH; compare

the two fits for r15 in panel b.
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will demonstrate that suitably chosen point estimates show
similar accuracy as maximum likelihood estimators.

To show how the MCMC methods developed here
perform in comparison with maximum likelihood estima-
tion, we compare our results with the MLE technique pre-
sented in Qin et al. (3,4). It shows that MCMC sampling
comes with a clearly higher cost: A typical MLE fit takes
a few seconds on a standard PC whereas the MCMC
methods developed in this article run for a few minutes up
to some hours depending on the size of the data set. For
example, the fit of a test data set which was used for
comparing QuB-MIL (http://www.qub.buffalo.edu) and
MHG took 2 h with a two-core Intel 3.06 GHz processor
with 4 GB memory. If models with only one open or one
closed state are fitted, the efficient algorithm from Gin
et al. (23, section 2.5) can be used, which decreases the
run time to seconds up to a few minutes. The reason for
this is that generating a large set of samples from a likeli-
hood requires more effort than finding its maximum with
an optimization algorithm.

Fig. 6 compares results of the MHG algorithm with the
module MIL of the QuB software (Ver. 1.5.0.29; http://
www.qub.buffalo.edu), for a test data set generated from
model M2. The plots clearly demonstrate the advantages
of full probability distributions as obtained from MCMC
algorithms over point estimates: With a point estimate there
will always be some doubt how well a model is supported by
the data. If the marginal distributions for the rates showed
more than one distinguished mode, this would indicate
that more than one choice of parameters might be equally
likely, which means that the model is not uniquely deter-
Biophysical Journal 100(8) 1919–1929
mined by the data. For Fig. 6, note that the distributions
are clearly smooth and unimodal, which gives confidence
that the model is appropriate.

There are clear hints already during the fitting process,
e.g., that some of the rate constants vary over a wide range,
if we run MH or MHG with an overparameterized model.
This leads to distributions for some rate constants which
are spread over a wide range, and are multimodal or even
close to uniform (see Fig. 3 c). MLE algorithms might still
converge for an inappropriate model and the only indica-
tions for a fit failing to represent the data often are that
the likelihood is not significantly higher or that the dwell-
time histograms are not better approximated than for less
complex models.

As well as MLE, MCMC approaches allow for ranking
models by likelihoods which are obtained in our case
from Eq. 16 or Eq. 19, respectively. Beyond that it was
shown that additional, more qualitative information on the
quality of the fit can be obtained from the probability distri-
butions—information which is not available for MLE
approaches or any other method which relies on point
estimates.
Single-channel data

So far, the newMCMC algorithms have only been applied to
test data. To give an idea how our approach can be used in
practice, we conclude this section with a small example of
fitting experimental data which was collected from an IP3-
type I receptor at a calcium concentration of 200 nmol/L
(24). For experimental data, the required number of open

http://www.qub.buffalo.edu
http://www.qub.buffalo.edu
http://www.qub.buffalo.edu
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FIGURE 6 Selected histograms for a MHG run

(50,000 iterations) and results of QUB-MIL for

a test data set of 40,000 data points. (Dotted

vertical line) The true value of a rate constant.

(Asterisk) The maximum likelihood estimator

found by QuB-MIL. (Upper arrows) Standard

deviation found by QuB-MIL; (lower arrows)

mean and standard deviations found by MHG.

The estimates with relative errors arebqMIL

32 ¼ 0:522ð�13:0%Þ; bqMHG

32 ¼0:606ðþ1%Þ andbqMIL

45 ¼ 0:365ðþ21:5%Þ; bqMHG

45 ¼ 0:359ðþ19:7%Þ.
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and closed states is not known, although a lower bound can
be obtained by the number of distinct maxima in the log-
linear dwell-time histograms. As more and more states are
added, our algorithms assign low stationary probabilities
to superfluous states and thus allow for improving the fit
without choosing an overparameterized model.

The main shortcoming of the method by Gin et al. (23) is
that only fits to models with either one open or one closed
state are possible whereas our methods allow for fitting
models with arbitrary numbers of open and closed states.
We fit a data set byWagner et al. (24) with MH. The sampler
converges for model M1 as well as model M2. To give
a visual impression of the goodness of fit we show how
well the empirical open time histogram is approximated
by the fits to M1 and M2. Note that the algorithms presented
a b

c d
here are not based upon estimated open and closed times.
Thus, comparing the estimated dwell-time distributions
with the histograms provides an independent test of the
inferred model.

It has to be mentioned that dwell-time histograms can
only be obtained by preprocessing from measurements
which come in discrete multiples of the sampling interval
t, which severely distorts the histogram. For constructing
the open time histogram shown in Fig. 7, a and c, open times
were assumed uniformly distributed over a sampling
interval as suggested by Gin et al. (23, section 2.3), and
adjusted accordingly. Although the open time histogram
has only one distinct maximum, it shows that the distribu-
tion obtained from the fit to the model with two open states
approximates the histogram better for long open events (see
FIGURE 7 Open histogram for a data set of

1,400,000 data points which was collected from

an IP3-type I receptor at a calcium concentration

of 200 nmol/L (24). This is shown together with

the superimposed open time distributions deter-

mined by fits to two different models, one with

one open state (M1) and one with two open states

(M2) (see Fig. 1, a and b). Although the histogram

has only one distinguished peak indicating that one

open state is sufficient, it shows that the open time

histogram is better approximated for long open

events by the model with two open states.

Biophysical Journal 100(8) 1919–1929
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Fig. 7, b and d). However, it seems that the theoretical open
times distribution of model M2 fits the empirical histogram
less well for short events.
DISCUSSION

A new approach, to our knowledge, for estimating Markov
models for ion channels was presented. It was demonstrated
that both versions of the algorithm perform well on a test
data set generated by M2.

The algorithm presented here is a generalization of the
approach developed by Gin et al. (23). This method allows
for a very efficient implementation because probabilities for
sequences of events (Ek) can be calculatedwithout generating
a sequence of corresponding Markov states (Mk), which is
very time-consuming especially for large data sets. However,
this approach is restricted to models where either open or
closed events can be modeled by only one Markov state.

Rosales’ Gibbs sampler (19–22) estimates a discrete
Markov model which corresponds to the matrix At. The
advantage of this idea is that Gibbs sampling typically
converges after just a few thousand iterations. However,
due to difficulties with the computation of matrix loga-
rithms, it is not easy to relate the estimated matrix At to
the infinitesimal generator Q of a continuous-time Markov
model. In addition, in comparison with our algorithm, the
Gibbs sampler was much less accurate. The reason for this
is that the estimates of the transition probabilities rmn
from a state Sm to Sn are based upon counting the frequen-
cies of this particular transition in the sequence (Mk). This
works well for transitions which occur often but low transi-
tion probabilities are highly overestimated even if the
sequence (Mk) is long. Our algorithms are not susceptible
to these inaccuracies because the transition probabilities
rmn are not directly inferred from the observations. Rather,
MH and MHG explore which infinitesimal generators Q
could have generated the observed sequence of events (Ek).

In comparison with maximum likelihood estimators,
MCMC methods generally require a longer runtime. The
algorithms developed here are no exception. However,
MCMC methods return probability distributions which
give a more complete picture of the variability of parameters
than any point estimate. The posterior distribution can be
further explored for extraction of additional details such as
correlations of two or more parameters, making it possible
to investigate questions more subtle than estimating model
parameters. Nevertheless, modes, expected values, and
other statistical parameters can easily be calculated from
MCMC samples. Therefore, MCMC makes better use of
the experimental data than conventional methods because
it extracts much more information.

In summary, MH and MHG combine ideas from earlier
work by Rosales and co-workers (19,20) and Gin et al.
(23). These ideas are extended by allowing for direct fitting
to the rate constants of a Markov model for arbitrary
Biophysical Journal 100(8) 1919–1929
numbers of open and closed states. The fits which we pre-
sented for data from the IP3 receptor suggests that this is
where most of the potential benefits of the prospectively
new approach are. Although the data set has only one
distinct maximum in the open time histogram, a fit to model
M2 which has two open states was successful. Comparison
of the open time histogram of model M2 shows that long
events are better approximated by this model than by M1,
which has only one open state.
SUPPORTING MATERIAL

One figure, one table, and eight equations are available at http://www.

biophysj.org/biophysj/supplemental/S0006-3495(11)00313-4.
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