
Network Quantitative Trait Loci Mapping of Circadian Clock
Outputs Identifies Metabolic Pathway-to-Clock Linkages
in Arabidopsis C W

Rachel E. Kerwin,a Jose M. Jimenez-Gomez,b,c Daniel Fulop,b Stacey L. Harmer,b Julin N. Maloof,b

and Daniel J. Kliebensteina,1

a Department of Plant Sciences, University of California, Davis, California 95616
b Department of Plant Biology, University of California, Davis, California 95616
cMax Planck Institute for Plant Breeding Research, Plant Breeding and Genetics Department, 50829 Cologne, Germany

Modern systems biology permits the study of complex networks, such as circadian clocks, and the use of complex

methodologies, such as quantitative genetics. However, it is difficult to combine these approaches due to factorial

expansion in experiments when networks are examined using complex methods. We developed a genomic quantitative

genetic approach to overcome this problem, allowing us to examine the function(s) of the plant circadian clock in different

populations derived from natural accessions. Using existing microarray data, we defined 24 circadian time phase groups

(i.e., groups of genes with peak phases of expression at particular times of day). These groups were used to examine

natural variation in circadian clock function using existing single time point microarray experiments from a recombinant

inbred line population. We identified naturally variable loci that altered circadian clock outputs and linked these circadian

quantitative trait loci to preexisting metabolomics quantitative trait loci, thereby identifying possible links between clock

function and metabolism. Using single-gene isogenic lines, we found that circadian clock output was altered by natural

variation in Arabidopsis thaliana secondary metabolism. Specifically, genetic manipulation of a secondary metabolic

enzyme led to altered free-running rhythms. This represents a unique and valuable approach to the study of complex

networks using quantitative genetics.

INTRODUCTION

Phenotypes within species are not fixed and instead have

significant levels of natural genetic variation that distinguishes

individuals. This includes traits ranging from development and

metabolism to pathogen resistance, with selection often main-

taining the underlying genetic variation (Hopper, 1999; Veening

et al., 2008). Understanding the molecular and genetic basis of

complex quantitative traits is an important goal in genetics with

wide-ranging ramifications across the scientific community.

Unfortunately, this effort is complicated by the fact that most

phenotypic variation is quantitative and polygenic with at least

binary interactions with the environment, development, and

second site genetic variation. This variation is further compli-

cated by higher-order interaction among these factors (Falconer

and Mackay, 1996; Lynch and Walsh, 1998; Wentzell and

Kliebenstein, 2008). Thus, there is a desire to begin identifying

the molecular systems controlling these interactions, likely re-

quiring systems biology approaches.

One network that is known to be naturally variable while also

having global ramifications for organisms acrossmetabolism and

development is the circadian clock. The clock attempts to coor-

dinate metabolism and development within an organism to op-

timally coincide with the local day/night cycle (Harmer, 2009).

Interestingly, in spite of its central importance, there is natural

variation in plant circadian clocks that may help promote optimi-

zation to the local environment (Swarupet al., 1999;Michael et al.,

2003; Darrah et al., 2006). This variation also affects interactions

between environmental factors and the clock (Edwards et al.,

2005, 2006). Thus, natural variation in the circadian clock could

lead to complex genotype-by-environment interactions, perhaps

causing large effects on transcript or metabolite levels.

One barrier to analyzing natural variation within the circadian

clock is that the majority of existing methods require the devel-

opment of new experimental tools, such as the introduction of

promoter-reporter constructs into each genotype to be tested

(Darrah et al., 2006). Alternatively, individual phenotypes such as

leaf movement can be measured across time to estimate clock

output for that phenotype; however, this still requires a large

number of samples to generate a time course for each genotype

(Swarup et al., 1999; Michael et al., 2003; Edwards et al., 2005,

2006). Even after this significant effort, only a few parameters

are derived that measure clock function in a given population,

limiting the ability to systematically identify variation in the circadian
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system. Thus, there is interest in developing tools that would

allow the identification of natural variation in circadian clock

function without having to invest significant new resources.

Recently, large populations of natural genotypes have been

analyzed for expression quantitative trait loci (eQTL) via micro-

arrays (Brem et al., 2002; Schadt et al., 2003; Keurentjes et al.,

2007; West et al., 2007; Potokina et al., 2008). eQTL analysis

typically identifies interesting loci by querying the data set on a

gene-by-gene basis, but in addition generates residual databases

of expression data that can be used in a systems approach to

analyze complex phenotypes. One strategy uses a priori defined

gene networks to conduct a network statistics analysis of the

microarray data (Ueda et al., 2004; Kliebenstein et al., 2006;

Bussemaker et al., 2007; Christley et al., 2009; Kliebenstein,

2009a, 2009b). These a priori networks can be defined from a

number of sources, including biochemical pathways (Kliebenstein

et al., 2006), coexpression data sets (Saito et al., 2008), genetics

(Keurentjes et al., 2007), and protein–protein interactions (Ito et al.,

2001). One approach for conducting a network analysis of circa-

dian clock outputs has been to use preexisting data to assign

genes to time bins based upon coincidence of peak expression

within a circadian period (Ueda et al., 2004). These bins can then

be used in the analysis of microarray data obtained from a sample

harvested at a single timepoint to estimate the individual’s internal

circadian time (CT) and identify altered circadian clock function

(Ueda et al., 2004). This provides a network approach to analyze

altered circadian clock outputs without requiring the development

of new experimental materials, such as the introduction of pro-

moter fusions into each genotype.

Using existingmicroarray data fromdetailed time courses on the

Arabidopsis thaliana accession Columbia (Col-0; Covington et al.,

2008), we developed 24 CT groups, hereafter called CT phase

groups, that allowed us to query natural variation in circadian clock

outputs using existing microarray experiments performed on the

Bayreuth-0 (Bay-0)3 Shahdara (Sha; syn: Shakdara) recombinant

inbred line (RIL) population (Kliebenstein et al., 2006; West et al.,

2007). This allowed us to rapidly identify naturally variable loci that

alter circadian clock outputs. We then compared the CT phase

group eQTLs to preexisting metabolomics QTL from this same

population (Wentzell et al., 2007; Rowe et al., 2008) and found

possible links between alterations in clock function and metabo-

lism. Using single-gene isogenic lines, we were able to show that

multiple circadian clock outputs, including CT expression net-

works, circadian regulation of the photosynthetic machinery, and

daylength–dependent changes in flowering time, were altered by

natural variation in a secondarymetabolic enzyme. Together, these

data show it is possible to use the CT phase group approach to

query network alterations in circadian clock outputs and highlight

the crosstalk between the circadian clock and plant metabolism.

RESULTS

CT PhaseGroup Expression Analysis for Measuring Natural

Variation of Circadian Clock Output

Numerous studies have shown natural variation of various as-

pects of the circadian clock, such as periodicity of leaf movement

or promoter activity of an individual gene (Swarup et al., 1999;

Edwards et al., 2005, 2006; Darrah et al., 2006; Loudet et al.,

2008). However, these studies required significant investments

in time and revealed how natural variation may influence a single

clock output. To both provide a more global view of natural

variation in circadian outputs and to take advantage of existing

data, we employed a network analysis of circadian-regulated

genes to test for natural variation in clock outputs using a

previously established method (Ueda et al., 2004). In this anal-

ysis, the authors showed that a single time point network-based

measure of the circadian clock can rapidly identify perturbations

within the circadian clock caused by genotypic alterations (Ueda

et al., 2004). This approach relies upon the use of a carefully

curated list of genes known to peak at different times of the day

to generate a set of a priori defined phase groups that can then

be used to estimate the overall state of the circadian system

based upon a single time point, rather than relying upon multiple

time points for a single gene (Figure 1) (Ueda et al., 2004;

Kliebenstein et al., 2006; Kliebenstein, 2009b).

We used a previously published list of 3975 genes to define 24

circadian output gene bins, here defined as CT phase groups,

with coordinate peak time of expression between CT0 and CT23

(Covington et al., 2008). To test if this network approach would

be able to capture the standing wave of circadian oscillations

across a CT course, we used the network definitions to estimate

the average CT phase group expression across a 4-d time

course (Covington et al., 2008). This showed that each CT phase

group had a single peak of expression per day and that it was

possible to image the standing wave of oscillations (see Supple-

mental Figures 1 and 2 online). Individual genes within a CT

phase group displayed some variation, but the confidence limits

were very tight around the average across the time course (see

Supplemental Figure 3 online). This demonstrates that analysis of

the average expression patterns of the different CT phase groups

allows for estimation of the global behavior of clock-regulated

genes.

To test the utility of this network approach for analyzing clock

outputs in other samples, we examined the difference in expres-

sion of clock output genes between the Arabidopsis accessions

Bay-0 and Sha, the parents of a large RIL population for which

several microarray experiments have been conducted. We used

the average log2 expression of all genes within a CT phase group

to estimate that group’s expression value. There were significant

differences between Bay-0 and Sha across the CT phase

groups, with expression of predusk-phased genes higher in

Bay-0 and expression of night-phased genes higher in Sha

(Figure 2, Table 1). To independently validate the slight difference

in expression patterns of clock-regulated genes, we transformed

the Bay-0 and Sha accessions with the luciferase reporter gene

driven by theCCR2 (At2g21660) promoter (CCR2:luc), which is a

member of the CT12 expression phase group (Strayer et al.,

2000). Using three independent T2 lines per genotype, the free-

running period of luminescence activity was found to be signif-

icantly different between Bay-0-CCR2:luc and Sha-CCR2:luc

(Figure 3; see Supplemental Figure 4 online). Thus, the luciferase

reporter assay supports the CT phase group approach for

identifying genetic differences underlying alterations in outputs

from the circadian clock.
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eQTL Mapping Using CT Phase Groups

The difference in CT phase group expression betweenBay-0 and

Sha suggested that there should be QTLs underlying these

distinct patterns in the Bay-03 Sha RIL population. We used an

existing database of replicated single time point microarrays on

211 of theBay-03ShaRILs tomapeQTL controlling theCTphase

groups (Kliebenstein et al., 2006; West et al., 2007; Kliebenstein,

2009b). We were able to identify a number of genomic regions

that contained eQTL controlling CT phase group expression. The

three largest CT phase group eQTL were on chromosome II and

chromosome V (Figure 4) in the same positions as the largest

trans-eQTL hotspots for this population (West et al., 2007). A

similar analysis performed on these RILs after treatment with

salicylic acid revealed eQTLs in all of the same locations, as well

as an additional eQTL at the top of chromosome V and two

eQTLs on chromosome III (see Supplemental Figure 5 online).

The similar results obtained with independent biological repli-

cates serves to confirm the location of these eQTLs.

Wenext examined the effects of individual eQTL on expression

of the different CT phase groups. The two CT phase group eQTL

on chromosome II showed differential effects on night and day

networks, while the chromosome V locus caused all CT phase

groups to have elevated expression albeit with variable magni-

tudes (Figures 4 and 5). This suggests that these three trans-

hotspots may contain polymorphisms that alter outputs of the

Arabidopsis circadian clock. The vertical striping in the eQTL

analysis (Figure 4; see Supplemental Figure 5 online) is likely due

to certain CT phase groups having less statistical power, possibly

due to inherent imprecision in the phase group definition. In accord

with this, these lower significanceCTphasegroups showedsimilar

additive effect trends; however, the magnitude of these changes

was lower than for the CT phase groups that showed statistical

significance (see Supplemental Figure 6 online).

Sincewehaveonly one timepoint, it is not possible todetermine

whether the CT phase group eQTLs are due to changes in the

amplitude, phase, or periodicity of the clock. However, the differ-

ent free-running periodicities of Bay-0 and Sha (Figure 3) suggest

that changes in clock pace likely play a role.We therebymodeled

the impact of all three changes upon a CT phase group analysis

and plotted out the predicted CT phase group eQTL results (see

Supplemental Figure 7 online). The modeling showed that am-

plitude shifts of 20% or periodicity shifts of 1 h would generate a

similar spectrum of effect sizes on differential expression as

observed for theCTphase group eQTL (seeSupplemental Figure

7 online). Although the large effect eQTL on chromosome V does

not correspond to any of the circadian differences that we

modeled, a visual comparison suggested that the two chromo-

some II CT phase group eQTL might be due to changes in either

periodicity or amplitude of circadian clock outputs (Figure 5; see

Supplemental Figure 7 online). Both period and amplitude have

been found to vary in other studies of natural variation in

Arabidopsis clock outputs (Swarup et al., 1999; Edwards et al.,

2005, 2006; Darrah et al., 2006; Loudet et al., 2008). Extensive

time-course analyses would be required to differentiate between

these two possibilities.

Figure 1. Estimating a Circadian Pattern from a Single Time Point.

Shown is a three-dimensional standing wave plot of all circadian-regulated genes in a theoretical system. There are genes exhibiting all different times of

peak expression, or phase. Differences in shading represent different levels of expression.

(A) If the expression level of a single gene is measured across time, the usual circadian expression pattern for that gene is obtained.

(B) Alternatively, if an experiment (i.e., microarray) measures expression of multiple genes with known different times of peak expression at a single time

point (CT6 in this example), a similar estimate of the circadian expression pattern across all these genes can be obtained. This single time point

snapshot thus allows the circadian status of the sample to be assessed.
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Metabolomic QTL to CT Phase Group eQTL Relationship

After identification of the CT phase group eQTLs in control and

salicylic acid–treated plants, we noticed that 11 of the 13 loci

were also identified as major metabolomic QTL hotspots in a

previous analysis of this same population (Figure 4; see Supple-

mental Figure 5 online) (Rowe et al., 2008). These metabolic QTL

had previously been shown to describe an epistatic network

whereby there are five core loci as defined from the metabolo-

mics QTL analysis (Figure 6, red nodes) surrounded by two

secondary metabolite loci (Figure 6, yellow nodes) and four

interrelated peripheral loci (Figure 6, white nodes) (Rowe et al.,

2008) regulating the abundance of glucosinolates. To test if these

same loci also form an epistatic network altering the circadian

clock output, we measured all pairwise interactions between

these loci as previously described (Rowe et al., 2008). The

circadian eQTLs also formed an epistatic network controlling CT

phase group output within this population. Interestingly, all of the

loci are involved in an epistatic network controlling both the

metabolomic and CT phase group QTLs. This suggests that

these 11 loci affect both circadian clock output and metabolism.

This suggests that it is possible that these phenotypes are

causally related, as it has been previously reported that clock

function can affect metabolism and that metabolism can affect

the clock (Fukushima et al., 2009). Given the number of RILs used

for eQTL and metabolite QTL mapping, it is not possible to fully

query the structure of this network because there are more

genotypic combinations possible (2048) than there are lines

available (211).

Glucosinolates and Circadian Clock Output

To investigate whether there is a causal relationship between

changes in clock function and changes in metabolites, we made

use of previously isolated mutants. Two of the minor CT phase

group eQTLs mapped to the previously cloned AOP and ELONG

loci, which contain multiple genes (Figure 4; see Supplemental

Figure 5 online). Natural alleles lead to loss of AOP and ELONG

function and result in natural variation in levels of glucosinolate

secondarymetabolites (Kliebenstein et al., 2001; Kroymann et al.,

2001; Benderoth et al., 2006; Wentzell et al., 2007). Bay-0 has a

natural knockout of AOP2, whereas Sha expresses the functional

enzyme due to a local inversion that alters the promoter–open

reading frame relationship (Chan et al., 2010). To test whether

alterations in the glucosinolate pathwaymight affect regulation of

the CT phase groups, we used previously published microarray

data on single-gene isogenic lines that recreate the Bay-0

Figure 2. Circadian Phase Group Expression Difference in Arabidopsis

Accessions.

Genes showing circadian expression in the Arabidopsis accession, Col-0,

were grouped into 24 phase groups differing by their hour of maximal

expression (i.e., the CT0 phase group contains all the genes with peak

expression between CT0 and CT1). These 24 phase groups were then

used tomeasure the average phase group expression in a single sampling

time-point (CT8) from the Arabidopsis Bay-0 (blue) and Sha (red) acces-

sions.

(A) The average log2 phase group expression in Bay-0 and Sha.

(B) The average Z scaled phase group expression in Bay-0 and Sha.

Asterisks show statistically significant differences between Bay-0 and

Sha as determined using ANOVA and a P < 0.05; significances were

corrected post hoc using Tukey’s HSD comparisons.

Table 1. ANOVA Comparison of CT Phase Groups in Bay-0 and Sha

Parents

Source DF SS F P

Model 191 33.611 3.18 <0.001

Error 768 42.516

Total 959 76.127

Class DF Type III SS F P

Genotype 1 0.088 1.59 0.208

CT phase group 23 0.073 0.06 1.000

Treatment 1 0.110 2.00 0.158

Replicate 1 1.416 25.58 <0.001

Genotype 3 replicate 1 0.000 0.00 0.949

Genotype 3 treatment 1 0.011 0.20 0.653

CT 3 genotype 23 6.213 4.88 <0.001

CT 3 genotype 3 replicate 46 2.177 0.85 0.742

CT 3 genotype 3 treatment 46 20.855 8.19 <0.001

CT 3 genotype 3 replicate 3

treatment

48 2.632 0.99 0.494

DF is the degrees of freedom for a term within the model. Type III SS is

the Type III sums of squares. SS is normal sums of squares. F indicates

the F value, and P indicates the statistical significance for a given term

within the model. Genotype is a comparison of Bay-0 versus Sha. CT

phase group is the term incorporating the 24 CT phase groups.

Treatment is control versus salicylate-treated plants. Replicate is ex-

periment 1 versus 2. X indicates an interaction test within the ANOVA.

There were 10 replicates per genotype and five per experiment.
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(nonfunctional) versus Sha (functional) polymorphism at AOP2

and compared expression of the CT phase group genes (West

et al., 2007). We found that the introduction of a single functional

AOP2 back into a naturally null Col-0 background caused a CT

phase group shift, with predusk genes being lowered and night

genes being elevated (Figure 7B). This shift is remarkably similar

to that seen in Sha (functional AOP2) relative to Bay-0 (nonfunc-

tional AOP2) (cf. Figures 7A and 7B). Thus, our quantitative

complementation test in a completely different accession indi-

cates that natural variation in a gene encoding a metabolic

enzyme can cause changes in circadian regulation of gene

expression and strongly suggests that AOP2 is at least partly

responsible for one of our CT phase group eQTLs.

Since the AOP2 QTL interacts epistatically with two MYB

QTL, MYB28 and MYB29, in the regulation of glucosinolates

(Sønderby et al., 2007; Wentzell et al., 2007), we hypothesized

that alterations in MYB28 and MYB29 expression would also

alter CT phase group expression. To test this hypothesis, we

examined previous microarray data from plants mutant for these

two transcription factors. Mutation of either of these Mybs

individually recreates the polymorphism at two separate natural

QTLs (Gigolashvili et al., 2007, 2008; Hirai et al., 2007; Sønderby

et al., 2007, 2010; Wentzell et al., 2007). Interestingly, we found

that mutation of either Myb gene by a T-DNA insertion in the

Col-0 background caused a significant shift in the output of the

circadian clock when compared with the wild type, as measured

by the CT phase group analysis (Figures 7C and 7D) (Sønderby

et al., 2007). Since MYB28, MYB29, and AOP2 coordinately

function within a complex regulatory network, these findings

further support the conclusion that AOP2 is a causal gene

controlling natural variation in CT phase group expression and

that glucosinolates are involved in this process.

The genetic relationship between MYB28 and MYB29 is

complex, as they are thought to function in an incoherent

feed-forward loop in the regulation of some genes (Sønderby

et al., 2010). In accordance with this complex relationship, the

double MYB28/MYB29 knockout line altered CT phase group

output in a manner different from the single knockouts (Figure

7E). Since the wild-type and MYB mutant microarrays were all

done on plants in the same growth chamber and all samples

were harvested within 15 min of each other, technical errors are

not a likely explanation for the striking similarities and differ-

ences between expression of the CT phase groups in these

different genotypes (Sønderby et al., 2010). Unfortunately, the

independent MYB/wild type and AOP2/wild type microarray

experiments were harvested at different times of day, preclud-

ing a direct comparison between the effects of AOP2 and the

MYB genes on clock outputs.

Although our data demonstrated that altered AOP2 function

caused changes in expression of clock output genes (Figures 7A

and 7B), it did not reveal whether this was due to alteration of a

subset of outputs or changes in the entire circadian system. We

therefore compared the expression levels of central clock genes

in Col-0, Col-0 expressing the AOP2 transgene, and the myb28

and myb 29 mutants (Table 2) (Sønderby et al., 2007, 2010;

Wentzell et al., 2007; Harmer, 2009). We found that the intro-

duction of AOP2 into a natural null background significantly

decreased the expression of PRR7,CCA1, and PRR3 at the time

point examined (Table 2). Furthermore, the knockouts inMYB28

and MYB29 led to significantly increased expression of GI and

PRR7 at the sampled time (Table 2). Thus, genetic perturbations

in the glucosinolate pathway can influence transcript abundance

for the core oscillator genes (Harmer, 2009), providing an exam-

ple of how changes in metabolism affect clock function.

Glucosinolates and Circadian Clock Period

To independently validate the effect of the above glucosinolate

mutants on the circadian clock, we assayed their free running

circadian periods using delayed fluorescence (DF), an assay that

determines the photochemical state of photosystem II (Gould

et al., 2009). The DF assay for circadian period is a physiological

measurement that is completely independent of the CT phase

group approach. Using three independent biological replica-

tions, both AOP2 and the myb28/myb29 double knockout show

a significantly shorter circadian period than Col-0 (Table 3; see

Supplemental Figures 8 and 9 online). If the circadian period data

are reanalyzed without the third trial, which has elevated vari-

ance, the period difference between Col-0 and myb28 also

Figure 3. Circadian Period Length Differences between Bay-0 and Sha.

Transgenic Bay-0 and Sha accessions carrying the CCR2:luc reporter

were entrained for 7 d in 12-h white light/dark cycles. Plants were

released into constant red light, and luminescence was measured every

2 h. Free-running periods of individual plants were determined using the

program fast Fourier transformed nonlinear least squares (Plautz et al.,

1997). Data shown combine measurements from six independent T2

families assayed in two independent experiments. Data points represent

average 6 SE of plants from both experiments combined. The colored

bars represent the one standard deviation range with open circles

representing outlier data points. Period length was significantly different

between Bay-0 and Sha as shown by the asterisk (ANOVA, P < 0.05).
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becomes significant (see Supplemental Figure 9 online). Inter-

estingly, AOP2 and the myb28/myb29 double knockout have

opposite effects on the total level of glucosinolates, with AOP2

leading to higher glucosinolate accumulation in comparison to

the Col-0 genotype, whereas the myb28/myb29 double knock-

out has no aliphatic glucosinolates (Sønderby et al., 2007, 2010;

Wentzell et al., 2007; Beekwilder et al., 2008). However, both

genotypes have a shorter circadian period, suggesting that the

influence is not simply due to altered carbon/nitrogen/sulfur flux

into glucosinolates. These independent data confirm that AOP2

natural variation leads to a shorter circadian period in at least

chlorophyll fluorescence under these growth conditions. This

also shows that the single time point CT phase group approach

can identify candidate genes that influence circadian clock

outputs.

Figure 4. Additive QTL Estimates across the Genome.

Shown is the range of predicted additive effects for all marker 3 phase

group combinations in Z scale, with the direction and magnitude of the

effect indicated by the color. Only the additive effects for marker3 phase

group positions that showed a significant QTL are presented, with all

nonsignificant positions given a value of 0 to improve clarity. The x axis

indicates the 24 different CT phase groups, while the y axis shows the

genetic position on the five different Arabidopsis chromosomes (I to V).

Labels along the right side of the y axis show the genomic position of

metabolomic QTLs identified previously (Rowe et al., 2008).

Figure 5. Individual QTL Effects across CT Phase Groups.

Shown are the percentage of the Sha allele additive effects for all CT

phase groups for the three most significant QTL. Differences are shown

in log2 for more direct interpretations, but identical results were obtained

using Z scale values. The Arabidopsis Genome Initiative numbers indi-

cate the gene from which the genetic marker closest to the LOD peak

was obtained and represent the marker used for statistical analysis.

At2g05630 (A), At2g32150 (B), and At5g45110 (C).

[See online article for color version of this figure.]
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Glucosinolates and Complex Physiological Outputs

We next wished to determine whether alterations in the

glucosinolate pathway would affect a physiological process

strongly linked to the circadian clock: the daylength-depen-

dent regulation of flowering time.When grown in constant light,

all three single glucosinolate pathway variants (AOP2, myb28,

and myb29) flowered significantly earlier than the wild type

(Figure 7F). However, they all showed differential regulation of

flowering time when grown in long days (16 h light/8 h dark)

versus short days (10 h light/14 h dark). Introduction of AOP2

caused delayed flowering in long days but had no effect in

short days. Loss of myb28 or myb29 accelerated flowering in

short days relative to the wild type but had no significant effect

in long days. By contrast, loss of bothmyb28 andmyb29 caused a

strong delay of flowering in short days and amoremodest delay in

long days (Figure 7F). This latter finding is consistent with the

opposite effects of the myb28 and myb29 single and double

mutants on regulation of expression of CT phase group genes in

comparison to the myb28/29 double knockout (Figures 7C to 7E).

Thus, all four glucosinolate variants lead to alteration of flowering

time in a daylength-dependent manner.

These data demonstrate that natural variation in the glucosi-

nolate pathway can lead to complex physiological shifts in the

plant that may be related to the circadian clock. However, the

observed changes in flowering time do not readily fit into existing

models linking the output of the circadian clock to flowering

decisions; therefore, we are left with the possibility that the two

phenotypes, CT phase group and flowering time, are indepen-

dent outputs of the altered glucosinolate pathway. In support of

this altered physiology, the AOP locus, specifically the tandem

AOP3 gene that is in tight linkage disequilibrium with AOP2, has

been found to be a major flowering time locus using genome-

wide association mapping within Arabidopsis (Atwell et al., 2010;

Chan et al., 2010; Li et al., 2010).

DISCUSSION

The above results show that we can apply a CT phase group

approach to measure potential changes in circadian clock

outputs using carefully controlled single time point microarray

data. This suggests that it would be possible to reinterrogate all

existing microarray experiments (where controls are appropri-

ately timed with the treatment samples) to begin a systematic

analysis of how different genotypic and environmental pertur-

bations not frequently tested for circadian clock influencesmay

in fact alter the clock. Given that Arabidopsis has a vast

database of microarray experiments, this could provide unique

biological insights into novel connections between the circa-

dian clock and physiology (Grennan, 2006; Jen et al., 2006;

Obayashi et al., 2007; Thum et al., 2008). Within our analysis of

natural variation and circadian clock output, this approach

identified significant links between the plant metabolome and

circadian clock outputs. In follow-up studies, we directly val-

idated the link between glucosinolates and the clock by show-

ing that glucosinolate genotypes altered the periodicity of a

clock output unrelated to glucosinolates, the photochemical

state of photosystem II.

Figure 6. Comparison of Epistatic Networks Generated from Metabolomic and Circadian Phase Group QTLs.

Pairwise epistatic interaction networks were determined between all 11 shared QTLs using the previously published metabolomic data (Rowe et al.,

2008) and circadian phase group expression data and plotted using Pajek. Thickness of the lines represents the fraction of total epistatic interactions

within the respective data set that were significant for that pair. For both plots, the five proposed core metabolomic QTLs are colored in red, the two

major glucosinolate QTL are in yellow, and the more peripheral yet interconnected metabolomic QTLs are in white.

(A) Epistatic metabolomics QTL network.

(B) Epistatic circadian eQTL network (shown at half scale relative to the metabolomics network).
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Plant Metabolism and Circadian Clock Outputs

Previous work using a single model genotype of Arabidopsis has

indicated that the circadian clockmay alter the regulation of plant

metabolism (Harmer et al., 2000; Gutierrez et al., 2008; Fukushima

et al., 2009). Our results suggest that natural variation in the plant

metabolome is also intimately linked to natural variation in

circadian clock outputs and that the relationship maybe bidirec-

tional. Similar bidirectional relationships have been found in

mammalian and plant systems using induced mutants (Dodd

et al., 2007; Duez and Staels, 2008; Kovac et al., 2009).

Recent work has shown that the II.47 QTL found for both the

circadian clock and metabolomics (At2g32150, Figure 5) is likely

Figure 7. Glucosinolate Genes Regulate Expression of CT Phase Groups.

The percentage of the Sha allele additive effects are shown for all CT phase groups. Only three of the significant QTL are shown for clarity. Asterisks

indicate significant differences between Bay-0 and Sha in (A) and between single gene variants versus Col-0 for (B) to (E). The percentage of expression

differences are shown for more intuitive interpretation. Because identical results were seen using the Z scale values for statistical analysis, the

differences in log2 are shown to be more directly interpretable.

(A) AOP QTL within the Bay-0 and Sha population.

(B) AOP2 transgene in Col-0 versus wild-type Col-0 (natural knockout of AOP2).

(C) myb28-1 knockout versus wild-type Col-0.

(D) myb29-1 knockout versus wild-type Col-0.

(E) myb28-1/myb29-1 double knockout versus wild-type Col-0.

(F) Flowering time effects of glucosinolate single gene variants as measured by time to bolting. The difference with respect to Col-0 is presented with the

glucosinolate single gene variants as follows: AOP2, circle; myb28, triangle; myb29, diamond; and myb28/myb29 double knockout, square. All

genotypes are represented by at least 12 individual plants per condition. Error bars are not provided for each circle as they represent the comparison to

the wild type. Instead, symbols show if the comparison was statistically significant. Open symbols show phenotypes with no difference from Col-0,

while closed symbols are statistically different from Col-0 within that light cycle at P < 0.05.

[See online article for color version of this figure.]
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caused by natural variation between the Bay and Sha alleles at

EARLY FLOWERING3 (ELF3) (Rowe et al., 2008; Jiménez-

Gómez et al., 2010). Quantitative complementation tests showed

that these alleles led to different periodicities in the circadian

clock and nicely agree with the CT phase group effect measured

in theBay3ShaRIL population (Figure 5) (Jiménez-Gómez et al.,

2010). Thus, one of the CT phase group eQTLs we identified

corresponds to a causal locus previously identified from the

same mapping population. Importantly, our prediction that this

CT phase group eQTL alters circadian parameters was verified

by Jiménez-Gómez et al. (2010), providing further support for our

phase group analysis approach.

In this study, we demonstrated that the secondary metabolite

QTL, AOP, is a QTL influencing both plant metabolism and the

circadian clock period. Transgenic analyses confirmed that

introduction of the AOP2 gene into a knockout background

altered the circadian clock output in amanner highly similar to the

QTL identified using the CT phase group approach (Figure 7). We

also found that a functional AOP2 locus significantly shortened

circadian period (Table 3), suggesting that this altered clock

parameter might cause the observed effects on CT phase group

expression in AOP2 transgenic plants. Although AOP2 altered

photoperiodic regulation of flowering time (Figure 7), the ob-

served effects cannot easily be explained by a shortening of free-

running period; further analysis would be required to prove

whether these two phenotypes are causally related to each

other.

How might AOP2 affect clock parameters? AOP2 encodes a

biosynthetic enzyme that controls the conversion of one gluco-

sinolate into another (Kliebenstein et al., 2001), and as such, this

suggests that this is a link whereby the metabolic network alters

circadian clock function. Further support for this possibility was

found when two MYB transcription factors regulated by AOP2

(Wentzell et al., 2007) were also shown to alter expression of

circadian clock outputs and circadian periodicity. Thus, natural

variation in biosynthetic enzymes can feedback to alter circadian

clockoutput, suggesting that the flowof information flowbetween

the clock and metabolism is bidirectional. Similar links between

clock function and metabolism have been previously reported

(Rutter et al., 2002; Dodd et al., 2007; Duez and Staels, 2008;

Kovac et al., 2009;Wood et al., 2010). Interestingly, we found that

two completely separate genomics technologies, transcriptom-

ics and metabolomics, that measure separate products, tran-

scripts, andmetabolites, independently identify the same genetic

network within this Arabidopsis population. This provides extra

validation for the CT phase group approach to identify novel

physiology.

Secondary Metabolism and Pleiotropy

It is striking that natural variation in a secondarymetabolismgene

can alter circadian clock parameters. There are several possible

scenarios that may explain this. The first is that secondary

metabolites might be energetically expensive to produce and the

functional AOP2 allele leads to increased glucosinolate content.

Thus, there may have been evolutionary pressure to alter the

circadian clock output to shift some C/N/S from growth, which in

Arabidopsis occurs largely in the morning (Nozue et al., 2007;

Loudet et al., 2008), toward secondary metabolism, which for

glucosinolates is typically induced after dusk (Harmer et al.,

2000; Covington et al., 2008). Two factors argue against this.

First is that the MYB knockout mutants, which led to similar

alterations in flowering time and CT phase groups as AOP2,

accumulate less glucosinolates than the wild type; by contrast,

Table 2. Altered Expression of Clock-Related Genes in Glucosinolate Mutants

Gene AGI

AOP2 myb28 myb29

P Chg P Chg P Chg

CCA1 At2g46830 <0.001 �85% 0.133 17% 0.941 �28%

GI At1g22770 0.168 �9% <0.001 57% 0.001 54%

LHY At1g01060 0.046 10% 0.017 19% 0.313 21%

PRR3 At5g60100 0.012 �71% 0.990 3% 0.561 4%

PRR7 At5g02810 0.043 �183% <0.001 58% <0.001 57%

PRR9 At2g46790 0.011 �10% 0.172 �16% 0.221 7%

TOC1 At5g61380 0.104 �15% 0.079 29% 0.053 30%

ZTL At5g57360 0.109 5% 0.012 21% 0.433 11%

P is the false discovery rate adjusted P value for the ANOVA comparing the mutant to wild-type Col-0 array-based expression value for the given core

circadian clock genes. Chg is the percentage of change of the mutant in relation to the experiment-specific wild-type expression average as

calculated by (Mut – wild type)/((wild type + Mut)/2). All data were obtained from the previous microarrays described in Methods. AGI, Arabidopsis

Genome Initiative.

Table 3. Measurement of Circadian Period using Delayed

Fluorescence

Genotype Period (h)

Period Diff.

versus Col-0 SE P n

Col-0 23.95 NA 0.39 29

AOP2 23.00 �0.94 0.28 0.001 27

myb28 23.51 �0.44 0.28 0.119 29

myb28/29 23.27 �0.68 0.29 0.02 26

myb29 23.67 �0.28 0.28 0.322 28

Period shows the measured circadian period of DF oscillation in hours.

P is the P value for the comparison of the specific genotypes period to

the wild-type Col-0 period using ANOVA. n is the number of indepen-

dent groups of plants measured to determine DF period.

Secondary Metabolites Influence the Clock 479



AOP2 induces higher glucosinolate levels. Thus, at least the

effect on flowering time is not merely a consequence of C/N/S

flux into glucosinolates. Second, if there is an energetic cost of

glucosinolate production, it is very small, and most measured

costs are more likely ecological and not energetic, since these

are defensive compounds (Mauricio and Rausher, 1997; Lankau,

2007; Lankau andStrauss, 2007, 2008; Lankau andKliebenstein,

2009; Paul-Victor et al., 2010). These data suggest that the

effects of glucosinolates on clock outputs are not likely caused

by altered flux of metabolites or energy.

The second possibility has to dowith the central importance of

secondary metabolites in plant defense against biotic pests,

which likely use their own circadian clocks to optimally time their

attacks on plants. Thus, there may be a competition between

plant and host that would lead the plant to subtly alter clock

outputs in response to an attack so as to prevent the other

organism from optimizing its ability to attack (Walley et al., 2007).

Our data suggest that there may be a reciprocal flow of infor-

mation whereby the clock can gate responses to defense re-

sponses (Martı́nez et al., 2004; Griebel and Zeier, 2008; Roden

and Ingle, 2009), and some of the defense outputs (i.e., gluco-

sinolates) can send information back to the circadian clock or its

outputs (Figure 6, Table 3). Future research on the impact of

clock mutants upon plant defense under different day/night

cycles as well as how other plant defense pathways interact with

circadian clock outputs are required to test how frequently this

occurs.

Secondary Metabolism, Selection, and

Environmental Correlates

Using the CT phase group approach, we generated evidence

that natural variation at four polymorphic glucosinolate loci can

influence flowering time and the circadian clock. Previous evi-

dence had strongly suggested that the AOP and ELONG loci are

under strong natural selection that was presumed to be primarily

due to insect herbivores (Giamoustaris and Mithen, 1995; Wright

et al., 2002; Kroymann et al., 2003; Kroymann andMitchell-Olds,

2005; Bidart-Bouzat and Kliebenstein, 2008). Given that it does

not appear that the glucosinolate to circadian clock or flowering

time links revolve around simple flux/energy balance, it raises the

question of what selective pressure could have driven the

formation of these links. One possibility comes from the obser-

vations that insect populations within the wild vary greatly from

year to year but in a manner that is partially dependent upon the

environment. Thus, there could be environmental correlations

between abiotic stresses and biotic pest occurrence that would

potentially generate pressure to highly integrate signals within a

plant between what in the laboratory would be considered

unlinked phenomena. For instance, slug and snail herbivory is

likely more important in the spring when daylength is shorter,

while lepidopterans would begin to predominate later in the

season as the days lengthen. Similar links could exist across all

clines of abiotic environmental parameters leading to highly

complex selective pressures caused by the correlational struc-

ture across these clines. More research is required to test how

often abiotic correlations can be linked to biotic pest resistance

diversity within plants.

CT Phase Group Provides a Broad View of the Circadian

Clock Output

An interesting aspect of the CT phase group approach of

querying circadian clock output is that it provides the ability to

measure numerous clock outputs simultaneously (since there

are multiple CT phase groups). This is in contrast with single

promoter luciferase reporters or individual phenotype outputs

that are limited to the part of the clock controlling that phenotype

(Swarup et al., 1999; Edwards et al., 2005, 2006; Darrah et al.,

2006; Loudet et al., 2008). For instance, the Met.I.80 QTL would

not have been foundwith a circadian clock reporter or phenotype

that peaked during the light hours. This single time point analysis,

however, limits the CT phase group approach to the identifica-

tion of experimental factors that alter circadian clock output but

does not readily lend itself to determining whether these are due

to changes in phase, periodicity, amplitude, or a subset of clock

outputs. Thus, the initial use of the CT phase group approach to

rapidly survey numerous experimental factors followed by more

intensive time course experiments may provide a powerful

approach to characterize the roles of the identified factors. It

should be noted that the CT phase group approach is predom-

inantly a method to generate hypotheses about specific genes

that require future validation. However, we note that any phys-

iological process that can be described via a transcriptomic

response would be amenable to this exact same approach. For

instance, drought networks could be queried for group response

QTLs that may be predictive of the actual drought QTLs mea-

sured physiologically.

Conclusions

We assessed circadian CT phase groups as a measure of the

circadian clock output, allowing us to use single time point data

to analyze connections between the circadian clock and metab-

olism within Arabidopsis. This approach allowed us to identify

circadian clock output QTL from a previously conducted RIL

microarray experiment. This single-point expression analysis

was already costly and labor intensive; it would not have been

possible to carry out a conventional CT course experiment on

these RILs. We identified numerous links between circadian

clock outputs and plant metabolism; however, the identification

of the molecular mechanisms underlying these connections will

require intensive future efforts. Importantly, our study shows that

natural variation in plant defense metabolism can influence the

circadian clock, thus raising new questions about how to prop-

erly interpret studies involving plant defensemetabolism. The CT

phase group approach described here allows the circadian clock

to be analyzed in a new manner that will potentially lead to the

identification of clock function in many aspects of plant physi-

ology and plant/environment interactions.

METHODS

Circadian CT Phase Group Generation

Previously published analysis of microarray gene expression data from

wild-type Arabidopsis thaliana using the COSOPT (Cosine Optimization)

algorithm identified 3975 genes as having circadian oscillations of their
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expression (Covington et al., 2008). COSOPT fits cosine waves of varying

periods to gene expression data and determines the best match with the

data using 101 different phases for each period considered. The best-

fitting curve is then determined using a least-squares analysis and statis-

tical significance determined by empirical resampling (Straume, 2004). We

used the predicted phases from the best fit cosine waves to classify the

clock-regulated genes into 24 phase groups based on the CT of peak

expression. Phase group CT0 was defined by all transcripts whose peak

expression fell between CT0 and CT1. This was repeated to obtain CT

phase groups from 0 to 23 (see Supplemental Data Set 1 online).

Parental CT Phase Group Analysis

Previously published microarray data for the Bay-0 and Sha parental

accessions was obtained to analyze the potential for using CT phase

group analysis to detect natural variation in circadian expression (West

et al., 2007).Within this experiment, the tissuewas harvested betweenCT

;6 and 7 in a randomized design to minimize any potential bias.

Transcripts were classified by their membership in the 24CT phase groups,

and the average log2 expression was obtained across the transcripts within

each phase group as previously described (Kliebenstein et al., 2006;

Kliebenstein, 2009c). Additionally, a standard normal (z) distribution, N

(0,1), was used to individually standardize each gene’s expression across

the individual samples. The expression value (x) for each transcript for each

sample was transformed to the corresponding z score by subtracting the

transcripts average across the arrays (�x) and then dividing by the transcripts

standard deviation across the arrays (s) using the equation z ¼ ðx2 �xÞ=s
(Kliebenstein et al., 2006; Kliebenstein, 2009b). This functionally gives all

genes an average of 0 and standard deviation of 1 across all of the arrays

being used. This has previously been shown to eliminate the influence of

highly expressed genes on a network average approach (Kliebenstein et al.,

2006; Kliebenstein, 2009b). For presentation in Figures 2B and 2D, the Z

scaling was done separately within each treatment. The average CT phase

group Z value was also obtained. Nested analysis of variance (ANOVA) was

then conducted to assess if there were statistically significant changes

between the accessions for the CT phase groups. Differences between

Bay-0 and Sha for individual CT phase groups were conducted within the

ANOVA via partial F tests.

CT Phase Group QTL Mapping

Previously publishedGC-RMAnormalizedmicroarrays for 211 individuals

from the Bay-0 3 Sha RIL population were from untreated samples. In

addition, we obtained a salicylate-treated data set to act as a replicate to

help confirm the presence of CT phase group QTLs (see Supplemental

Figure 3 online). Each transcript was independently Z scaled across all of

the arrays as described above, and the average CT phase group Z value

was obtained across all the transcripts per CT phase group per individual,

providing an estimation of the circadian pattern within each individual

(Loudet et al., 2002; West et al., 2007). The calculated average CT phase

groupZ values are presented (seeSupplemental Data Set 2 online). These

CT phase group Z values were then used as phenotypic traits to map

phase group eQTL as previously described (Kliebenstein et al., 2006). We

used composite interval mapping for each CT phase group using Win-

dowsQTLCartographer version 2.0 (Basten et al., 1999; Zeng et al., 1999;

Wang et al., 2006). Significance thresholds for composite interval map-

ping analyseswere generated using 500 permutations of the datawith a =

0.10 (Doerge and Churchill, 1996). We settled on a lower threshold for

significance on the assumption that the different CT phase groups would

provide supportive evidence and any isolated marker 3 CT phase group

significances would be ignored. QTL distribution across the Arabidopsis

genome, including direction of allelic effects, was obtained from QTL

Cartographer and visualized using R (R Development Core Team, 2008).

We used the significance output to mask all additive values at marker 3

trait locations where there was no evidence of statistical significance (see

Supplemental Figure 1 online). The resulting file was then visualized as a

heat plot using a red/blue color scheme using the filled contour function.

One concern regarding eQTL analysis is the potential role that single

feature polymorphismsmayplay in altering the estimated expression of an

individual gene (Borevitz et al., 2007). Given the network approach that we

used where the 24 phase groups each have at least 100 individual

transcripts, we did not explicitly remove these polymorphisms prior to the

analysis as their impact upon the network average would be minimal.

Similarly, the network approach allows us to not a priori eliminate any large

effect cis-eQTL that might also be presumed to influence the expression

estimate (Kliebenstein et al., 2006; West et al., 2007). For instance, for the

log2 approach, one single feature polymorphism or cis-eQTL would have

to cause an allelic change in log2 of nearly 20 orders ofmagnitude to cause

a 20% change in >100 genes. Given this, our network approaches are not

inherently sensitive to single feature polymorphism or cis-eQTL compli-

cations at this scale (Kliebenstein et al., 2006; West et al., 2007).

Circadian Rhythm Analysis

Bay-0 and Sha plants were transformed with the CCR2:luc construct

(Strayer et al., 2000). Two independent experiments were performed

using three T2 families of each accession. Plants plated in Murashige and

Skoog medium with the appropriate antibiotic were stratified for 4 d and

entrained in 12-h white light/dark cycles (50 mmol m22 s21) for 7 d.

Resistant plants were then transplanted to new Murashige and Skoog

plates (Fisher Scientific), moved to constant red light (50 mmol m22 s21),

and recorded every 2 h for 7 d using a cooled CCD camera. The data

collected were analyzed for rhythmicity using the luciferase activity

method described by Plautz et al. (1997). In total, we obtained luciferase

data from 151 plants, for which 132 plants (36 Bay-0/12 Sha plants in

experiment 1 and33Bay-0/51Shaplants in experiment 2) presented robust

oscillations (measured by a relative amplitude error [RAE] lower than 0.5).

RAE is a measure of robustness of rhythmicity; a RAE of 0 indicates a very

robust rhythm with an infinitely well-determined rhythmic component,

whereas a RAE of 1 indicates that the error in the amplitude equals the

amplitude value itself and thus no significant rhythm is detected.

Epistatic Network Analysis

We used a previously described ANOVA analysis to test for epistatic

interactions between metabolomic QTLs for impacts upon CT phase

group using the control sample data only (Rowe et al., 2008). Briefly, this

used an ANOVA model containing all previously identified CT phase

group/metabolomic loci as individual main effect terms using themarkers

most closely associated with each significant QTL cluster. Additionally,

we tested all 55 possible pairwise interactions between these markers.

For each metabolite, the average CT phase group expression in lines of

genotype g at markermwas shown as ygm. The model for each CT phase

group was

ygm ¼ mþ+2
g¼1+

11
m¼1Mgm þ+2

g¼1+
11
m¼1+

11
n¼mþ1Mgm Mgn þ «gmn

where g = Bay or Sha;m = 1, …,11; and n was the identity of the second

marker for an interaction. The main effect of the 11 markers was denoted

asM. The error, «gmn, was assumed to be normally distributed with mean

0 and variance s«
2. An automated SAS script was developed to test all CT

phase groups within this ANOVA and return all P values, Type III sums-of-

squares for the complete model, and each individual term and QTL

pairwise-effect estimates in terms of allelic substitution values. Signifi-

cance values were corrected for multiple testing within a model using

false discovery rate (<0.05) in the automated script. Additionally, the CT

phase group expression datawere permuted across theRILs 500 times to

test for any potential impact of segregation distortion upon epistatic

interaction detection power.
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Glucosinolate Mutant CT Phase Group Analysis

Previously published microarray data investigating transcript accumula-

tion in 35S:AOP2 versus wild-type Col-0 were obtained (Wentzell et al.,

2007). The 35S:AOP2 introduction into Col-0 mimics the AOP2 allele

within the Bay-03 Sha RIL population (Kliebenstein et al., 2001; Wentzell

et al., 2007; Chan et al., 2010). For further testing of a link between

glucosinolates and circadian network expression, we obtained previously

published microarray data from experiments querying the effect of

knockouts in two of the major transcription factors for glucosinolates,

MYB28 andMYB29 (Sønderby et al., 2007, 2010). Similar microarray data

for themyb28 (SALK_136312),myb29 (SM.31316),myb28/myb29 double

knockout, and the corresponding wild-type Col-0 controls were also

obtained (Sønderby et al., 2007, 2010). All plants from these experiments

were grown in the same conditions and growth chambers as the Bay-03

Sha RIL population, enhancing the ability to conduct the comparison

(West et al., 2007). GC-RMA normalized transcript values for all tran-

scripts in the 24 CT phase groups and the average CT phase group log2
values were obtained as described above and tested via ANOVA for

significant differences within each CT phase group. Each mutant-to-wild

type comparison had at least three independent biological replicates as

described (Sønderby et al., 2007, 2010; Wentzell et al., 2007). The

averageCT phase group log2 values were then usedwithin ANOVA to test

for differences between the mutant and the wild type. For the MYBs, an

interaction between the two genes was included within the ANOVA.

Differences between the wild type and mutants for individual CT phase

groups were obtained by conducting partial F tests within the ANOVA.

The CT phase group Z scale values were also used and showed identical

statistical responses.

Glucosinolate Mutant Circadian Period Analysis

The circadian periods of the four mutants and wild-type Col-0 were

estimated from DF data (Gould et al., 2009). After sterilization, clusters

of;15 to 20 seeds were plated on half-strength Murashige and Skoog

medium with 1.5% agar and subsequently stratified for 2 to 4 d at 48C.

Plants were entrained to 12/12-h light/dark cycles at 228C and grown for

16 d prior to assaying their circadian periods. At subjective dawn on the

16th day, plants were transferred to an imaging chamber and put under

constant RB (red and blue) light from an LED array set to;20 mmol m22

s21. Illumination was interrupted to acquire DF images once every hour

for 63 s, 3 s of preexposure darkness, followed by 60 s of image

exposure. Fluorescence was captured using an iKon-M DU-934N-BV

low-light CCD camera (Andor Technology) cooled to 2808C. The LED

array and CCD camera were controlled with a custom LabVIEW (Na-

tional Instruments) program. DF values were extracted from CCD

camera images with ImageJ (W.S. Rasband, U.S. National Institutes

of Health) using the Multi Measure plug-in and the circle tool macro set

to measure integrated pixel density. These data were then analyzed

using BRASS (available at http://www.amillar.org) to estimate circadian

period and RAE by fast Fourier transformed nonlinear least squares

(Plautz et al., 1997). The data were normalized and detrended for

amplitude and baseline differences prior to analysis. Period estimates

with an RAE >0.6 were excluded from downstream analyses. A linear

model was fit to the circadian period data from three separate trials to

determine if themutants were significantly different thanCol-0; the nlme

package (Pinheiro and Chao, 2006) in R (R Development Core Team,

2008) was used for this analysis.

Glucosinolate Mutant Flowering Time Analysis

The samemutants and wild-type Col-0 were placed in three chambers that

differed in their light cycles (constant light, 16/8-h light/dark, and 10/14-h

light/dark). Flowering time was measured in six to 12 plants per genotype

per chamber using the time to bolting as determined by the inflorescence

being > 1 cm (Clarke et al., 1995; Jansen et al., 1995).

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL

database or the Arabidopsis Genome Initiative database under the follow-

ing accession numbers: CCR2 (At2g21660), CCA1 (At2g46830), GI

(At1g22770), LHY (At1g01060), PRR3 (At5g60100), PRR7 (At5g02810),

PRR9 (At2g46790), TOC1 (At5g61380), ZTL (At5g57360), MYB28

(At5g61420), MYB29 (At5g07690), AOP2 (At4g03060), AOP3 (At4g03050),

MAM1 (At5g23010),MAM3(At5g23020), and ELF3 (At2g32150). Accession

numbers for MYB28 and MYB29 knockout mutants are SALK_136312

(myb28) and Sail SM.31316 (myb29).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Analysis of CT Phase Group Expression

across a Circadian Microarray Experiment.

Supplemental Figure 2. Analysis of CT Phase Group Expression

across a Circadian Microarray Experiment.

Supplemental Figure 3. Analysis of Z Scaled Expression for All

Genes within the CT 0 Phase Group across a Circadian Microarray

Experiment.

Supplemental Figure 4. Circadian Rhythms in Bay-0 and Sha.

Supplemental Figure 5. Additive QTL Estimates across the Genome

for Salicylate-Treated RILs.

Supplemental Figure 6. Additive QTL Estimates across Chromo-

some II.

Supplemental Figure 7. Modeled QTL Effects Using a Single Time

Point.

Supplemental Figure 8. Circadian Oscillation in Chlorophyll Delayed

Fluoresence.

Supplemental Figure 9. Circadian Oscillation in Chlorophyll Delayed

Fluoresence.

Supplemental Data Set 1. CT Phase Group Definition.

Supplemental Data Set 2. Average CT Phase Group Expression in

211 Bay 3 Sha RILs.

ACKNOWLEDGMENTS

This work was funded by National Science Foundation awards DBI

0820580 and DBI 064281 to D.J.K., National Institutes of Health award

R01 GM06418 to S.L.H., and National Science Foundation awards IOS

0923752 and IOS 0227103 to J.N.M.

Received December 8, 2010; revised January 19, 2011; accepted Jan-

uary 30, 2011; published February 22, 2011.

REFERENCES

Atwell, S., et al. (2010). Genome-wide association study of 107 phe-

notypes in a common set of Arabidopsis thaliana inbred lines. Nature

465: 627–631.

Basten, C.J., Weir, B.S., and Zeng, Z.-B. (1999). QTL Cartographer,

Version 1.13. (Raleigh, NC: North Carolina State University).

482 The Plant Cell



Beekwilder, J., et al. (2008). The impact of the absence of aliphatic

glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3:

e2068.

Benderoth, M., Textor, S., Windsor, A.J., Mitchell-Olds, T.,

Gershenzon, J., and Kroymann, J. (2006). Positive selection driving

diversification in plant secondary metabolism. Proc. Natl. Acad. Sci.

USA 103: 9118–9123.

Bidart-Bouzat, M.G., and Kliebenstein, D.J. (2008). Differential levels

of insect herbivory in the field associated with genotypic variation in

glucosinolates in Arabidopsis thaliana. J. Chem. Ecol. 34: 1026–1037.

Borevitz, J.O., et al. (2007). Genome-wide patterns of single-feature

polymorphism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104:

12057–12062.

Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L. (2002). Genetic

dissection of transcriptional regulation in budding yeast. Science 296:

752–755.

Bussemaker, H.J., Ward, L.D., and Boorsma, A. (2007). Dissecting

complex transcriptional responses using pathway-level scores based

on prior information. BMC Bioinformatics 8 (suppl. 6): S6.

Chan, E.K.F., Rowe, H.C., and Kliebenstein, D.J. (2010). Understand-

ing the evolution of defense metabolites in Arabidopsis thaliana using

genome-wide association mapping. Genetics 185: 991–1007.

Christley, S., Nie, Q., and Xie, X.H. (2009). Incorporating existing

network information into gene network inference. PLoS ONE 4: e6799.

Clarke, J.H., Mithen, R., Brown, J.K., and Dean, C. (1995). QTL

analysis of flowering time in Arabidopsis thaliana. Mol. Gen. Genet.

248: 278–286.

Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., and Harmer,

S.L. (2008). Global transcriptome analysis reveals circadian regulation

of key pathways in plant growth and development. Genome Biol. 9:

R130.

Darrah, C., Taylor, B.L., Edwards, K.D., Brown, P.E., Hall, A., and

McWatters, H.G. (2006). Analysis of phase of LUCIFERASE expres-

sion reveals novel circadian quantitative trait loci in Arabidopsis. Plant

Physiol. 140: 1464–1474.

Dodd, A.N., Gardner, M.J., Hotta, C.T., Hubbard, K.E., Dalchau, N.,

Love, J., Assie, J.M., Robertson, F.C., Jakobsen, M.K., Gonçalves,
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