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The perception of breathiness in vowels is cued by multiple acoustic cues, including changes in

aspiration noise (AH) and the open quotient (OQ) [Klatt and Klatt, J. Acoust. Soc. Am. 87(2), 820–

857 (1990)]. A loudness model can be used to determine the extent to which AH masks the har-

monic components in voice. The resulting “partial loudness” (PL) and loudness of AH [“noise loud-

ness” (NL)] have been shown to be good predictors of perceived breathiness [Shrivastav and

Sapienza, J. Acoust. Soc. Am. 114(1), 2217–2224 (2003)]. The levels of AH and OQ were system-

atically manipulated for ten synthetic vowels. Perceptual judgments of breathiness were obtained

and regression functions to predict breathiness from the ratio of NL to PL (g) were derived. Results

show that breathiness can be modeled as a power function of g. The power parameter of this func-

tion appears to be affected by the fundamental frequency of the vowel. A second experiment was

conducted to determine if the resulting power function could estimate breathiness in a different set

of voices. The breathiness of these stimuli, both natural and synthetic, was determined in a listening

test. The model estimates of breathiness were highly correlated with perceptual data but the

absolute predicted values showed some discrepancies. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Voice quality plays an important role in speech and

serves to cue several indexical properties such as age, emo-

tions, speaker identity, etc. A change in voice quality can arise

as a symptom of some diseases or laryngeal conditions and is

often the focus of rehabilitative efforts. Therefore, quantifica-

tion of voice quality has several important applications. These

range from commercial applications such as the development

and evaluation of speech compression/coding techniques,

speech synthesis, or speech understanding systems to clinical

tools that serve as screening or diagnostic measures or as indi-

ces of treatment/rehabilitative outcome. Although the mea-

surement of voice quality has been the focus of many

experiments over the last several decades, no standardized

approach to quantify voice quality exists. The research

described here attempts to understand how listeners perceive

“breathy” voice quality. A computational model is used to

quantify this particular dimension of voice quality and to serve

as a guide to future investigations of voice quality perception.

Voice quality is a perceptual construct that results from

specific acoustic cues in speech. These cues may be a product

of the glottal source, the vocal tract filter, or a combination

of the two. Modifications to the glottal source are believed

to result in three major subtypes or dimensions of voice

quality: “breathy,” “rough,” or “strain” (e.g., Takahashi and

Koike, 1976; Hirano, 1981; ASHA, 2002). The present report

attempts to understand the perception of breathy voice qual-

ity, which results from lax adduction of vocal folds and

an incomplete glottal closure resulting in greater turbulence

noise in the vowel acoustic signal (de Krom, 1995; Hammar-

berg et al., 1986; Klatt and Klatt, 1990).

Several different measures have been proposed to quantify

the degree or magnitude of breathiness in a vowel. These

include measures of short-term perturbation (e.g., Eskenazi

et al., 1990; Prosek et al., 1987; Martin et al., 1995), relative

noise level (de Krom, 1993; Hirano et al., 1988), relative am-

plitude of the first harmonic (de Krom, 1994; Hillenbrand

et al., 1994), spectral slope (Hammarberg et al., 1980), glottal

source characteristics (Childers and Lee, 1991; Klatt and Klatt,

1990), and the relative amplitude of the cepstral peak (Hillen-

brand et al., 1994). However, none of these measures has

shown a consistent and high correlation with perceptual judg-

ments of breathy voice quality when tested across multiple
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experiments using different speakers and listeners (Kreiman

and Gerratt, 2000). Few reports have attempted to develop a

formal predictive or computational model for breathiness.

Instead, most report only the correlation between perceptual

judgments of breathiness and one or more acoustic measures

derived from the speech signal. Such data, although necessary,

are not sufficient to develop a formal tool for the quantification

of breathiness that may be widely used for multiple

applications.

More recently, an auditory-processing front-end has been

used as a preprocessing step prior to computing acoustic cor-

relates for breathiness (Shrivastav, 2003; Shrivastav and Sapi-

enza, 2003). This intermediate step represents the non-linear

transformation between the acoustic signal and perception fol-

lowing processing by the auditory system. These reports show

that the use of a loudness model (described by Moore et al.,
1997) as a signal processing front-end resulted in measures

that were better correlated with perceptual judgments of

breathiness than other metrics used for this purpose [such as

the cepstral peak prominence, short-term perturbation, and

harmonic-to-noise ratio (HNR)]. Briefly, the loudness model

attempts to predict the loudness of a signal by simulating the

processes involved in the transduction of an acoustic signal

into its corresponding neural representation. The loudness

model also has the advantage of separating the loudness due

to a signal of interest, referred to as “partial loudness” (PL),

from the loudness due to background activity not associated

with the signal of interest, referred to as “noise loudness”

(NL). There are four basic elements of the model. The outer

and middle ears are represented by separate passive band-pass

filter functions. The cochlear mechanics are represented by a

non-linear filter bank, analogous to critical band filtering.

Subsequent neural transduction is represented by a compres-

sive non-linear transformation of the output of the cochlear

filter bank. The loudness estimate from each filter bank is

summed to obtain the total loudness of a signal and is propor-

tional to the total neural activity in response to that input.

The vowel acoustic signal can be viewed as having a

periodic (harmonic) and an aperiodic (noise) component.

The total loudness of the vowel includes contributions of

both the harmonic and the noise components. The PL of the

harmonic energy reflects the loudness of the periodic compo-

nent in vowels, when these are masked by the aperiodic

components in the same voice. The NL reflects the loudness

resulting from the aperiodic components present in that

voice. These two measures computed from the output of this

loudness model were observed to correlate with perceptual

judgments of breathiness. Breathiness was observed to be

inversely related to PL and related directly to NL (Shrivas-

tav, 2003; Shrivastav and Sapienza, 2003). Shrivastav and

Sapienza (2003) reported that for low to moderate perceptual

judgments of breathiness, PL had the most predictive lever-

age, but NL better predicted breathiness for stimuli judged to

have high levels of breathiness.

To better understand the perception of breathiness in

vowels, Shrivastav and Camacho (2010) evaluated breathi-

ness of synthetic vowels that varied in the level of aspiration

noise (AH) using an unanchored direct magnitude estimation

task. The magnitude of perceived breathiness was compared

to the PL and NL for these stimuli. It was observed that per-

ceptual judgments of breathiness for these stimuli were best

predicted by a power function of the ratio of NL to PL.

The power of these functions varied with fundamental

frequency but was always observed to be below 1.0, resulting

in a compressive relationship between NL/PL and breathi-

ness. NL/PL (henceforth referred to as g) proved to be a good

predictor of breathiness in vowels and Shrivastav and Cama-

cho (2010) suggested that a computational model to predict

breathiness in vowels would take the following form:

b ¼ ðkgÞp þ bTH; (1)

where b was the breathiness of a vowel, k was a constant, g
was the ratio of NL to PL, p was a power, and bTH was

defined as a threshold breathiness below which changes in

AH levels had no effect on perceived breathiness. Further-

more, two of the model parameters (p and bTH) were

observed to vary with the stimulus fundamental frequency.

While the initial evaluation of this model by Shrivastav

and Camacho was promising, the full power of the model

requires evaluation using a broader set of conditions. Specifi-

cally, while Shrivastav and Camacho evaluated synthetic

vowel stimuli so they could precisely control specific stimulus

parameters, a general model of breathiness must also predict

the perception of naturally occurring voices. Furthermore, the

synthesized vowels used by Shrivastav and Camacho (2010)

manipulated breathiness by changing the level of AH alone.

In contrast, natural voices along the continuum of breathiness

often show multiple acoustic changes (e.g., Klatt and Klatt,

1990). In addition to changes in AH, acoustic changes associ-

ated with breathiness include an increase in the spectral slope

and an increase in the amplitude of the first harmonic relative

to the second harmonic (e.g., Hanson, 1997). Such acoustic

changes often interact with each other to cue the perception

of breathiness. For example, in unpublished pilot experiments,

we observed that an increase in the amplitude of the first har-

monic relative to that of the second harmonic (H1-H2) was

effective in cuing changes in breathiness when the AH levels

were low. However, at higher levels of AH, changes in H1-

H2 did not affect the perceived breathiness in vowels.

Accounting for such complex acoustic-to-perceptual

relationships may require development of models based on

a more realistic simulation of breathy voice quality. Alter-

natively, one may attempt to study the perception of

breathy voice quality using natural voices alone (such as

using machine learning algorithms to determine the acous-

tic-to-perceptual relationship). The former allows a high

degree of control over stimuli, allowing the experimenter to

draw inferences that are more conclusive from their data.

The later allows the use of more naturalistic stimuli, but the

high variability across stimuli makes it difficult to draw

firm conclusions about the resulting data. A third alterna-

tive, applied in the present study, is to develop a computa-

tional model based on synthesized voices and to evaluate it

against natural voices.

Therefore, the goal of this study was to develop a model

for the perception of breathiness in vowels using synthesized

stimuli that showed co-variation of two different acoustic
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cues previously associated with changes in breathiness (Klatt

and Klatt, 1990; Hillenbrand et al., 1994; Hanson, 1997).

These included changes in AH level and changes in the H1-

H2, simulated through the manipulation of the glottal source

open quotient (OQ). A comparison of the resulting model

with that proposed by Shrivastav and Camacho (2010) based

on changes in AH alone would help to identify the contribu-

tion of changes in H1-H2 to the perception of breathiness. A

second objective of this study was to evaluate the extent to

which a model based on the analysis of synthesized voices

would generalize to a novel set of stimuli consisting of both

synthesized and natural voices.

II. EXPERIMENT 1: MODEL DEVELOPMENT

A. Methods

1. Stimuli

The stimuli consisted of ten synthetic vowel series (/A/)

generated using the Klatt synthesizer with the Liljencrants–

Fant model (Fant et al., 1985) as the sound source. This

allowed systematic manipulation of the amplitude of AH and

the OQ, two parameters shown to be correlated with the per-

ception of breathy voice quality. Note that changes in the

OQ of the glottal source are related to changes in H1-H2 in

the output spectrum (e.g., see Hanson, 1997). Thus, changes

in the OQ parameter of the Klatt synthezier were incorpo-

rated to indirectly manipulate the H1-H2 for these stimuli.

The synthetic vowels simulated ten talkers selected from

the Kay Elemetrics Disordered Voice Database (Kay Eleme-

trics, Lincoln Park, NJ). These vowels have been used in pre-

vious experiments on breathiness, and more details about

their selection and synthesis have been provided in Shrivastav

and Camacho (2010). Briefly, the ten vowel samples corre-

sponded to five male and five female talkers who exhibited a

wide range of breathiness, from normal to extremely dys-

phonic. These were selected through a pilot listening test

where 4 listeners rated the breathiness of 50 voices that were

randomly selected from the Kay Elemetrics database. The

stimuli were rank ordered based upon the average ratings and

then grouped into five bins varying in breathiness. Finally,

two stimuli—one male and one female—were selected from

each bin. Synthesized versions of these talkers were gener-

ated by recreating the fundamental frequency (f0) and first

three formant frequencies (F1, F2, F3) of the natural voices.

Certain other source and filter parameters (AH, OQ, tilt,

formant bandwidths) were adjusted subjectively to obtain

approximately equal perceived breathiness. It is emphasized

that the goal was not to produce an exact match between the

natural and the synthesized voices but to obtain the same

range of breathiness between the two groups of stimuli.

For the present experiment, the ten synthetic vowels

were systematically manipulated to obtain ten sets of vowel

continua. Each vowel continuum consisted of 11 samples co-

varying in AH and OQ, thus resulting in a total of 110 syn-

thetic stimuli (10 vowel continua� 11 stimuli/continuum).

The AH ranged from approximately 0 dB to 80 dB, whereas

the OQ ranged from approximately 25% to 99% for most of

the vowel continua. However, for two stimuli, the range of

AH and OQ was restricted to a smaller range because pilot

listening tests showed the resulting output to be judged as

being highly unnatural. The exact range of AH and OQ for

each vowel is shown in Table I. These ranges of AH and OQ

were used to generate 11 stimuli, for each vowel where each

AH level was combined with the corresponding OQ. Thus,

for example, the first stimulus in a particular vowel contin-

uum had the lowest AH level combined with the lowest

OQ permissible for that continuum. The second stimulus in

that continuum had the next permissible values based on

the step-size for AH and OQ for that series (where step-

size¼ permissible range/10). All other synthesis parameters

were kept constant for all stimuli within each vowel contin-

uum. The goal was to obtain a set of vowels that vary in

breathiness, without any regard to linearity of the change in

breathiness. For the purpose of this experiment, it was not

critical to have stimuli that were equidistant in terms of per-

ceived breathiness within or across various vowel continua.

All vowel stimuli were generated at a sampling rate of

10 000 Hz and with 16-bit quantization. These were then up-

sampled to 12 207 Hz to match the permissible sampling rate

of the hardware used. Stimuli were 500 ms in duration and

were adjusted in amplitude to have equal root-mean-square

(rms) energy. This was done to ensure that the loudness of

the stimuli was relatively similar and that large differences

in loudness did not bias perceptual data. The stimuli were

shaped with 20-ms cosine-squared onset and offset ramps to

avoid audible transients.

Finally, the synthesizer was also used to generate two

additional waveforms for each stimulus—one for the AH with

no voicing and another for the harmonic signal with no AH.

These waveforms were used in the development and evaluation

of the predictive model described below. The noise waveform

was generated by re-synthesizing the vowel with the amplitude

of voicing (AV) set to zero and leaving all other parameters at

the same value as the original stimulus. The harmonic signal

was generated by setting the AH value to zero. Neither of these

two signals was used in any listening test.

2. Listeners

Ten listeners, nine females and one male, were recruited

to participate in this experiment. The mean age of the

TABLE I. The range and step-sizes used to generate the AH and OQ continua used in experiment 1.

Stimuli FEML5 FEML4 FEML3 FEML2 FEML1 MALE5 MALE4 MALE3 MALE2 MALE1

AH (dB) Range 55–80 0–80 0–75 0–80 0–80 55–80 0–80 0–75 0–80 0–75

Step-size 2.5 8 7.5 8 8 2.5 8 7.5 8 7.5

OQ (%) Range 30–99 25–99 35–99 35–99 30–99 30–85 35–99 25–99 25–99 25–99

Step-size 6.9 7.4 6.4 6.4 6.9 5.5 6.4 7.4 7.4 7.4
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listeners was 21.3 yr and ranged from 20 to 26 yr. All listeners

were native speakers of American English and had normal hear-

ing (hearing thresholds below 20 dB hearing level (HL) at

octave frequencies between 250 and 8000 Hz). Listeners were

recruited from the undergraduate and graduate program in Com-

munication Sciences and Disorders at the University of Florida.

These listeners had completed a minimum of one course that

discussed various voice disorders and were familiar with the

concept of breathiness. However, they had limited prior experi-

ence in listening to breathy voice quality. They received a small

monetary compensation for participating in the study.

3. Procedures

The listening test was completed in a single-walled sound

attenuating chamber. Each stimulus was presented 5 times

in random order for a total of 550 listening trials (10

vowel continua� 11 stimuli/continuum� 5 presentations).

The order of stimulus presentation was randomized across lis-

teners. All stimuli were presented monaurally to the right ear

at an intensity of 75 dB sound pressure level (SPL). Stimuli

were presented through the TDT System III (Tucker-Davis

Technologies, Inc., Alachua, FL), consisting of a high-fidelity

DSP board (RP2), programmable attenuators (PA5), and a

preamplifier (HB7). Stimuli were presented through ER2 ear

inserts (Etymotic, Inc., Elk Grove Village, IL), which have a

flat frequency response at the eardrum. The experiment was

controlled by the software SYKOFIZX (Tucker-Davis Technolo-

gies, Inc.), and the listeners responded by entering the desired

rating using a computer keyboard.

Judgments of severity of dysphonic voice quality, includ-

ing breathiness, form a prothetic continuum since these can be

judged on a scale of low to high (e.g., Eadie and Doyle, 2002).

For such continua, a magnitude estimation task provides better

perceptual data than a standard rating scale task, which may

result in ordinal data (Shrivastav et al., 2005). Therefore, listen-

ers were asked to judge the magnitude of breathiness for each

stimulus using a free direct magnitude estimation task. In this

task, listeners were asked to assign a number between 1 and

1000 to the stimulus to indicate the magnitude of its breathi-

ness. Listeners were free to choose any number but were

required to use the numbers in such a way that these reflected

the magnitude of change in breathiness across stimuli. Thus,

for example, if a stimulus was perceived to have twice the

breathiness as another, it should be assigned a number that is

twice as large as that assigned to the first stimulus. The task

was explained to the listeners, but no specific practice session

was implemented. The listening test commenced after the lis-

tener confirmed clear comprehension of test instructions and

was comfortable with the required task. The judgment data

thus obtained were logarithmically scaled, and the preferred

estimate of central tendency for such data is the geometric

mean. Therefore, the geometric mean of all ratings from all lis-

teners was computed and used for describing changes in

breathiness within and across different vowel continua.

4. Signal processing

As described in the Introduction, two measures were

computed for each stimulus: the PL of the harmonic energy

and the loudness of the AH (NL). These measures were com-

puted using the loudness model proposed by Moore et al.
(1997) as described above. The PL of the signal and loudness

of the noise (NL) were used as independent variables to gen-

erate a model of breathiness.

Note that both PL and NL require estimation of the AH

in a vowel stimulus. As described previously, one way to

obtain the noise is through the Klatt synthesizer (by selecting

AV¼ 0). This provides the most accurate estimation of the

AH, and measures computed through this approach are

henceforth referred to as the “ideal” noise loudness (NLideal)

and the “ideal” partial loudness of the harmonic energy

(PLideal). In a previous experiment (Shrivastav and Cama-

cho, 2010), the ratio of NLideal to PLideal was found to be

successful in predicting changes in breathiness for vowels.

This ratio is henceforth referred to as the loudness ratio (g).

To indicate that g was computed using ideal estimates of

AH, an appropriate subscript is used (gideal).

Finally, the fundamental frequency (f0) of the vowel

was included in the model. However, instead of expressing it

in hertz, a quasi-logarithmic transformation of it produced

by the equivalent rectangular bandwidth (ERB) scale was

used corresponding to the same ERB scale used in the for-

mulation of the filter-bank portion of the loudness model

(Moore et al., 1997). This was computed using the following

formula:

/ ¼ 21:4 log10 1þ f

229

� �
; (2)

where u is the frequency in ERB units and f is the frequency

measured in kilohertz.

B. Analyses and results

1. Breathiness judgments

In general, breathiness was judged to increase with

increasing OQ and AH along the 11-point continuum. How-

ever, the rate of change in breathiness varied across the ten

vowel continua, with some continua showing minimal

changes in breathiness for the initial few stimuli. The abso-

lute values of the listener judgments ranged from 32 to 786.

For ease of computation, these raw data were first converted

to a log10 scale, transforming majority of the nominal values

(those ranging from 100 to 1000) to a range from 2 to 3.

Then, the log-transformed data was rescaled by subtracting a

constant value of 2, resulting in data ranging from 0 to 1 for

majority of the stimuli. Such transformation of the data had

no effect on its dispersion but made it considerably simpler

to model using linear and non-linear equations. The log-

transformed magnitude estimation data are shown in Fig. 1.

Intra-listener reliability was estimated by obtaining the

mean Pearson’s correlation between one set of ratings (one

repetition of the stimuli) and the remaining four sets of rat-

ings within a listener. Thus the mean was computed over ten

correlations, since each stimulus was rated five times ffor

n¼ 5 sets of ratings, there are [n� (n� 1)]/2 unique pairsg.
The mean intra-listener reliability measure across ten listen-

ers was 0.81 (standard deviation¼ 0.10; range¼ 0.67–0.96).
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Inter-listener reliability was estimated as the average Pear-

son’s correlation between the geometric mean ratings from

one listener and the remaining nine listener (thus, the aver-

age was computed across nine correlations). This was found

to average 0.72 (standard deviation¼ 0.07; range¼ 0.57–

0.79).

2. Model development

Figure 2 shows the change in breathiness as a function

of changes in gideal for the ten vowel continua. For most con-

tinua, breathiness shows a monotonic but non-linear increase

with an increase in gideal, except at the low end, where no

clear pattern is noted. At the low end of the continuum, stim-

uli show little or no change in gideal despite reasonably large

changes in AH and OQ, and random (at least, non-mono-

tonic) variation in breathiness. This can be also be inferred

from Fig. 1, which shows little change in breathiness for the

first 3–6 positions in many vowel continua. This mismatch

between the acoustic and perceptual data may be explained

by the large difference limen observed for the perception of

changes in AH, particularly at low AH levels (Kreiman and

Gerratt, 2003; Shrivastav and Sapienza, 2006). However, the

output of the loudness model is presumed to be sensitive to

such perceptual limitations, thus accounting for some of

these mismatches.

Figure 2 also shows that the same gideal resulted in

greater breathiness for the male vowel continua than for

female continua, suggesting a possible inverse relationship

with the pitch of the vowels. This possibility was further

examined by using pitch as an independent variable for pre-

dicting breathiness. This is described in more detail below.

Finally, note that perceptual scores for one vowel con-

tinuum (FEML1) showed a large non-monotonic trend in

perceptual data for the first few stimuli in the continuum de-

spite minimal changes in gideal. Therefore, this stimulus con-

tinuum was excluded from the curve-fitting operations

described below but was included for all subsequent evalua-

tions. Two other continua that were excluded when con-

structing the model were FEML5 and MALE5. This is

because these continua started at gideal values very far from

zero,1 which made it impossible to determine a breathiness

threshold b0 for them (see curve-fitting process below).

The data in Fig. 1 were modeled using a set of curve-fit-

ting operations. These procedures have been used previously

to model vowel continua that vary only in AH (Shrivastav

and Camacho, 2010). First, an equation was generated for

each individual vowel continuum. A power relationship of

the following form was observed to produce a good fit to the

data for each continuum:

b ¼ b0 þ kðgidealÞp; (3)

where b is the translated logarithm of breathiness magnitude,

p is the power, and b0 and k are constants. Next, to determine

if any of the parameters in Eq. (3) varied systematically with

fundamental frequency, linear regressions between the

vowel f0 (u; measured in ERB units) and the three equation

parameters (p, k, and b0) were computed. These regressions

are displayed in Fig. 3 and show that only p was systemati-

cally related to u (R2¼ 0.667). Therefore, Eq. (3) was modi-

fied to include the linear regression function relating p to u.

The parameters b0 and k did not vary systematically with

u (R2 values of 0.158 and 0.209, respectively) and their aver-

age values across the seven vowel continua were used. Fig-

ure 3 shows the regression for p and its R2. The figure also

shows the R2 for k and b0, but their respective linear equa-

tions (and lines) were replaced by their means (and horizon-

tal lines) to give a better idea of the value used for these

parameters. Finally, the breathiness (b) of a vowel with a

known loudness ratio (gideal) and f0 (u; expressed in ERB

units) was described by the following formula:

bðgideal;uÞ ¼ 0:45gideal
1=ð7:054�0:78uÞ þ 0:026: (4)

As in Eq. (3), Eq. (4) describes a power function

between breathiness and gideal, but the power is now a linear

function of f0.

To evaluate the success of Eq. (4) in describing the per-

ceptual data, this equation was used to estimate the
FIG. 2. (Color online) Change in breathiness as a function of gideal for the

ten synthetic vowel continua.

FIG. 1. (Color online) Magnitude estimate data for the ten synthetic voice

continua.
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breathiness of each stimulus on each of the ten vowel con-

tinua. The predicted breathiness values are shown in Fig. 4.

The goodness of the fit was evaluated by computing the

mean absolute error (MAE) and the amount of variance in

perceptual data accounted for by the model (R2). A perfect

fit would result in MAE¼ 0 and R2¼ 1. Higher values of

MAE and lower values of R2 indicate a poor fit between the

predicted and perceptual data. These values were found to be

0.0625 and 0.9248, respectively, suggesting that Eq. (4) was

generally able to model the perceptual data with high accu-

racy. However, the predicted data did not fit the continuum

endpoints well. As noted previously, the perceptual data at

the low end of the breathiness continuum showed high vari-

ability which was not accounted for by Eq. (4). Similarly,

Eq. (4) failed to account for stimuli with very high levels of

gideal (gideal> 1.2 for females and gideal> 0.8 for males)

because stimuli with such high values of n were not utilized

for generating the regressions functions of the model

(MALE5 and FEML5 were excluded from the model

development).

C. Discussion

In experiment 1, listeners judged the breathiness of a set

of synthetic vowel continua created by systematic co-varia-

tion of AH and OQ to simulate naturally occurring vowels

that vary in breathiness. These judgments were used as the

basis for a model of the relationship between perceived

breathiness and the ratio of NL and PL (gideal). The resulting

model was a power function relating gideal and breathiness.

The power was observed to be inversely related to funda-

mental frequency (measured in ERB units), so that the same

change in gideal led to greater changes in breathiness for the

male speakers than for female speakers. It is also possible

that changes in p resulted from factors other than the funda-

mental frequency (such as the formant ratios resulting from

differences in vocal tract length). However, such interactions

were not evaluated in the present experiment.

The general form of the equation, including the inverse

relationship between the power and fundamental frequency,

are consistent with the functions reported by Shrivastav and

Camacho (2010) for vowels that vary in AH alone [see Eq.

(1)]. However, unlike Shrivastav and Camacho (2010), the

model generated by simultaneous manipulation of AH and

OQ did not require a stimulus-dependent breathiness-thresh-

old point (b0) and only one parameter (p) was observed to

vary systematically with stimulus f0. This is presumably

because of an interaction between AH and H1-H2 (resulting

from changes in OQ) in cuing breathiness. An interaction

between OQ and AH levels in cuing breathiness has been

documented by other experiments as well. For example, Krei-

man and Gerratt (2005) found that listeners performing a

method-of-adjustment task showed significantly greater var-

iance in adjusting the noise-to-harmonic ratio (NSR) for stim-

uli with lower H1-H2 (which results from a smaller OQ),

possibly suggesting a smaller difference limen for breathiness
FIG. 4. (Color online) Change in breathiness as a function of gideal for ten

synthetic vowel continua as predicted by Eq. (4).

FIG. 3. (Color online) Regression

functions predicting model parame-

ters (b0, p, and k) from vowel funda-

mental frequency. Solid line shows

the linear regression prediction.

Dashed line shows the average value

for the nine stimulus continua.
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for stimuli with steeper spectral slopes. By accounting for

such interactions amongst various acoustic cues, the breathi-

ness model described here is likely to better capture variabili-

ty in breathiness judgments for natural stimuli.

Although f0-dependent, the exponential term was always

less than 1.0, consistent with a compressive relationship

between gideal and breathiness. Such a compressive relation-

ship is typical for many psychophysical phenomena such as

those obtained for loudness or brightness (e.g., Stevens,

1975, p. 15) and suggests that the perception of breathiness

may follow the same general psychophysical rules that are

observed for many other sensory stimuli. Certain other con-

stants in the computational model were derived by averaging

values from individual vowel continua. Despite this, the high

R2 and low MAE in predicted breathiness suggest that the

model was a good representation of the relationship between

breathiness and gideal.

Finally, note that the ten vowel continua used to gener-

ate this model provide limited variability in f0. These stimuli

essentially result in a bimodal distribution of f0 correspond-

ing to the male and female speakers. Thus, the linear regres-

sion function used to estimate the relationship between f0
and p should only be considered preliminary. Further experi-

mentation with stimuli that vary systematically in f0 is neces-

sary to confirm or modify this relationship.

III. EXPERIMENT 2: MODEL EVALUATION

The goal of this experiment was to evaluate the success

of the model obtained in experiment 1 in predicting breathi-

ness for novel stimuli. The computational model described

in Eq. (4) was used to predict breathiness for a set of natural

and synthetic stimuli, and the resulting estimates of breathi-

ness were compared against perceptual data.

A. Methods

1. Stimuli

A total of 39 stimuli (29 natural and 10 synthetic vowels)

were used in this experiment. The natural vowels were ran-

domly selected from the Kay Elemetrics Disordered Voice

database (Kay Elemetrics, Inc., Lincon Park, NJ). This data-

base consists of approximately 700 disordered voices,

recorded at a sampling rate of 50 000 Hz and with 16-bit quan-

tization. For the purpose of this experiment, these were down-

sampled to 24 414 Hz to match the permissible sample rate of

the hardware. A 500-ms segment was extracted from each

speaker. The stimuli were scaled to have equal rms and the

onset and offset were shaped by 20-ms cosine-squared ramps.

Ten synthetic vowels were also tested in this experiment.

These were included because synthetic stimuli, unlike natural

samples, permit accurate estimation of AH. Testing the model

with both natural and synthetic stimuli may help determine

the extent to which inaccuracies in AH estimation in natural

stimuli affect the model performance. Ten synthetic stimuli

were modeled after ten natural voices selected using stratified

sampling procedures from the set of 29 natural voices

described above. A pilot listening test was completed to rank

order the natural voices in order of magnitude of breathiness.

The rank order was divided into five linearly spaced catego-

ries and two stimuli from each category were randomly

selected. These stimuli were modeled with a Klatt synthesizer

using the procedures described in experiment 1. Note that an

exact match to the target voice was not essential for the pur-

pose of this experiment. Rather, the synthetic stimuli were

designed to have the same range of breathiness as observed

in the natural voices. Also note, that unlike the natural voices,

these stimuli were synthesized using a 10 kHz sampling rate

and were therefore limited to a 5 kHz bandwidth.

2. Listeners

Eight listeners, all females, with a mean age of 21 yr

(range¼ 18–28 yr) were tested in this experiment. None of

these listeners participated in experiment 1. Listeners were

recruited from the undergraduate and graduate program in

Speech-Language Pathology or Linguistics at the University

of Florida. All listeners were native speakers of American

English and were screened for normal hearing. These listen-

ers had little to no prior experience in making perceptual

judgments of breathiness. Listeners received a small mone-

tary compensation for participation in the study.

3. Procedures

A free direct magnitude estimation procedure, identical

to the one used in experiment 1, was completed. Each of the

39 stimuli was presented 5 times resulting in a total of 195

presentations (39 stimuli� 5 repetitions). The order of pre-

sentation was randomized across listeners. Stimulus presen-

tation and response collection was identical to experiment 1.

Prior to testing, a brief training session was completed

to familiarize the listeners with the test procedures. In this

training session, listeners were asked to complete a free

direct magnitude estimation task for a set of 17 (14 natural

and 3 synthetic) vowels randomly selected from the Kay Ele-

metrics Disordered Voice Database. The stimuli used for

training did not include any items from the test set. The goal

of this training was merely to familiarize the listeners with

breathiness and the direct magnitude estimation procedure.

No feedback was provided.

The geometric means of the magnitude estimates of breath-

iness obtained in the listening test were transformed to a loga-

rithmic scale and translated to the range 0–1. This was essential

because Eq. (4) derived during the development of the model

was also generated on log-transformed and translated data.

4. Signal processing

The signal processing steps were generally identical to

those described in experiment 1. The goal was to separate

each vowel into its periodic and aperiodic components.

These components were given as input to the loudness model

to estimate the loudness of the noise (NL) and the PL of the

harmonic energy. The fundamental frequency (u) was meas-

ured in ERB units for all stimuli as described in experiment

1. Finally, u and g (the ratio of NL to PL) were used as the

predictors of breathiness using Eq. (4).

As described in experiment 1, the estimation of AH in

synthetic voices was done through re-synthesis of the stimuli
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with AV set to zero. Since this approach was not feasible

when using natural stimuli, the AH was estimated using an

algorithm described by Milenkovic (1995, 1997) and imple-

mented in the software CSPEECH (Milenkovic; University of

Wisconsin—Madison, WI). This algorithm has been used in

prior experiments on breathiness (e.g., Shrivastav and Sapi-

enza, 2003). Briefly, this algorithm attempts to determine a

perfectly periodic glottal source within a small temporal win-

dow and estimates the AH by subtracting the actual vowel

waveform from the ideal waveform. For the natural stimuli

used in this experiment, the AH was estimated using this algo-

rithm and the measures computed from these estimates were

referred to as the “estimated” partial loudness of the harmonic

energy (PLestimate) and the “estimated” noise loudness

(NLestimate). In order to predict breathiness for natural stimuli,

the ratio of NLestimate and PLestimate (referred to as gestimate)

was substituted for gideal in Eq. (4).

B. Analyses and results

1. Breathiness judgments

The magnitude estimation scores ranged from 72 to 753

for natural stimuli and from 90 to 877 for synthetic stimuli.

As in experiment 1, the raw scores were rescaled by first

converting to a logarithmic scale (base 10) and then subtract-

ing a constant value of 2 from each score. The synthetic and

natural stimuli were observed to span approximately similar

range of breathiness. A weak correlation between the funda-

mental frequency of the stimuli and perceptual judgments of

breathiness were observed (Pearson’s correlation was �0.16

and þ0.31 for natural and synthetic stimuli, respectively).

As in experiment 1, intra-listener reliability was esti-

mated by obtaining the mean Pearson’s correlation between

one set of ratings (one repetition of the stimuli) and the

remaining four sets of ratings within a listener. Thus, the

mean was computed over ten correlations, since each stimu-

lus was rated five times [(5� 4)/2¼ 10 unique pairs]. The

intra-rater reliability was found to average 0.76 (standard

deviation¼ 0.11) across the eight listeners and ranged from

0.63 to 0.87. Inter-listener reliability, estimated as the Pear-

son’s correlation between the average ratings from each lis-

tener was found to average 0.74 (standard deviation¼ 0.10)

and ranged from 0.55 to 0.83. These values were very simi-

lar to those obtained in experiment 1 and showed moderately

high inter- and intra-listener reliability.

2. Model evaluation

The relationships between perceived breathiness and

each of PL and NL are shown in Figs. 5 and 6. Note that dif-

ferent methods were used to separate the periodic and noise

components for the synthetic and natural stimuli. Therefore

Figs. 5 and 6 show PLestimate and NLestimate for the natural

stimuli, but PLideal and NLideal for the synthetic stimuli. For

natural stimuli, both PLestimate and NLestimate show a moder-

ate correlation (Pearson’s correlation of �0.57 and 0.77,

respectively) with perceived breathiness. For synthetic stim-

uli, PLideal is moderately correlated with breathiness (Pear-

son’s r¼�0.47), but NLideal shows a high correlation with

breathiness (r¼ 0.95). Except for the synthetic stimulus that

was judged to have the highest breathiness, NLideal spans the

same range as the NLestimate. However, PLideal obtained from

synthetic vowels is generally lower than the PLestimate esti-

mated from natural vowels.

To evaluate the success of Eq. (4) in predicting breathi-

ness for novel voices, it was used to predict the breathiness of

all stimuli used in the present experiment. Figure 7 compares

the breathiness estimated from Eq. (4) to the perceptual data

obtained through the listening test. For all data, a correlation of

0.773 was obtained between the predicted and perceived

breathiness scores. Thus, the model accounted for 59.8% of

the variance in the perceptual data. Some differences were

observed between the synthetic and natural stimuli. For syn-

thetic stimuli, the model predictions were generally lower than

perceived breathiness resulting in high absolute error

(MAE¼ 0.31), but the predicted scores showed a high

FIG. 5. (Color online) Perceived breathiness as a function of PL for the nat-

ural and synthetic stimuli tested in experiment 2.

FIG. 6. (Color online) Perceived breathiness as a function of NL for the nat-

ural and synthetic stimuli tested in experiment 2.
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correlation with perceptual data (Pearson’s r¼ 0.828;

R2¼ 0.686). The correlation between the model predictions

and the perceptual judgments was adversely affected by one

stimulus that was judged to have the highest breathiness.

Exclusion of this stimulus increased the Pearson’s correlation

to 0.922 and the corresponding R2 to 0.851. For natural voices,

the model overestimated the breathiness for some of the least

breathy stimuli but underestimated perceptual data for voices

with higher magnitude of breathiness. The MAE between

breathiness predicted by Eq. (4) and perceptual data was

0.1765. The correlation between the predicted and perceived

data was 0.873, accounting for 76.2% of the variance in per-

ceptual data.

C. Discussion

The goal of experiment 2 was to evaluate the success of

the model described by Eq. (4) in predicting breathiness for

novel stimuli. The breathiness values of the 39 vowels were

computed using this model and were compared against per-

ceptual judgments from a panel of listeners. Although the

predicted values of breathiness show a high correlation with

perceptual data, the absolute values obtained from the model

differ from those obtained by averaging listener data. The

high correlation between the perceptual data and the model

predictions for novel test stimuli suggest that g is a good

candidate for the development of a computational model for

breathiness. Furthermore, the general form of the predictive

equation is consistent with prior experiments on breathiness

using synthesized vowels varying in AH levels alone (Shriv-

astav and Camacho, 2010) and show that breathiness is

related to a power function of g. The power of this function

appears to be f0-dependent but was always less than 1.0, sug-

gesting a compressive relationship between g and breathi-

ness. This computational model successfully described

breathiness for novel stimuli, with the exception of one syn-

thetic vowel, which was perceived to have the greatest mag-

nitude of breathiness. This discrepancy likely resulted

because the development of the model [Eq. (4)] excluded

extremely high levels of breathiness (FEML5 and MALE5

in experiment 1). Thus, it is possible that further modifica-

tions to the model are necessary to extend its accuracy to

stimuli with very high breathiness.

Computing breathiness using Eq. (4) requires accurate

estimation of AH spectra. However, the algorithm used for

this estimation may introduce some errors in model output.

To approximate the magnitude of error resulting from inac-

curate estimation of AH, the R2 between predicted breathi-

ness and perceptual scores were compared for synthetic and

natural stimuli. The breathiness model accounted for 85%

of the variance in perceptual data for synthetic stimuli

when discarding one outlier (as described above). Therefore,

inaccuracies in estimating AH spectra may have contributed

a maximum of 9% error in model performance. However,

note that differences in sampling rate between natural and

synthetic voices complicate a direct comparison between

the two sets of data. The natural voices tested in this experi-

ment had a higher bandwidth than the synthetic stimuli.

Few experiments have examined the contributions of high

frequency components (over 5 kHz) to voice quality per-

ception, and it is difficult to speculate how the differences

in stimulus bandwidths might have affected model

performance.

Despite the high R2 between predicted breathiness and

perceptual scores, the MAE was moderately high. This incon-

gruence—good correlation but poor absolute judgment—is

primarily a reflection of the experimental methods employed

in this experiment. The mismatch between R2 and MAE

likely arise because perceptual data obtained using free mag-

nitude estimation tasks does not result in consistent values

when used across different stimulus sets (e.g., Guilford,

1954). This is because the absolute values are affected by a

number of biases, such as the centering bias or range- and fre-

quency-effects (Guilford, 1954; Parducci and Wedell, 1986)

and are influenced by variables such as the number and type

of stimuli used in an experiment. Since experiments 1 and 2

used different sets of stimuli, these biases likely contributed

to an increase in the MAE between the predicted breathiness

and perceptual scores. Note that Eq. (4) overestimated per-

ceptual data at low levels of breathiness and underestimated

it for stimuli judged to have high breathiness (Fig. 6), which

may reflect a possible centering bias. The MAE may also be

affected by differences in sampling rate between the natural

and synthetic stimuli. However, as mentioned above, the

exact nature of this discrepancy remains unknown because

the contributions of high frequency components to voice

quality perception have not been studied in much detail.

In summary, the breathiness predicted by Eq. (4) was

highly correlated with perceptual data for novel stimuli, sug-

gesting that g is a good candidate for predicting breathiness.

Breathiness appears to be a power function of g. The model

developed from stimuli co-varying in AH and OQ general-

ized well to both natural and synthetic test stimuli. Errors in

estimating AH spectra may contribute up to 9% error in

model performance. The model may need to be further

modified to accommodate stimuli with the very high magni-

tude of breathiness.

FIG. 7. (Color online) Perceptual judgments of breathiness vs breathiness

predicted by the model for natural and synthetic stimuli tested in experiment

2. The solid line indicates model output if the predicted values were identi-

cal to perceptual data. The dashed and the dashed-dot lines show best fitting

linear regression for the natural and synthetic stimuli, respectively.
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IV SUMMARY AND FUTURE DIRECTIONS

A computational model to predict breathiness in vow-

els was developed based on perceptual data for a set of ten

synthetic vowel continua that co-varied in the OQ of the

glottal source and the level of the AH. Both of these

changes have been observed to correlate with changes in

breathiness in vowels and co-variation of these parameters

was assumed to approximate naturally occurring vowels

closely. Based on the findings of Shrivastav and Sapienza

(2003), an auditory-processing front-end was used for pre-

processing the vowel spectrum prior to the computation of

predictor variables. Two measures computed from the audi-

tory spectrum (PL and NL) and the vowel fundamental fre-

quency (measured in ERB units) were used to predict

breathiness. PL is an estimate of the loudness of the peri-

odic components in the vowels when these are masked by

the AH. Therefore, in a broad sense, PL is somewhat simi-

lar to the HNR computed from the vowel. However, unlike

HNR, it accounts for the non-linear loudness growth and

masking functions observed in the auditory system. The

perceived magnitude of breathiness is inversely related to

PL. The NL is an estimate of the loudness resulting from

the AH alone; greater NL typically results in the perception

of greater breathiness.

The computational model for predicting breathiness

described here is similar to that proposed by Shrivastav and

Camacho (2010) where breathiness was modeled as a power

function of the loudness ratio (g). The power of this function

appears to vary with the fundamental frequency of the vowel,

such that vowels with lower fundamental frequency show a

greater increase in breathiness for an equal change in g.

However, unlike Shrivastav and Camacho (2010), the inclu-

sion of stimuli co-varying in AH and OQ resulted in a mono-

tonic increase in breathiness even at very low AH levels. It

appears that changes in OQ (which lead to a change in the

first harmonic amplitude in the vowel spectrum) is an effec-

tive cue for discriminating breathiness at low levels of AH.

The success of the model developed using synthetic

stimuli was evaluated in a separate experiment using a novel

set of stimuli. Results show a high correlation between per-

ceived breathiness and model predictions, but the absolute

predicted values did not match the perceptual data. These

differences are partly related to the nature of the experimen-

tal task employed to obtain perceptual data. Additionally,

some errors in model prediction likely arise from inaccura-

cies in decomposing natural voices into its periodic and ape-

riodic components as well as differences in the bandwidth of

the natural and synthetic stimuli.

The findings of the experiments described here also help

identify future directions for research. First, various biases

inherent to the direct magnitude estimation task makes it

inappropriate for research to model the perception of voice

quality or to develop tools for voice quality measurement.

This is because the measurements across multiple experi-

ments cannot be directly compared to one another. Alternate

approaches to evaluate the perception of voice quality, such

as the matching tasks (Gerratt and Kreiman, 2001; Patel

et al., 2010) need to be developed and standardized. Second,

more accurate algorithms need to be developed to decom-

pose voices into its periodic and aperiodic components.

Goor et al. (2004) showed that the accuracy of various algo-

rithms to estimate the noise level in stimuli varies with the

level of AH in voices. Improving the accuracy of these algo-

rithms can further improve the performance of models to

describe voice quality perception. Finally, additional

research needs to be done to evaluate the role of high fre-

quency components on the perception of breathiness as well

as other voice quality dimensions.

V. CONCLUSIONS

A model to predict breathiness in vowels is reported. In

this model, breathiness is modeled as a power function of the

ratio of NL to PL. The power of this function is linearly

related to the vowel f0. This model was tested with a set of

novel voices and a high correlation was achieved between

predicted breathiness and perceptual data. Sources of error in

model predictions include the experimental tasks employed

to generate perceptual data and the inaccuracies in decompos-

ing voices into its periodic and aperiodic components.
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