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† Background and Aims Although quantitative trait loci (QTL) analysis of yield-related traits for rice has devel-
oped rapidly, crop models using genotype information have been proposed only relatively recently. As a first step
towards a generic genotype–phenotype model, we present here a three-dimensional functional–structural plant
model (FSPM) of rice, in which some model parameters are controlled by functions describing the effect of
main-effect and epistatic QTLs.
† Methods The model simulates the growth and development of rice based on selected ecophysiological pro-
cesses, such as photosynthesis (source process) and organ formation, growth and extension (sink processes). It
was devised using GroIMP, an interactive modelling platform based on the Relational Growth Grammar formal-
ism (RGG). RGG rules describe the course of organ initiation and extension resulting in final morphology. The
link between the phenotype (as represented by the simulated rice plant) and the QTL genotype was implemented
via a data interface between the rice FSPM and the QTLNetwork software, which computes predictions of QTLs
from map data and measured trait data.
† Key Results Using plant height and grain yield, it is shown how QTL information for a given trait can be used in
an FSPM, computing and visualizing the phenotypes of different lines of a mapping population. Furthermore, we
demonstrate how modification of a particular trait feeds back on the entire plant phenotype via the physiological
processes considered.
† Conclusions We linked a rice FSPM to a quantitative genetic model, thereby employing QTL information to
refine model parameters and visualizing the dynamics of development of the entire phenotype as a result of eco-
physiological processes, including the trait(s) for which genetic information is available. Possibilities for further
extension of the model, for example for the purposes of ideotype breeding, are discussed.

Key words: Functional–structural plant model, ecophysiology, QTL analysis, plant modelling, quantitative
genetics.

INTRODUCTION

In the light of constantly increasing demand for food and of
global climate change, rice (Oryza sativa) breeding research is
challenged to produce improved genotypes that both exhibit
increased grain yields and permit environmentally sustainable
production on ever more marginal land. Conventional breeding
techniques such as crossing and selection of germplasm (also
with the help of molecular markers) have proven to be reliable,
but could be potentially accelerated by additional knowledge of
adaptation to changing ecosystems. A deeper understanding of
the way ecophysiological processes functionally contribute to
yield is required, and likewise how genes interact with changing
environments and act upon physiological processes contributing
to yield. The amount and quality of grains harvested is the
outcome of a complex of (mainly developmental) processes
taking place concurrently at different hierarchical scales and
phenological stages and involving the action of genes, together
with environmental and management factors, on physiological
processes (Yin and Struik, 2008; Cooper et al., 2005).
Through phenotyping, i.e. the careful observation and

description of yield-related traits and their formation on the
crop, progress has been made in understanding some of the phys-
iological mechanisms involved in yield formation. Due to the
complexity of the yield-formation system, a modelling approach
is an appropriate additional tool, as it can help to integrate and
summarize this phenotype knowledge. Recent approaches
taking meristem-based crop modelling concepts as their depar-
ture point have been promising in terms of simulation of some of
the processes involved in yield formation (Luquet et al., 2008).

Plant architecture is the term referring to organ topology,
geometry (shape) and arrangement in three dimensions
(where subterranean architecture, i.e. of roots and rhizomes,
is most often neglected). Typical plant architectural traits are
pattern of tillering, plant height dynamics, arrangement of
leaves (divergence and phyllotaxis), and number, size and
location of reproductive organs. Zheng et al. (2008) investi-
gated the effect of plant architecture on photosynthetic poten-
tial in rice. Plant architecture is of major agronomic
importance as it determines the adaptability of a plant for cul-
tivation, its harvest index and potential grain yield (Reinhardt
and Kuhlemeier, 2002; Yang and Hwa, 2008). It is regulated at
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different hierarchical scales (cell, tissue, organ, plant), and by
means of diverse mechanisms, including genetic regulatory
networks and physiological signalling pathways (Yang and
Hwa, 2008).

Functional–structural plant models (FSPMs), also referred to
as virtual plants, are models that explicitly describe the develop-
ment over time of the three-dimensional (3-D) architecture or
structure of plants as governed by physiological processes,
which, in turn, are driven by environmental factors (Vos et al.,
2007, 2010). Applying the FSPM paradigm to explain the be-
haviour of a crop such as rice can thus help to better understand
and quantify certain phenomena related to 3-D architecture (e.g.
the dynamics of tiller formation as a function of locally per-
ceived light) and morphogenesis under different conditions of
growth. As an added value – not as a desired outcome per se
– an FSPM provides a developmental time series of 3-D pictures
of the simulated crop, which can be used for various purposes,
for example visual validation of model parameters or animated
visualizations of the development of ideotypes (Guo and Li,
2001). Some studies linking 3-D architecture and morphogen-
esis with quantitative genes and metabolic regulatory networks
have been carried out (Buck-Sorlin et al., 2005, 2008). Other
workers established ecophysiological models of various crops,
e.g. maize (Fournier and Andrieu, 1998; Ma et al., 2008),
wheat (Evers et al., 2005; Semenov et al., 2009) and rice
(Watanabe et al., 2005; Zheng et al., 2008). For convenience
and because of its aptitude for FSPMs, most of these models
were based on L-systems (Prusinkiewicz and Lindenmayer,
1990; Kurth, 1994); another approach, Greenlab (Ma et al.,
2008), uses functional elements to model physiological pro-
cesses: here, a beta-function-based sink/source approach is
used to model organ growth. Watanabe et al. (2005) proposed
a 3-D model of rice plant architecture with the aim of finding
appropriate functions to represent growth and development
through all phenological stages. Although their model was
purely descriptive and structural, they suggested that their
approach could be used to capture in an intuitive way the differ-
ences in structure and development between cultivars
(Watanabe et al., 2005).

The main objective of plant quantitative genetic studies is to
link chromosome loci to specific agricultural traits in the hope of
increasing breeding efficiency for crop yield improvement
(Letort et al., 2008). Grain yield is a complex trait consisting
of several components, such as panicle number per plant,
number of filled grains per panicle and single-grain weight. To
improve yield-related traits in rice through breeding reliably
and targeting multiple component traits at once, it is vital to
reveal the genetic relationships between grain yield and
yield-related traits at the quantitative trait loci (QTL) level.
These traits contribute to grain yield to differing extents and
their contributions vary with genotype, environmental con-
ditions and cultivation practices (Yang and Hwa, 2008). The
complex interactions between genotype and environment
(G × E) pose a major difficulty, as those traits integrate many
physiological and biological phenomena and interactions with
field and climatic conditions (Letort et al., 2008), which
deliver a further strong incentive for the creation and improve-
ment of a functional–structural rice model. Although bridging
the gap between these fields remains difficult, there is an ident-
ified need to separate factors influencing a given phenotypic trait

and shifting from highly integrated traits to more gene-related
traits (Yin et al., 2002; Hammer et al., 2010). Plant height, as
one of the major yield-related traits in rice, is an important
target for genetic studies (Yan et al., 1998a; Ishimaru et al.,
2004; Liu et al., 2006) and practical rice breeding. In this
study, the complex trait plant height was chosen as an
example to demonstrate the connection between ecophysiologi-
cal processes, plant structure and QTLs in a rice FSPM. Plant
height is a composite trait in that it represents the sum of all inter-
node lengths, plus (in the vegetative stage) possibly some of the
length of the uppermost leaves, or after booting, the length of the
inflorescence.

Here we present an FSPM of rice, representing growth and
morphology derived from selected ecophysiological processes
including photosynthesis and sink functions based on a
common assimilate pool. Furthermore, genetic information
for the yield-related trait plant height is considered and illus-
trated with results from first simulations. The model thus pro-
duces simplified phenotypes based on a set of morphogenetic
rules describing an ‘average’ developmental course and final
morphology. Furthermore, it links yield traits to selected phys-
iological processes and several detected QTLs with additive
effects and epistasis effects. The integration of QTL infor-
mation in a rice FSPM presented here is thus a first step into
a new direction that will ultimately lead to a set of models
able to consider QTL × environment interactions as well as
the interaction of quantitative genes with physiological
factors (substrate, hormones, etc.) in regulatory networks.

MATERIALS AND METHODS

Field experiment and statistical analysis

A doubled haploid (DH) rice population of 124 lines derived
from a cross between ‘IR64’ and ‘Azucena’ was used to
dissect the developmental behaviour and G × E interaction
for plant height using QTL mapping methods (Yan et al.,
1998a, b; Cao et al., 2001a). The experiment is described in
detail in Yan et al. (1998a, b) and Cao et al. (2001a). The
DH lines and their parents were grown in Hangzhou (eastern
China, about 30 8N) and Hainan Island, China (Southern
China Sea, 18 8N). In Hangzhou, the experiments were
carried out from late May to early November 1996 and mid
May to mid October 1998. In Hainan, the experiment was
carried out from early December 1995 to late April 1996. At
all locations, 30-d-old seedlings were transferred to a paddy
field, with a single plant per hill (plant spacing 15 × 20 cm).
Plot size was three to four lines by eight plants per line.
Starting 10 d after transplanting, plant height (from the
surface of the soil to the tip of the plant) was measured
every 10 d on five central plants (fixed through all measuring
stages) from each plot until the plants of all lines were in the
heading stage. Nine different measurements of plant height
were taken during the entire cultivation period, covering
several successive phenological stages. Grain weight per
plant was determined at harvest maturity. Fertility and cultiva-
tion regimes were consistent with optimum rice production for
these regions.

From the experiments described above, morphological data
of the parents and the DH population as well as environmental
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data for Hangzhou (http://www.tutiempo.net/en/Climate/
Hangzhou/584570.htm) were gathered for the cultivation
period (15 May to 15 October 1998) and used to parameterize
the current model. We looked only at main effects and epista-
sis effects of QTLs and did not consider interaction of QTLs
with the environment (see also below), which did not vary
much among the environments (results not shown).

QTLNetwork, a QTL analysis program developed by Yang
et al. (2008), was used for QTL mapping (details in Zhu and
Weir, 1998; Wang et al., 1999; Yang et al., 2007) and
implementation of the genetic model (see ‘Linking the quanti-
tative genotype with the rice FSPM’ below). QTLs with sig-
nificant main effects are shown in Table 1 (only one
significant epistasis effect was found, results not shown).
Statistical analyses were carried out using SAS (SAS
Institute Inc., Cary, NC, USA).

General features of the rice FSPM

Figure 1 gives an overview of the structure of the rice
FSPM: it is organized as a set of linked XL modules in
GroIMP (see Appendix A0) for: (1) the general set-up of the
system [initiation of the plant individual (phenotype),
equipped with information on the QTL genotype; initiation
of output charts]; (2) vegetative morphology (leaf and inter-
node formation and development, formation of lateral tillers
from basal axillary buds); (3) generative morphology
(panicle formation and development, primordia formation
and grain filling; reallocation of assimilates for growth as a
function of sink strength, i.e. relative potential growth rate);
(4) photosynthesis (local photosynthesis of assimilates and
local storage in a central pool); (5) light interception (based
on a Monte-Carlo radiation model described in Hemmerling
et al., 2008); and (6) parameters (mainly environmental). In
addition, an interface for the processing of QTL information
has been written, as described in detail below (see also
Buck-Sorlin et al., 2005, 2008; Xu et al., 2010). This allows
the synchronous simulation of a population consisting of an
arbitrary number of genotypes for which QTL information is
available. In summary, with an input of climate and QTL
data, common outputs of the model are the final architecture
of the canopy or of single plants but also their developmental
and biomass (dry matter) dynamics (Fig. 1).

Source and sink activities and their relationships

Source activity was modelled using an XL implementation
of the photosynthesis model LEAFC3 (Nikolov et al., 1995).
Species-specific model parameters for rice were extracted
from the literature (Yin et al., 2004; Yin and van Laar,
2005; Borjigidai et al., 2006). With LEAFC3, the short-term
steady-state fluxes of CO2, water vapour and heat from
leaves of C3 plant species can be estimated, explicitly coupling
all major processes involved in photosynthesis (biochemistry
of the assimilation process, stomatal conductance and leaf
energy balance). It has been successfully used to model
gas exchange in wheat by Müller et al. (2005), in barley
(O. Kniemeyer and G. Buck-Sorlin, unpubl. res.) and in a
general FSPM prototype (M. Henke, unpubl. res.). The photo-
synthesis model was first calibrated as a stand-alone model.

Simulated leaf temperature was slightly lower than air temp-
erature throughout all growth stages (results not shown)
while simulated net assimilation rate was generally between
9 and 11 mmol CO2 m22 s21, which fits well with the findings
of Yin and van Laar (2005).

A weather file was used as an input to the photosynthesis
model, containing, amongst other data, daily values of mean
temperature, global radiation, relative humidity and wind
speed. As only daily totals of global radiation were available,
the expected value for a given hour of the day was estimated
using a sine function described in Goudriaan and van Laar
(1994). Lacking precise daily data for atmospheric transmis-
sivity, we assumed a constant value of 0.3: at this value (or
below), the fraction of diffuse light is 1 (Goudriaan and van
Laar, 1994) and thus only diffuse light needs to be considered.

Photosynthesis in the model is restricted to leaf blades;
potential photosynthesis of sheaths, stems and immature pani-
cles is not considered. A leaf blade is modelled as a collection
of connected parallelogram objects of different sizes and
orientations. Simulated photosynthetically active radiation
(PAR) intercepted by each leaf blade (coming from two light
sources and being computed using a radiation model, see
below) is stored as a local parameter.

Daily assimilate production per leaf is calculated by invoking
the LEAFC3 model with input leaf area, temperature and PAR at
an hourly rate and summing using Gaussian integration. The
output of all leaves at each daily step summed to a central assim-
ilate pool maintained at plant level (Xu et al., 2010).

The dynamics of daily assimilate production throughout the
entire life time of one individual in a simulated rice canopy
was used to further calibrate the photosynthesis model at the
plant canopy scale. Simulated daily assimilate production
was gradually increasing, as leaves are expanding and thus
intercepted radiation is increasing (results not shown). A
drop in daily assimilate production towards the end of the
simulated period was observed, which could be due to self-
shading of lower leaves by the leaves that are higher up the
stem or by the expanding panicles (Setter et al., 1995), not
due to leaf senescence, which was not considered in the model.

The timing and growth duration of active sinks drives the
conversion of assimilates to harvestable biomass, i.e. grains
and straw. Rules for growth and development of organs were
written (see Vegetative and generative development’ below),
these controlling the timing and strength of growth and branch-
ing, in other words the activity of the sink organs and the
overall sink strength at the level of the plant individual. The
integration of growth and development rules applied over
time to the simulated structures leads to overall biomass pro-
duction as an emergent property (Fig. 1).

The potential growth rate of an organ was used to model its
sink strength; this rate was quantified using the derivative of
the beta growth function (Yin et al., 2003). The beta function
is appropriate to describe the dynamics of extension and
biomass accumulation of organs under a wide range of
environments (Yin et al., 2003):

w = wmax 1 + te − t

te − tm

( )
t

te

( ) te

te − tm with 0 ≤ tm , te (1)
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where w is the biomass/dimension at thermal time t, wmax the
maximum value of w reached at time te (growth/extension also
stops at this time) and tm the thermal time when maximum
growth rate is achieved. Daily thermal time increment is com-
puted as the average measured air temperature (8C) minus a
base temperature of 9 8C (Kropff et al., 1994).

The potential growth rate (sspot) of an organ at thermal time
t is then the derivative of (1):

sspot =
dw

dt
= cm

te − t

te − tm

( )
t

tm

( ) tm

te − tm (2)

where cm is the maximum growth rate in the linear phase at
t ¼ tm (Yin et al., 2003).

Global sink demand can be defined as the sum of all poten-
tial growth rates of organs growing at the same time, multi-
plied by the modelled step size (the daily thermal time
increase):

sdtot = SsspotDt. (3)

Multiplication of the relative potential growth rate with the
current size of the common assimilate pool ap results in the
realized growth grreal, and thus assuming that this is not
bigger than sspot:

grreal =
sspot

sdtot

ap grreal ≤ sspot

( )
(4)

After realizing organ growth grreal, the central assimilate pool
is updated accordingly (for details, see Xu et al., 2010). Source
and sink activities are thus connected via the central assimilate
pool, and additionally via a framework of morphogenetic rules
that establish the structure (Fig. 1).

Finally, a growth respiration term is considered in the form
of a conversion factor (g glucose g21 dry mass), which is pro-
portional to growth rate as described in Goudriaan and van
Laar (1994). Likewise, maintenance respiration is computed
as a fixed proportion (0.014 g glucose g21 dry mass) of struc-
tural biomass (Goudriaan and van Laar, 1994). Both terms are
subtracted from the central pool at each step (for a brief
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FI G. 1. Schematic diagram showing the modular set-up, hierarchical structure, and main inputs and outputs of the rice FSPM.

TABLE 1. Estimated additive (A) effects of QTLs, as well as their marker intervals, positions, position ranges (Range) and standard
error (s.e.), for plant height (cm) at the final stage (as computed by QTLNetwork)

QTL Interval Position Range A s.e.

1-15 RZ730–RZ801 204.6 200.6–208.6 –16.28** 0.75
2-12 RG256–RZ213 151.8 145.7–156.8 6.07** 0.64
3-20 RG910–RG418A 297.2 293.7–305.2 –5.70** 0.67
4-11 RZ590–RG214 140.8 123.2–146.5 –5.72** 0.63

Note: QTLs were named as ‘chromosome number’-‘interval number of markers’. Asterisks indicate significant differences: *P , 0.05; **P , 0.005.
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description of how the central assimilate pool is updated, see
Appendix A1).

The dynamics of the central assimilate pool is a function of
local leaf photosynthesis and organ growth (see Appendix A1).
In most test runs (results not shown) the dynamics of the
central assimilate pool was characterized by three phases:
after an initial decrease due to establishment growth and
unfolding of seedling leaves, a sustained increase during the
mid to late vegetative phase was observed. At the transition
to the generative stage the central pool decreased in size, indi-
cating the onset and completion of the grain filling stage.

Vegetative and generative development

To simulate vegetative and generative development, a set of
growth, developmental and branching rules are repetitively
applied to a meristem module and all its ensuing organs,
leading to the visible phenotype. The structural framework
thus created is then used to simulate and analyse the dynamics
of assimilate flow as dictated by local (potential) growth rates
and assimilate availability in the central pool (Fig. 1).

Formation of a new organ from a meristem occurs after
some intrinsic delay [plastochron (8Cd)]. The main stem and
tillers are created within the limits given by topological par-
ameters (i.e. maximum rank and order). A new leaf is
formed with an initial length and diameter. The meristem is
reinitiated at the tip of the shoot, and the rank is increased
by 1; at the same time the plastochron is set to its initial
value (as specified by an array of values for each phytomer
rank). Other rules determine bending-up of the culm due to
negative gravitropism (for further details, see Xu et al., 2010).

The potential extension and final dimension of organs
(leaves, internodes, etc.) depends upon their rank and age,
while the dimensions and growth dynamics actually achieved
are also a function of sink competition and assimilate avail-
ability, as described in the above section, as well as air temp-
erature (as thermal time instead of time is used in the beta
growth function).

Leaf dimensions are determined using the beta growth func-
tion (Yin et al., 2003), calculating dry matter increment as a
function of final length and thermal time, which is then con-
verted into an increment in leaf area [for simplicity, specific
leaf area was assumed to be a constant: 0.023 m2 leaf per g

leaf (Yin and van Laar, 2005)]. Plant height of a rice individ-
ual at the final step (which was originally measured as the
height from the soil surface to the tip of the plant) was approxi-
mated as the sum of the final lengths of all internodes plus
panicle length, where panicle length was a function of grain
number and panicle bending was modelled using a fixed
bending angle. Internode extension is computed using the
beta growth function. Increment in dry matter was converted
to increment in internode length using an average conversion
factor of 1.175 g dry matter (m internode length)21 (Hirano
et al., 2005; Yin and van Laar, 2005). This length increment
is then multiplied by a factor to reproduce the average plant
height measured for a given line. For simplicity, the number
of extended internodes as well as their length distribution are
fixed.

Once a threshold of temperature sum is surpassed, the
vegetative meristem is transformed into a generative meristem
(Xu et al., 2010), which is followed by grain primordia for-
mation and grain filling (the latter again by using the beta func-
tion to describe the process). As long as the central assimilate
pool is not empty, the generative meristem then recursively
produces and fills up the grains, thereby diminishing the assim-
ilate pool.

Morphological data from the field experiments were used as
model parameters, some of which are listed in Table 2. The
mean value of each variable of the DH population was used
as the final dimension of the trait, except for plant height,
tiller number, 1000 – grain weight and grain number,
measured data of which were used separately for each individ-
ual of the DH population.

Radiation model and light interception

The radiation model of GroIMP was used to simulate light
distribution and local light interception. This model is based
on a reversed path tracer algorithm with Monte-Carlo inte-
gration (Veach, 1998) and uses light sources and geometric
objects constituting a so-called scene. The radiation model is
invoked once per simulation step and is applied to the scene
created and maintained within GroIMP (for details see
Hemmerling et al., 2008; Kniemeyer, 2008). Diffuse sky
light was simulated using an array of 72 directional lights posi-
tioned regularly in a hemisphere in six circles with 12 lights
each, with emitted power densities being a fixed function of
elevation angle (G. H. Buck-Sorlin, unpubl. res.). The light
model is run with two parameters: total number of rays pro-
duced by all light sources in the scene (10 000 000), and the
number of times a reflected or transmitted ray is traced (5).

Once a leaf is formed, it is identified with a label and at a
run of the light model the amount of radiation absorbed is
determined as an RGB spectrum. The integral of that spectrum
(in W) is converted to photosynthetic photon flux density
(mmol PPFD m22 s21, which is PAR), using a coefficient of
2.27 for daylight (Xu et al., 2010).

Linking the quantitative genotype with the rice FSPM

An interface was written to connect the ecophysiological rice
model with the output of the QTL mapping software
QTLNetwork. The interface reads in output files of

TABLE 2. Some of the parameters used in the model from mean
values of measured data from field experiments (He et al., 2000;

Cao et al., 2001b, c, 2007; Benmoussa et al., 2002)

Trait
Parents DH population

‘Azucena’ ‘IR64’ Mean Max. Min.

Productive tillers 10.1 13.4 8.1 15.3 4.5
1000-grain weight (g) 24.9 25.6 25.4 33.8 17.8
Grains per panicle 82.7 51 117.4 215.3 47.1
Filled grains 78.8 35.7 94.1 182.1 20.3
Fertility rate 1 0.7 0.8 1 0.3
Panicle length (cm) 29.3 25.6 25.3 33.9 18
Leaf sheath length (cm) 118.5 66.9 83.4 130 47
Flag leaf length (cm) 35.6 30.5 34.7 52.4 23.9
Plant height (cm) 135.4 94.2 102.9 148.3 67.4
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QTLNetwork and in this way extracts QTL data about the
observed trait, i.e. the information (flanking markers and geno-
type values) of main effect QTLs (with significantly high levels,
i.e. exhibiting P-values , 0.001), and epistatic interactions
between QTLs including both QTLs with and without main
effects; it then computes the predicted phenotype value of that
trait from its QTL and marker information and converts this to
a set of model parameters, which are subsequently used in the
rice model to control simulated ecophysiological processes
leading to an observable phenotype.

In a specific environment (h), total genetic effect (G) con-
sists of a genetic main effect (GG) and a genotype by environ-
ment interaction effect (GGE). In this study, the genotype by
environment interaction effect was not considered. For any
pure line, there are two possible genotypes (QQ and qq) at
each locus. Thus, the total genetic effect of the kth pure line
(Lk) can be written as

Gh(Lk) = GGh
(Lk)

=
∑n

i

xih(Lk)ai +
∑n

i

∑n

j=i+1

xih(Lk)x jh(Lk)aaij

(5)

where n denotes the total number of QTLs; ai is the additive
effect of the ith QTL (Qi); aaij is the digenic epistatic effect
of additive × additive interaction between Qi and Qj; and
xih(Lk) and xjh(Lk) refer to the genotypes of the Qi and Qj of
the kth line (xih(Lk) ¼ 1 for QiQj, and xih(Lk) ¼ –1 for qiqj),
respectively.

The simulations are thus not run with standard/average
model parameters but with parameters that are calculated
from input data and exhibiting variation among genotypes of
a mapping population, as

y(Lk) = m+ Gh(Lk) (6)

where y(Lk) is the phenotype value, calculated from the genetic
effect [Gh(Lk)] and the population mean, m. In other words,
y(Lk) is a prediction of the observed phenotype (e.g. stem
length, tiller number, grain number), computed from the
mixed linear model, for a given genotype and environment.

Plant height was used here to exemplify the way quantitative
genetic information can be integrated into the current rice
FSPM. Using an algorithm implementing the derivative of
the beta growth function (eqn 2), plant height calculated
from the population mean value and predicted genetic
effects were used to tune the growth curve of the entire stem
as a function of the instant growth rates and final dimensions
(here: final length, analogous to wmax in eqn 1; see Fig. 2) of
each internode (see Appendix A2), with a fixed length distri-
bution, as well as of the internode number calculated from
measured data. The 124 different DH lines derived from
‘IR64’ and ‘Azucena’ were simulated with the rice FSPM,
thereby reproducing developmental courses resulting in differ-
ences in plant height among the lines.

RESULTS

Dynamics of plant height, internode development and final
morphology

Measured plant height of the 124 genotypes could be modelled
using the beta function if the first measurement was ignored
(Fig. 3). Thus, plant height up to 10 d after transplanting is
largely determined by leaf length and orientation (erectness),
whereas subsequently the effect of stem extension on plant
height becomes evident.

Figure 4 shows the simulated dynamics of the length of the
main stem internodes of one individual within a canopy. A
typical internode length distribution can be observed, with
ten internodes of which the first three basal internodes do
not extend, and in which final internode length increases
with rank. Thus, the uppermost three internodes have a
summed length of 0.82 m and comprise about 85 % of the
average final stem length, which in this genotype was
0.96 m. The final plant height of the rice individual is
largely a function of stem length, with lengths and orientations
of panicles and flag leaves also contributing.

As every leaf is an object that stores the amount of absorbed
radiation and ensuing assimilate production in local variables,
their spatial distribution can also be directly quantified.
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FI G. 2. Time course of a growth process represented by the beta growth func-
tion (Yin et al., 2003). All three parameters of the function could be inter-
preted as genetically determined traits, in this case final plant height wmax,
time te when final plant height is reached and time tm when maximum

growth rate is reached.
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the 124 genotypes fitted using the beta function (lines) used in the model.
The first measurement was not considered for fitting, as here plant height
was not constituted by stem length but largely determined by leaf length

and orientation.
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Figure 5 provides an example of the radiation absorbed by a
simulated small canopy (nine plants) visualized as a colour gra-
dient, using two different plant spacings (upper: 0.15 × 0.2 m;
lower: 0.3 × 0.4 m). At both canopy densities the amount of
radiation instantaneously intercepted by the middle plant (ID
5) is less than that of the marginal plants (as expected as the mar-
ginal plants also receive light from the sides, i.e. a hemispheric
sky with diffuse light). At the lower density (0.3 × 0.4 m), the
middle plant absorbs slightly more light, but so do the marginal
plants on average. The ratio of light absorption by the middle
plant to the average absorption of the marginal plants was 54.8
% at the higher density and 87.2 % at the lower density.

Phenotypes and superior lines for plant height and grain yield

Phenotypes representing the segregation of plant height of
the mapping population were used for simulation. Growth
curves of internodes (as shown in Fig. 4) are different
between individuals as they differ in plant height at each
growth stage. Figure 6 shows a small canopy with the first
18 lines of the mapping population exhibiting different
plant heights at maturity. Diverse developmental courses
could be observed throughout all growth stages (results not
shown, but compare with Fig. 4 for dynamics of plant
height).

Figure 7 compares simulated with measured plant height of
all the individuals of the DH population. Using the REG pro-
cedure within SAS, the linear regression was derived as:

yi = 0·99987 xi (adjusted R2 = 0·9999,P , 0·0001) (7)

where yi and xi indicate the simulated and measured plant
height, respectively, of the ith individual in the mapping
population.

The current ability of the model to simulate grain yield is
shown in Fig. 8. The REG procedure gave a rather good fit
between predicted (yi) and measured (xi) grain yield per

plant using the linear regression:

yi = 0·84178 xi (adjusted R2 = 0·9593,P , 0·0001). (8)

However, for higher grain yields the model exhibited a bias
by systematically underestimating grain yield. When the 13
genotypes with the highest observed grain yield were
omitted, the fit was improved:

yi = 0·91095 xi (adjusted R2 = 0·9835,P , 0·0001). (9)

DISCUSSION

Due to increasing computer power and physiological knowl-
edge, crop models are now becoming ever more capable of
describing and integrating key ecophysiological processes
(Hammer et al., 2005). It was thus one logical step forward
to consider also genetic information in some of these models
(Hammer et al., 2002, 2010). In this way, crop growth
models can be used to mimic the genetic characteristics of
plants (Yin et al., 1999). Indeed, conventional crop growth
models are now increasingly used in breeding programmes
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FI G. 5. Simulated instantaneous light absorption by leaves in a small rice
canopy (age: 100 d) on 23 August 1998, 13:00 h, with two different plant
spacings (upper: 0.15 × 0.2 m; lower: 0.3 × 0.4 m), represented as a
colour gradient (see key). Incident radiation was 545 W m22 (about

1240 mmol m22 s21 PAR).
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FI G. 4. Simulated dynamics of internode length of the main stem of an
individual from the DH population (derived from ‘IR64’/‘Azucena’) at
Hangzhou (15 May 1998 – 11 October 1998). Numbers indicate acropetal
internode ranks. Internode number and length distribution from the plant
height to the internodes are based on the measured data. Final lengths

were calculated from the population mean and from QTL effects detected.
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to assist in the design of new plant types (Yin et al., 1999;
Hammer et al., 2006). Plant modelling not only plays a role
in data synthesis and quantitative prediction, but also in heur-
istics and systems design: these are future roles of modelling
proposed by Yin and Struik (2008) for ‘crop systems
biology’. The second logical step is the consideration of
plant architecture and its dynamics in time, as this constitutes
the most direct and visible manifestation of the phenotype and

provides an essential source of information about the action of
genes. Models such as APSIM have been extended to consider
information about organ dynamics (number, size, mass) during
development (Hammer et al., 2010) but they do not explicitly
consider the position and orientation of plant parts in 3-D
space. However, plant architecture itself strongly modulates
physiological processes, as the structures are interfaces to the
environment and their spatiotemporal arrangement determines
the amount of energy and matter entering the plant body, as
well as the quality of environmental signals perceived, and
thus the plant’s physiological state. As pointed out by
Tardieu (2003), a virtual plant system combining structural
dynamics in three dimensions and time with sub-models for
certain physiological functions might eventually permit the
prediction of the growth of transformed genotypes or of com-
binations of alleles of genes of interest under arbitrary climate
conditions. Modelling approaches such as the present one can
be an intuitive and extensible tool to enhance our understand-
ing of complex crop phenotypes, which will ultimately lead to
new breeding approaches and improved crop cultivars. The
model presented here, although modular and extensible, is
one coherent FSPM, with an extension to accommodate QTL
information. This allows a very transparent and direct inter-
action of quantitative genetic factors with parameters of the
implemented physiological and morphogenetic functions of
the different sub-models.

Using the present model, we have simulated genotypes of a
rice mapping population differing in plant height through all
growth stages. Measured plant height was well predicted by
our model (R2 ¼ 99.9 %, Fig. 7), which used the mixed
linear model and data from QTLNetwork to tune simulated
final stem length. Our simulations (Fig. 8) showed that the
match between measured and computed grain dry matter pro-
duction was good but that there was a bias in the predictions,
with high measured values systematically being underesti-
mated by the model. This could be due to the rather inflexible
assumption of potential dry weight of a single grain being a
constant for each genotype, rather than making it a function
of grain and tiller number (i.e. by increasing attainable
single grain weight of remaining grains at low overall grain

FI G. 6. Simulated rice morphology: canopy at post-flowering stage showing
the first 18 lines of the DH population derived from ‘IR64’/‘Azucena’ differing
in plant height based on the data from QTL analysis. The scene was rendered
with the GroIMP Twilight renderer, also showing light distribution within the

canopy.
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number). Furthermore, in reality grain number and size are not
only determined by the size of the central assimilate pool but
also by the uptake and (re)allocation of nitrogen – a factor not
currently considered in our model – from other plant organs
such as internodes and leaves to the grains (van Oosterom
et al., 2010b).

With the implementation of a properly calibrated rice
model, not only can the 3-D representation of the data sets
be obtained, but one can also envisage being able to predict,
for example, variations in rice architecture and physiological
processes (such as photosynthesis resulting from light inter-
ception) under certain environmental conditions. The two
main modules of the present rice FSPM describe photosyn-
thesis and sink behaviour (Fig. 1). In crop species, growth
and development are products of the balance between source
and sink dynamics: in highly controllable production environ-
ments (e.g. glasshouse horticulture or a paddy rice field), the
photosynthesis rate can be high so that source is not limiting
growth. In such a scenario, the growth and production of
new biomass, i.e. sink activities, are the limiting factor
(Fourcaud et al., 2008). In contrast, in other, more marginal
agroecosystems, in which crop productivity due to unfavour-
able climate is far from its potential (Goudriaan and van
Laar, 1994), photosynthesis rate and daily assimilation are
the limiting factors. Some crop models are based on the simu-
lation of photosynthesis, while the representation of sink
activity is done by describing the dynamics of biomass incre-
ment per organ type (leaf, stem, reproductive) and using fixed
partitioning coefficients for carbon allocation to the different
compartments. In more sophisticated crop models such as
APSIM (Hammer et al., 2010), which has been parameterized,
amongst others, for crops such as rice and sorghum, the
description of sinks is done at the organ level and thus the
number and strength of sinks of a certain type at a given simu-
lated thermal time are known. One of the advantages of the
present approach is that conceptually it provides the ability
to simulate both source- and sink-limited processes and
could thus be used to investigate and quantify important pro-
cesses that were not considered in the present version, for
example the negative feedback of sinks to photosynthesis
rate, remobilization of non-structural dry matter from mature
organs to strong sinks (e.g. from the flag leaf to developing
grains), or the genetic control of sink activity, the latter
being difficult with models concentrating on source activity.
In such models, genetic variability in photosynthesis might
be well represented whereas that caused by sink-related pro-
cesses will be invisible. The beta growth function (Yin
et al., 2003) is particularly suitable to describe the dynamics
of sinks. In the present model it is used to describe the sink
behaviour of phytomers, while biomass accumulation and
organ extension are described separately. In the context of
the present model the beta function will be further tested for
its sensitivity to environmental and genetic factors.

Our model currently does not consider the effect of nitrogen
on plant growth and therefore needs to be extended to also
include a module for nitrogen uptake and transport, as has
been partly achieved for barley (K. Smoleňová, University of
Göttingen, Germany, pers. comm.), for rapeseed (Groer
et al., 2007) as well as in many more advanced crop models,
as reviewed by Hammer et al. (2010). Bertheloot et al.

(2008) captured nitrogen distribution in the wheat plant
during grain-filling using a process-based approach. Yoshida
and Horie (2009) used a process-based model that explained
genotypic and environmental variation in growth and yield
of rice based on measured plant N accumulation. The model
considered down-regulation of photosynthesis caused by
limited capacity for end-product utilization in growing sink
organs by representing canopy photosynthetic rate as a func-
tion of sugar content per unit leaf nitrogen content. The
model explained well the observed genotypic and environ-
mental variation in the dynamics of biomass growth, organ
development and grain yield.

Considering the complexity of yield formation, the present
model is still at an early stage with respect to the integration
of information about both ecophysiological processes and
quantitative genetics. In one of the next steps, the sink
model will be refined to simulate grain filling more properly.
More specifically, this will involve splitting the process into
two successive parts: determination of potential grain
number, followed by actual grain filling. Promising approaches
for this can be found, for example, in Yin and van Laar (2005)
for several main crops, or Hammer and Muchow (1994) and
van Oosterom et al. (2010a, b) for sorghum.

We have shown that with our model we can visualize light
interception per leaf and thus conduct studies on the effect of
canopy structure (plant height, density, leaf angle, etc.) on
light interception. Another interesting virtual plant study on
the architecture of different hybrid rice cultivars has been con-
ducted by Zheng et al. (2008): digitizing four developmental
stages from panicle initiation to the grain-filling stage, extract-
ing the structural information thus obtained, and then comput-
ing the light interception and potential carbon gain of these
virtual plants, they were able to show that certain plant types
with steeper leaf divergence angles exhibited a higher light
penetration of the canopy when sun elevation was high. The
result obtained was, however, also related to leaf area index.
This study shows the great potential use of a simple static
virtual plant (i.e. just constituting digitized 3-D structural
information) for crop breeding research and investigation of
new cultivars.

Prediction of phenotypic traits from new genotypes under
untested environmental conditions is crucial to build simu-
lations of breeding strategies to improve target traits (Letort
et al., 2008). In rice breeding, several traits have been selected
to increase yield potential, yield stability and wide-scale adap-
tability (Khush, 2001). Using plant height as an example trait,
with final stem length calculated from QTLs detected by
QTLNetwork and implemented in the linear growth function
to get the instant growth rate, we have presented here one of
the first attempts to use QTL information in an ecophysiologi-
cal and structural model based on 3-D plant architecture of rice
to explore new possibilities for integrating genotype with phe-
notype in plant modelling.

As outlined in the Introduction, the present work is an initial
step in a more extensive modelling project, ultimately aiming
at linking physiological processes, quantitative genetics of
aspects of yield formation (QTLs for yield-related traits) and
the feedback among them, with a realistic 3-D structural phe-
notype growth model of rice. In the first instance, this encom-
passed a mechanistic simulation of rice ecophysiology with
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simple genotype information, i.e. visualization of phenotypes
regulated by QTLs with additive effects for yield-related
traits. We have also started to model non-additive QTLs and
their interactions with each other, and with different environ-
ments. The final objective will be a more faithful emulation
of the dynamics of rice structural development, with which
genotypes for selected traits could be optimized, or to
predict future phenotypes from a combination of unknown
genotypes (Tardieu, 2003).

Given the ultimate objective of making better sense of quan-
titative genetic variation in grain yield, it is difficult to decide a
priori which physiological processes should be included and
which neglected. A truly mechanistic modelling approach
would certainly strive to maximize the number of modelled pro-
cesses. However, calibration of such an extensive model often
turns into a very time-consuming if not entirely impractical
task (Buck-Sorlin et al., 2007). Parsimonious approaches to
physiological modelling, which avoid unnecessary model com-
plexity, have been proposed by Tardieu (2003) and Messina
et al. (2009) for crop models with consideration of certain mor-
phological traits (discussed by Hammer et al., 2010).

To fulfil the future roles of crop modelling in its wider context
of crop systems biology (Yin and Struik, 2008), it is important to
understand the physiological and morphological reaction norm
(with respect to growth and development) of the rice plant
through its entire life cycle at different scales (organ, plant,
canopy). The present rice FSPM could be considered as a valu-
able step towards obtaining a tool for the integration and visual-
ization of our knowledge of crop systems biology.
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APPENDIX

A0. Modelling language and platform

The present rice FSPM is written in the modelling language XL
(eXtended L-System modelling language) (Kniemeyer, 2008),
an extension of L-systems (Prusinkiewicz and Lindenmayer,
1990; Kurth, 1994). The modelling platform GroIMP (http
://sourceforge.net/projects/groimp/) together with the graph-
based Relational Growth Grammars (RGG) formalism was
employed for model implementation. GroIMP is designed as
an integrated platform incorporating modelling, computer
graphics and user interaction, and provides a plugin for XL
(Kniemeyer, 2008). In our approach, a genotype is explicitly
represented as an object consisting of two chromosome
objects, each of which contains an array with a finite number
of QTL alleles. In doing so, RGG rules operating on a graph
data structure allow the simulation of genetic processes such
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as mutation and recombination. This was also partly exploited in
the model shown in the present study.

A1. Central assimilate pool connecting the source and sink
activities

First, the local assimilate pool (locPool) of each leaf (lf ) is
updated by computing daily assimilate production (function
PSdaily()):

locPool ¼ PSdaily(lf.area, time, j) (A1)

where the three input parameters for PSdaily() are: leaf area,
time and PAR intercepted by this leaf, j. Parameter time refers
to an array containing the temperature sum for a given day.

To update the central assimilate pool (Cpool), the local
pools locPool of all leaves flagged as actively growing
(isGrowing()) are queried, and their values are summed and
added to the central assimilate pool:

Cpool+¼ sum((*a:Leaf,(a.isGrowing())*).
locPool()) (A2)

Finally, maintenance respiration (consumption of assimi-
lates to maintain structural biomass already produced) is com-
puted and subtracted from the central assimilate pool:

Cpool -= (maint_res+growth_resp) (A3)

where maint_res is the amount of glucose consumed by main-
tenance respiration and growth_resp is the amount of glucose
respired for the production of new biomass (growth
respiration).

A2. Internode extension

An XL execution rule specifies the growth in length and
diameter of internodes produced:

itn:Internode ::. {
itn[length] += Growth(finalLength(rank),

TE[itn[rank]], TM[itn[rank]], age);
itn[radius] += Growth(RADIUS_FINAL,

TE[itn[rank]], TM[itn[rank]], age);
} (A4)

where the length and radius of a labelled internode itn with
rank (itn[rank]) are dynamically updated using the function
Growth() based on the derivative of the beta growth function
described above in detail. The input parameters for Growth()
are: final dimension of the internode (length, radius), the
time at which final dimension is achieved (TE[rank]), the
time at which maximum growth rate is achieved (TM[rank])
and the age of the internode. The final lengths of the inter-
nodes were calculated from the plant height, with the length
distribution from measured data.
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