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This paper examines an updated version of a lumped mucosal wave model of the vocal fold oscilla-

tion during phonation. Threshold values of the subglottal pressure and the mean (DC) glottal airflow

for the oscillation onset are determined. Depending on the nonlinear characteristics of the model, an

oscillation hysteresis phenomenon may occur, with different values for the oscillation onset and offset

threshold. The threshold values depend on the oscillation frequency, but the occurrence of the hyster-

esis is independent of it. The results are tested against pressure data collected from a mechanical rep-

lica of the vocal folds, and oral airflow data collected from speakers producing intervocalic /h/. In the

human speech data, observed differences between voice onset and offset may be attributed to varia-

tions in voice pitch, with a very small or inexistent hysteresis phenomenon.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3531805]
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I. INTRODUCTION

About two decades ago, Titze (1988) introduced a

lumped mucosal wave model of the vocal folds to analyze

their oscillation dynamics during phonation. This simple

model represents the oscillatory motion as a surface wave

propagating through the tissues in the direction of the air-

flow. Originally, it was formulated for small amplitude

oscillations, which allowed neglecting nonlinear factors at

large amplitudes such as nonlinear characteristics of tissue

biomechanics, air pressure losses for flow viscosity when

the glottis is narrow, and collision between the opposite

vocal folds with consequent interruption of the air flow. It

also assumed a small time delay for the surface wave to

travel along the glottal channel, which reduced the model

to an ordinary differential equation. Both restrictions were

valid for analyzing the main mechanisms that cause the

oscillations and determining conditions for phonation

onset. Later works, reported below, have extended the

model to large amplitude oscillations and arbitrary time

delays, expanding its range of applicability to the extent of

full simulations of vocal fold oscillation. This paper will

revisit the mucosal wave model and its recent extensions,

with the purpose of updating our interpretation of its oscil-

latory dynamics.

In his modeling work, Titze (1988) showed that a mini-

mum positive value of the lung pressure (or the subglottal

pressure), called the phonation threshold pressure, is

required to start the oscillation. At the threshold pressure,

the airflow transfers enough energy to the vocal folds to

overcome the losses by dissipation in the tissues, and so an

oscillation of growing amplitude may start. The value of the

threshold pressure decreases by reducing the tissue damping

and the mucosal wave velocity, by increasing the vocal fold

height, by adducting the vocal folds, and by coupling the lar-

ynx to an inertive vocal tract. The theoretical results were

later verified with experimental data (Titze et al., 1995;

Chan et al., 1997; Chan and Titze, 2006).

The phonation threshold pressure is a critical parameter

of voice aerodynamics (Titze, 1992) and its clinical rele-

vance has been investigated in several studies (e.g., Fisher

and Swank, 1997; Verdolini et al., 2002). In recent papers

(Jiang and Tao, 2007; Tao and Jiang, 2008), it has been

argued that pressure is a parameter difficult to measure

because it demands invasive means; and even though some

noninvasive techniques have been proposed, they are diffi-

cult to apply to untrained subjects. As an alternative, the

phonation threshold value of the air flow was suggested as a

new critical aerodynamic parameter, and an equation for it

was derived from Titze’s model.

Several experimental studies of the vocal fold oscillation

(e.g., Titze et al., 1995; Berry et al., 1996; Chan et al., 1997;

Plant et al., 2004; Ruty et al., 2007) have shown that, after the

oscillation has started, the subglottal pressure may be reduced
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without causing interruption of phonation. Therefore, two dif-

ferent pressure thresholds exist: the onset threshold, given by

Titze’s equation, and a lower offset threshold. Titze’s model,

however, is not appropriate for studying what happens with

the oscillation after its onset, because of its conception as a

small amplitude representation. Setting a constant value of the

subglottal pressure above the oscillation onset threshold pro-

duces an oscillation of growing amplitude until reaching the

condition of glottal closure and interruption of the airflow,

where the model is no longer valid. Thus, it is not capable of

creating a stable oscillation of a constant amplitude.

A mechanism for limiting the oscillation amplitude was

proposed by incorporating a more detailed description of

glottal aerodynamics (Lucero, 1999). As the amplitude

grows larger, the airflow detaches from the vocal fold walls

when the glottal channel is divergent, and the vocal folds are

less able to absorb energy from the flow. Using this large

amplitude extension, it was shown that the oscillation thresh-

old may be described as a subcritical Hopf bifurcation: As

the lung pressure increases, a stable equilibrium position

becomes unstable and an unstable limit cycle is absorbed.

Further, the unstable limit cycle coalesces and cancels with a

stable limit cycle in a cyclic fold bifurcation. As a result, an

oscillation hysteresis phenomenon (Appleton and van der

Pol, 1922) is produced: The onset is produced at a larger

value of the lung pressure than the offset.

A different approach to limit the growth of the oscillation

has been introduced by Laje et al. (2001). Instead of model-

ing individual factors, such as airflow separation (Lucero,

1999) and glottal closure (Drioli, 2005), an ad-hoc nonlinear

damping term was added to the equations which accounts for

all the nonlinear factors that appear at large amplitudes. This

model has been successfully applied to the labia oscillation in

the syrinx of songbirds in a large collection of published

works (e.g., Laje et al., 2002; Laje and Mindlin, 2005;

Amador and Mindlin, 2008; Sitt et al., 2008). An analysis of

its oscillation dynamics indicated that, although the model as

originally formulated is not capable of producing an oscilla-

tion hysteresis, proper modifications of the form of the non-

linear damping term may allow it (Lucero, 2005).

Another restriction in Titze’s mucosal wave model, and

in the above large amplitude extensions, is a small time

delay for the tissue wave to travel along the glottal channel.

A consequence of that restriction is that the oscillation

threshold pressure is independent of the oscillation fre-

quency (Lucero and Koenig, 2007). It is well known that a

larger effort is required to vocalize at higher voice pitches;

i.e., phonation threshold pressure increases with oscillation

frequency (Titze, 1992). When the restriction is lifted,

advance and delay terms appear in the model. This extended

model produces the right phonation threshold pressure vs

frequency characteristics, and their accuracy has been veri-

fied using experimental measures of the oscillation (Lucero

et al., 2009). The existence of a Hopf bifurcation at the oscil-

lation onset for arbitrary time delays was also proved ana-

lytically (Lucero and Koenig, 2007); however, the type of

bifurcation was left undetermined.

Avanzini’s (2008) and Drioli’s (2005) models may also

be mentioned here. Although they are not direct derivations

from Titze’s mucosal wave model, they still represent the os-

cillation in terms of the delayed propagation of the tissue

motion along the glottal channel. Both models use more so-

phisticated aerodynamic equations, similar to the two-mass

model of the vocal folds (Ishizaka and Flanagan, 1972) and

may be used for full simulations of the oscillation and voice

synthesis.

This paper intends to answer some questions that remain

from the above previous studies. First, the model of Laje

et al. (2001) is attractive in its simplicity, and its applicability

to phonation deserves further examination. Another question

concerns the occurrence of oscillation hysteresis at arbitrary

time delays of the mucosal wave. The hysteresis requires a

subcritical Hopf bifurcation at oscillation onset; does the type

of bifurcation depend on the time delay? Finally, the sugges-

tion by Jiang and Tao (2007) for considering airflow, instead

of pressure, must also be analyzed. Does the phonation thresh-

old flow depend on the oscillation frequency? And further, do

two different flow threshold values exist, for phonation onset

and offset, respectively?

To answer those questions, a general model for both ar-

bitrary oscillation amplitude and arbitrary time delays will

be used. Next, a harmonic balance method (MacDonald,

1993; Mickens, 1996) will be applied to approximate an os-

cillatory solution and analyze its dynamics. The theoretical

results will be finally compared to experimental data

obtained from a mechanical replica of the vocal folds, and

from subjects producing speech.

II. VOCAL FOLD MODEL

The mucosal wave model is schematically shown in

Fig. 1 (Titze, 1988). It assumes complete right–left symme-

try and allows for motion of tissues only in the horizontal

direction. A wave propagates through the superficial tissues,

in the direction of the airflow (upward).

The biomechanical properties of the tissues are lumped

at the midpoint of the glottis, which results in the equation of

motion,

M€xþ B _xþ Kx ¼ Pg; (1)

where x is the tissue displacement, M, B, and K are the mass,

damping and stiffness, respectively, per unit area of the

FIG. 1. Mucosal wave model of the vocal folds (Titze, 1988).
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vocal fold medial surface, and Pg is the glottal mean air pres-

sure. The glottal aerodynamics is modeled by assuming that

the flow is frictionless, stationary, and incompressible. Up

to the glottal exit, the airflow follows Bernoulli’s law, and at

the glottal exit all the flow energy is lost due to turbulence.

Also, all the loads presented by the sub- and supraglottal

vocal tracts are neglected, so the subglottal pressure Ps is

equal to a constant (or slowly varying) lung pressure, and the

pressure at the glottal exit is atmospheric. Under such condi-

tions, the glottal mean air pressure is

Pg ¼
Ps

kt

� �
a1 � a2

a1

ða1; a2 > 0Þ; (2)

where Ps is the subglottal pressure, kt is a transglottal pres-

sure coefficient, and a1 and a2 are the cross-sectional glottal

areas at the lower and upper edges of the vocal folds, respec-

tively. Further, the glottal areas are given by

a1ðtÞ ¼ 2L½x0 þ xðtþ sÞ�; (3)

a2ðtÞ ¼ 2L½x0 þ xðt� sÞ�; (4)

where L is the vocal fold length, x0 is the vocal fold displace-

ment at rest (prephonatory position), and s is the time delay

for the surface wave to travel half the glottal height T. The

above equations describe the mucosal wave model in its

most basic configuration.

Assuming s small enough, the approximation xðt 6 sÞ
� xðtÞ6 s _x may be used, which reduces the model to an or-

dinary differential equation. Here, the general case of an ar-

bitrary time delay is considered, and two modifications to

the equations are introduced. First, following Laje et al.
(2001), a nonlinear dissipative term Cx2 _x is added to the

equation of motion,

M€xþ B _xþ Cx2 _xþ Kx ¼ Pg; (5)

where C is a nonlinear dissipation coefficient. This term intro-

duces a saturation effect at large displacements that limits the

oscillation amplitude and represents the combined effect of

nonlinear factors such as pressure loses for air viscosity in a

narrow glottis, airflow separation within a divergent glottal

channel, nonlinear characteristics of tissue biomechanical

properties, and collision between the opposite vocal folds.

It is interesting to note that Laje et al. based their rationale

on the well-known van der Pol equation (e.g., Strogatz, 1994),

€x� lð1� x2Þ _xþ x ¼ 0; (6)

which contains a similar nonlinear term lx2 _x, where l> 0 is a

parameter.1 This equation is a classical model of a relaxation os-

cillator, in which the system switches periodically between two

states. Relaxation oscillation models for the vocal folds have

also been considered by Fulcher et al. (2006) and Garrel et al.
(2008). In case of a sufficiently small s, the mean glottal pres-

sure may be approximated by the linear relation Pg � Ps _x=vchar

(Laje et al., 2002; Arneodo and Mindlin, 2009), where tohar is a

characteristic velocity coefficient. Equation (5) then becomes

M€x� ðPs=vchar � B� Cx2Þ _xþ Kx ¼ 0: (7)

Letting next B0 ¼Pg=tchar – B, l ¼ B0=
ffiffiffiffiffiffiffiffi
KM
p

, and applying

the substitutions t! ð
ffiffiffiffiffiffiffiffiffi
M=K

p
Þt, x! ð

ffiffiffiffiffiffiffiffiffi
B0=C

p
Þx, Eq. (6) is

obtained.

Next, in order to facilitate the analysis, Eq. (2) for the

mean glottal pressure Pg is simplified. Pg depends on the

shape of the glottal channel: it is positive for a convergent

channel (a1> a2) and negative for a divergent one (a1< a2),

and its magnitude decreases when the vocal folds are

abducted (larger a1). Here, the inverse relation between Pg

and the glottal area is kept, but it is expressed in terms of the

area a at the midpoint of the glottis instead of its lower edge

a1; i.e., a1 is substituted by a in the denominator of Eq. (2),

Pg ¼
Ps

kt

� �
a1 � a2

a
; (8)

where a(t)¼ x0þ x(t)> 0. This last equation is easier to

treat, and a similar simplification was considered in a previ-

ous analysis (Lucero, 1995).

The adopted model is, therefore,

M€xðtÞ þ B½1þ gx2ðtÞ� _xðtÞ þ KxðtÞ

¼ Ps

kt

� �
xðtþ sÞ � xðt� sÞ

x0 þ xðtÞ ; (9)

where g¼C=B and x0þ x(t)> 0.

III. NUMERICAL EXAMPLE

Let us consider the simulation of a vocal fold oscillation

pattern during a typical vocalization, and over a time period

I¼ [0, T]. It is not easy, in general, to solve an advance-delay

differential equation (e.g., Ford and Lumb, 2009). Standard

methods for initial value problems do not apply, because

when computing the solution x at a certain time t, its value at

tþ s is still unknown. A boundary value approach must be

used, in which both initial and final conditions are specified.

At the start of the simulation period, the vocal folds are

assumed at rest, and so x(t)¼ 0 for t [ [�s, s]. Let the sub-

glottal pressure Ps be variable and a function of time, with

Ps(t)¼ 0 for some period t [ [0, t1], where t1 � s (see Fig. 2).

From time t¼ t1, Ps(t) increases smoothly until reaching a

maximum value at t¼ t2, which is maintained until some

instant t¼ t3. From that point, Ps(t) decreases smoothly to

zero at t¼ t4� T� s. At the end of the simulation period, the

vocal folds must go back to rest again, so the final boundary

condition is again x(t)¼ 0 for t [ [T� s, Tþ s].

FIG. 2. Assumed pattern of the subglottal pressure Ps(t) for a simulation of

the vocal fold oscillation.
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Under those conditions, the solution of Eq. (9) is

x(t)¼ 0 (because x¼ 0 is an equilibrium solution). To pro-

voke an oscillation, a small perturbation x(s)¼ x� is intro-

duced. Equation (9) is then solved by an iterative process,

starting from the initial approximation,

xð0ÞðtÞ ¼ 0; for t 2 ½�s; T þ s� and t 6¼ s
x� for t ¼ s:

�
(10)

At each iteration k, with k¼ 1, 2, 3, …, the mean glottal pres-

sure Pg, given by the right side of (9), is computed by using

solution x(k�1)(t). Next, a new solution xk(t) obtained by

solving the resultant differential equation,

M€xðkÞðtÞ þ Bf1þ g½xðkÞ�2ðtÞg _xðkÞðtÞ þ KxðkÞðtÞ ¼ Pðk�1Þ
g ; (11)

for t [ [s, T� s]. In all iterations, the boundary conditions

x(k)(t)¼ 0 for t [ [s, s] and t [ [T� s, Tþ s] are added to the

computed solutions. The process is repeated until there is no

significant difference between solutions x(k) and x(k�1).

For this paper, a standard Runge–Kutta solver imple-

mented in MATLAB was used, until the rms value of the differ-

ence x(k)� x(k�1) was smaller than 10�4 (in this condition, no

difference between consecutive solutions may be perceived

visually). In all the tests, the above process converged to a

solution in about 70 iterations.

Values of the subglottal pressure Ps(t) in the intervals

[t1, t2] and [t3, t4] were computed by using cubic splines

interpolation between the end values of Ps (0 or Pmax, as

appropriate) and setting the end slopes of the spline equal to

zero. In this way, a smooth curve Ps(t) with a continuous first

derivative was generated.

Figure 3 shows the solution for an adult male configura-

tion of the parameters, described in Table I.

IV. HARMONIC BALANCE ANALYSIS

Due to the advance and delay terms in Eq. (9), standard

methods of qualitative analysis of differential equations do

not apply. However, the solution by the above numerical

process reveals that the oscillations are nearly sinusoidal,

even at large amplitudes. Therefore, the oscillatory behavior

of the model may be investigated by using a harmonic bal-

ance method (MacDonald, 1993; Mickens, 1996). This

method consists of approximating the solution of the differ-

ential equation by a truncated Fourier series and ignoring the

higher harmonics generated by the nonlinear terms. Let us

also note that the purpose of the present analysis is to gain

some understanding of the qualitative behavior of the oscil-

lation. Therefore, a harmonic balance of first order is

adopted. The same technique was also used in a previous

analysis of Titze’s original model (Lucero, 1995).

Equation (9) has an equilibrium point at the origin x¼ 0.

An oscillation around this point is assumed, of the form,

xðtÞ ¼ A cos xt; (12)

where x is the circular frequency and A is the amplitude,

with 0�A< x0 [note that Eq. (9) demands x(t)>�x0].

When this solution is replaced into Eq. (9), the nonlinear dis-

sipative term produces, with some manipulation,

Bð1� gx2Þ _x ¼ �ABx 1þ gA2

4

� �
sin xt� BgA3x

4
sin 3xt:

(13)

Similarly, replacing Eq. (12) into Eq. (8) [or the right

side of Eq. (9)] and expanding the result into a Fourier series,

produces

Pg ¼ �
4APs sin xs

ktðx0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � A2
p

Þ
sin xtþ higher harmonics: (14)

The higher harmonics in the above Eqs. (13) and (14)

are ignored, and the first harmonic terms are substituted into

Eq. (9). Substituting also the solution (12) into the remaining

linear terms and solving, produces x ¼
ffiffiffiffiffiffiffiffiffiffi
K=M

p
and

Ps ¼
ktx0Bx
4 sin xs

1þ gx2
0a

2

4

� �
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ; (15)

where a¼A/x0 is the normalized oscillation amplitude and

0<xs<p.

Equation (15) expresses the value of the subglottal pres-

sure Ps that will produce an oscillation of amplitude a. At

FIG. 3. Simulation of the vocal fold oscillation, for the parameter configura-

tion in Table I. Upper panel: Vocal fold displacement x(t). Lower panel:

Subglottal pressure Ps(t), with t1¼ s, t2¼ 15 ms, t3¼ 515 ms, t4¼ 530 ms,

and T¼ 1000 ms. For clarity of the plots, only the time interval [0, 600] ms

is shown.

TABLE I. Values of model’s parameters corresponding to an adult male

configuration. All parameters, except B and g, were obtained from Titze

(1988). B and g were selected so as to produce a stable oscillation of large

amplitude.

Parameter Value

M 0.476 g/cm2

B 50 dyne s/cm3

K 200 000 dyne/cm3

s 1 ms

kt 1.1

x0 0.1 cm

Pmax 800 Pa

g 5000 cm�2
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the oscillation onset, a¼ 0, and therefore the threshold pres-

sure required to start the oscillation is Pth¼Ps(0),

Pth ¼
ktx0Bx
2 sin xs

: (16)

This expression was already found in a previous work (Lucero

and Koenig, 2007) by using Hopf’s bifurcation theorem.

Figure 4 shows values of Ps vs the normalized oscilla-

tion amplitude a for various values of g, and other parame-

ters as in Table I. The oscillation threshold pressure is

Pth¼Ps(0)¼ 295.3 Pa. At this value, a Hopf bifurcation

occurs: as Ps grows from Ps<Pth to Ps>Pth, the equilib-

rium point at x¼ 0 becomes unstable and a stable limit cycle

(stable oscillation) is produced (supercritical case) or an

unstable limit cycle is absorbed (subcritical case). Both types

of bifurcations may occur, depending on the value of g.

Increasing curves indicate stable limit cycles, and decreasing

curves indicate unstable limit cycles. Consider, for example,

an increasing curve for Ps(a), and assume that the system is

on that curve oscillating at a certain amplitude a. If a pertur-

bation causes a slight increase of amplitude, then the pres-

sure Ps will be lower than the value required to sustain an

oscillation at that amplitude, and the amplitude will decrease

back to the previous value. In case of a decreasing curve for

Ps(a), the same perturbation will result in a value of Ps larger

than the one required to sustain the oscillation at the new

amplitude, and so the oscillation amplitude will increase fur-

ther. Therefore, the bifurcation is supercritical when the

curve Ps(a) increases from the bifurcation point at a¼ 0, and

subcritical when Ps(a) decreases.

Factor x/sin(xs) increases monotonically from a mini-

mum at x! 0 to infinity at xs! p (Lucero and Koenig,

2007). Therefore, changes in oscillation frequency x will

displace curves in Fig. 4 vertically (upward or downward,

for a higher or lower oscillation frequency, respectively),

without modifying their shapes.

Figure 4 also shows results obtained from direct numeri-

cal solution of Eq. (9). Their close proximity to the curves

indicates that the harmonic balance analysis provides a good

approximation to the actual solution.

Let us analyze the type of Hopf bifurcation in more

detail. The first derivative of Ps(a) is

P0sðaÞ ¼
ktx0Bx
4 sin xs

�
gx2

0a
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ � 1þ gx2
0a

2

4

� �

� affiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

�
; (17)

which produces P0s(0)¼ 0 and therefore, x¼ 0 is a critical

point. The concavity at x¼ 0 may be determined by the sign

of the second derivative,

P00s ðaÞ ¼
ktx0Bx
4 sin xs

�
gx2

0

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ � gx2
0a

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

� 1þ gx2
0a

2

4

� �
1

ð1� a2Þ3=2

�
; (18)

and letting a¼ 0,

P00s ð0Þ ¼
ktBxx0

4x0 sin xs
ðgx2

0 � 1Þ: (19)

Therefore, Ps(a) is concave upward at a¼ 0 when g > 1=x2
0,

and downward when g < 1=x2
0.

When g ¼ 1=x2
0, Eq. (17) may be transformed into

P0sðaÞ ¼ �
ktx0Bxa

16 sin xs
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p ½2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ þ 3a2�; (20)

which is negative for 0� a< 1 and therefore the curve Ps(a)

is decreasing.

Then, the Hopf bifurcation at the oscillation threshold

Ps¼Pth is subcritical for 0 � g � 1=x2
0 and supercritical for

g > 1=x2
0. Note that the type of bifurcation is only deter-

mined by g and therefore is independent of the time delay s.

Figure 4 also shows that in the case of a supercritical

bifurcation, Ps(a) has a point of local maximum, where the

curve becomes decreasing for larger amplitudes. The maxi-

mum indicates a cyclic fold bifurcation between limit cycles.

At the left of that point, a stable limit cycle exists, and at the

right, an unstable one exists. Both limit cycles may therefore

co-exist at some values of Ps, and, as Ps increases, they coa-

lesce and cancel each other. The unstable limit cycle marks

the limit of validity of the model for the vocal fold oscilla-

tion. Any trajectory beyond the unstable limit cycle will

grow in amplitude until reaching the glottal closure condi-

tion x(t)¼�x0.

The conditions for the existence of a fold bifurcation

may be determined by solving P0s(a)¼ 0. It has two solutions;

one is the Hopf bifurcation at a¼ 0, and the other is given by

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

¼ �1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

gx2
0

s
: (21)

Since 0� a< x0, then 0 <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

� x0, which results

in g � 1=x2
0. When g ¼ 1=x2

0, both local extrema coalesce at

a¼ 0. Therefore, the fold bifurcation only exists for g > 1=x2
0,

FIG. 4. Subglottal pressure Ps vs normalized oscillation amplitude a for var-

ious values of g, and other parameters as in Table I. From bottom to top, the

curves correspond to g¼ 0, 1000, 2000, 3000, and 4000 cm�2, respectively.

The dashed curves represent results from the direct numerical solution of

Eq. (9).
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when the Hopf bifurcation at the oscillation threshold is super-

critical. In case of a subcritical bifurcation, there is only one

limit cycle, which is unstable. No stable oscillation is possible

in this case, which is therefore outside the range of validity of

the model as a representation of a vocal fold oscillator. Then,

the proposed model allows only for a supercritical start of the

oscillation.

V. EXTENSION OF THE MODEL

The shape of the curves Ps(a) may be easily altered and

new bifurcations introduced by adding higher even-powers of x
to the nonlinear damping factor (Ananthkrishnan et al., 1998).

In a previous work (Lucero, 2005), a fourth-degree polynomial

was used to produce an oscillation hysteresis phenomenon.

In the general case of a 2n-degree power, the vocal fold

model is

M€xðtÞ þ B½1þ gx2nðtÞ� _xðtÞ þ KxðtÞ

¼ Ps

kt

� �
xðtþ sÞ � xðt� sÞ

x0 þ xðtÞ ; (22)

with x0þ x(t)> 0 and n¼ 1, 2, 3, …. Figure 5 shows charac-

teristics of the nonlinear damping factor for various values

of n. As n increases, the damping factor is closer to a con-

stant at small values of x, and assumes a steeper increase as

x grows closer to x0.

Retracing the steps of the first order harmonic approxi-

mation in the previous section [Eqs. (13)–(15)] produces

Ps ¼
ktx0Bx
4 sin xs

ð1þ rgx2
0a

2nÞð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ; (23)

where 0<xs< p, r is the constant,

r ¼
ffiffiffi
p
p

Cðnþ 1=2Þ
Cðnþ 2Þ ; (24)

and U is the Gamma function (extended factorial).

The oscillation threshold value Pth¼Ps(0) is still given

by Eq. (16), independent of n. To facilitate the analysis of

Ps(a), let p¼Ps/Pth be the normalized pressure and b ¼ gx2n
0

be the normalized nonlinear coefficient. Equation (23)

becomes

p ¼ 1

2
ð1þ rba2nÞð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

Þ: (25)

The case of n¼ 1 was treated in Sec. IV, and n> 1 is

considered next. Figure 6 shows curves of p(a) for various

values of n> 1 and b. All curves decrease as a increases

from 0, which shows a subcritical Hopf bifurcation. In fact,

it is straightforward to show that p0(0)¼ 0 and p00(0)< 0 for

n> 1, so that the threshold is always a local maximum.

Some of the curves have a point of local minimum, for

0< a< 1, which indicates a cyclic fold bifurcation between

an unstable limit cycle (at the left) and a stable limit cycle

(at the right). This shape produces an oscillation hysteresis

phenomenon, as follows. Figure 7 shows an example for

n¼ 5 and b¼ 12. As the lung pressure increases, the oscilla-

tion onset is produced at the subcritical Hopf bifurcation,

where the rest position of the vocal folds becomes unstable.

Once the system is in a stable oscillation (limit cycle), the

lung pressure may be decreased until the system reaches the

cyclic fold bifurcation. At this point, the stable limit cycle

vanishes, and the system goes back to rest. Therefore, the

threshold pressure for oscillation offset, denoted by poff, is

given by its value at the local minimum and is lower than

the threshold pressure for oscillation onset, forming an

onset–offset hysteresis loop. In the example, poff¼ 0.89.

As shown by Fig. 6, the point of local minimum pres-

sure (when it exists) moves to the right and larger values of

the amplitude a as n increases, and the value of poff

decreases. As g!1, p(a) become closer to the curve for
FIG. 5. Nonlinear damping factor 1þ gx2n vs x/x0 for gx2n

0 ¼ 1 and

n¼ 1, 2, 3, 4, and 5, from left to right.

FIG. 6. Normalized lung pressure p vs normalized oscillation amplitude a
for n¼ 3 (top), 5 (middle), and 10 (bottom). In each panel, the curves corre-

spond to values of b¼ 0, 5, 10, and 30, from bottom to top.
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b¼ 0, which represents a lower boundary for p. To illustrate

the range of values of poff, Fig. 8 shows its values as a func-

tion of b. Note that poff decreases as n increases, and also as

b decreases.

VI. COMPARISON WITH DATA FROM A MECHANICAL
REPLICA

The validity of the above theoretical results may be

assessed by comparing them with oscillation onset and offset

threshold pressures measured by Ruty et al. (2007). The data

were collected from a mechanical replica of the vocal folds

consisting of two metal half-cylinders of 12.5 mm diameter,

covered with latex tubes of 11 mm diameter and 0.2 mm

thickness, which mimic the vocal fold structure in a 3:1

scale. The latex tubes were filled with water, at a controlled

internal pressure Pc. The initial separation h0 between them

decreases when Pc is increased and becomes zero for

Pc> 5000 Pa. Values of h0 at various values of Pc were

measured to determine the functional relation between both

parameters (Fig. 8, Ruty et al., 2007). The vocal tract was

simulated with a downstream cylindrical resonator. Two dif-

ferent resonators were used, with a diameter of 25 mm, and

lengths of 250 and 500 mm, respectively. Their dimensions

were chosen in order to present a weak and a strong acousti-

cal coupling. For details on the experimental setup, we refer

the reader to Sec. III of the work of Ruty et al. (2007).

Measures of oscillation threshold pressure were

obtained by increasing the air pressure upstream of the vocal

fold replica until an oscillation of the latex structures was

detected with an optical device. The oscillation frequency at

the oscillation onset was then computed by spectral analysis

on the acoustic output signal. A threshold pressure for the os-

cillation offset was next measured, by decreasing the

upstream pressure until the oscillation was interrupted (Figs.

9 and 10, Ruty et al., 2007).

A previous work already showed that Eq. (16), for the

onset threshold pressure, provides a good representation of

the data (Lucero et al., 2009). Here, the oscillation offset/

onset ratio poff is considered, and only data from the 250 mm

tube are used (weakly coupled vocal tract), because the

above theory does not include the effect of the vocal tract

load. The measured ratio ranges from 0.87 to 0.98. Accord-

ing to Fig. 8, the lowest value of parameter n that produces

FIG. 7. Illustration of the oscillation hysteresis phenomenon.

FIG. 8. Oscillation offset/onset threshold pressure ratio poff vs b, and

n¼ 2, 3, 4, 5, 7, and 10, from top to bottom.

FIG. 9. Fitted values of oscillation offset/onset threshold pressure ratio poff

vs internal pressure of latex tubes Pc. Curve: Theoretical results. Circles:

Measured data.

FIG. 10. Phonation threshold flow Uth vs oscillation frequency f, for the pa-

rameter configuration in Table I and L¼ 1.4 cm, q¼ 0.00114 g/cm3 (Titze,

1988).
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values of poff in that range is n¼ 4, and this value was

adopted for the theoretical model. A standard least square

algorithm implemented in MATLAB was used to determine the

value of g that best fits theoretical values of p to the data, as

follows. First, for each measured value of the internal pres-

sure Pc, the initial separation of the latex tubes (h0) was deter-

mined from the measured data, and x0¼ h0/2 was computed.

Next, for a given value of g, b ¼ gx2n
0 was computed, and the

corresponding value of poff was obtained from the curve

poff(b) in Fig. 8, for n¼ 4. Finally, the value for g that mini-

mizes the squared error between measured and predicted val-

ues of the offset/onset pressure ratio was determined, with

the results shown in Fig. 9. The optimal value for g is 9.18

cm�8, and the relative rms error between measured and pre-

dicted values of poff is 2.97%. As the internal pressure of the

latex tubes Pc increases, the separation between them, and

consequently x0, decreases. For a fixed g, b decreases, and

therefore the offset/onset ratio poff decreases.

VII. PHONATION THRESHOLD FLOW

The relation between subglottal pressure Ps and glottal

flow Ug is

Ps ¼
ktqU2

g

2a2
2

; (26)

where Ug is the flow, q is the air density, and a2 is given by

Eq. (4) (Titze, 1988). At the threshold, there is no tissue os-

cillation and the vocal folds are at rest, therefore, a2¼ 2Lx0.

Solving for Ug, and using Eq. (16), produces the phonation

threshold flow,

Uth ¼ 2Lx0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0Bx

q sin xs

s
: (27)

When s! 0, sin x!xs, and

Uth ¼ 2Lx0

ffiffiffiffiffiffiffiffi
x0B

qs

s
; (28)

which matches the result obtained by Jiang and Tao (2007).

Similarly to the phonation threshold pressure, Uth also

increases with the oscillation frequency as shown by Fig. 10.

Different values of the flow for oscillation onset and off-

set thresholds may exist, depending on how other parameters

of the system are varied. Assume first that the subglottal

pressure Ps is the control parameter, and that all other param-

eters are fixed. Substituting Eq. (23) into Eq. (26), and defin-

ing the normalized flow u¼Ug/Uth, produces

u ¼ ffiffiffi
p
p

; (29)

where p is given by Eq. (25). Since the offset/onset threshold

pressure ratio varies from 0.5 to 1, the above relation implies

that the flow ratio varies from 0.7 to 1. This relation was also

found in a recent experimental study on excised larynges

(Regner et al., 2008), which reported that 80% of the meas-

ured ratios were in the theoretical range.

During consonant production in running speech, the

main control parameter that switches voicing on and off is

glottal adduction–abduction (Lisker et al., 1969; Löfqvist

and Yoshioka, 1981, 1984), represented here by the glottal

half-width x0. Assuming other parameters constant, the glot-

tal half-width at oscillation onset threshold is

xth ¼
2 sin xsPs

ktBx
; (30)

and using Eq. (26), the threshold flow is

Uth ¼
4L sin xsPs

ktBx

ffiffiffiffiffiffiffi
2Ps

ktq

s
: (31)

Finally, solving Eq. (23) for x0 and substituting in Eq. (26),

produces a normalized flow,

u ¼ 1

p
: (32)

Figure 11 shows numerical examples of u(a) in both the

cases of Ps and x0 as control parameters. The upper plot

shows a subcritical bifurcation pattern similar to the subglot-

tal pressure in Fig. 6. Oscillation hysteresis occurs as illus-

trated in Fig. 7. In the lower plot, the patterns are inverted,

and the threshold at a¼ 0 is now a local minimum. Note,

however, that in this case the equilibrium position of the

vocal folds is stable above the threshold, and unstable below

it (to provoke the oscillation, the vocal folds must be

adducted, which reduces the airflow). Therefore, the thresh-

old bifurcation is subcritical also in this case. An oscillation

FIG. 11. Normalized glottal flow u vs normalized oscillation amplitude a
for n¼ 5. Upper panel: u is varied by varying x0. Lower panel: u is varied

by varying Ps. In each panel, the curves correspond to values of b¼ 0, 5, 10,

and 30 (from bottom to top, in the upper panel, and from top to bottom, in

the lower panel).
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hysteresis pattern may be formed, with an oscillation offset

threshold higher than the onset threshold.

In the case of n¼ 1, the results are similar to those found

for the threshold pressure in Sec. IV: The oscillation thresh-

old bifurcation must be supercritical, and there is no oscilla-

tion hysteresis. The demonstration follows similar steps to

those expressed by Eqs. (17)–(21).

VIII. COMPARISON WITH DATA FROM SUBJECTS
PRODUCING SPEECH

The above results may also be assessed by measures of

oral airflow at voicing offset and onset of subjects producing

speech. Koenig et al. (2005) collected data from six adult

females producing three sentences with an intervocalic /h/

(/@‘hAp/, /@‘hIp/, and /@‘hup/), at normal speech rate and at

soft, normal and high loudness. The production of /h/ repre-

sents a simpler situation than other consonants, because there

is no intraoral pressure buildup to take into account as

another factor affecting phonation. Thus, it is a more direct

analog of a laryngeal model coupled to an open upper vocal

tract with an invariant shape.

For each speaker, approximately 225 tokens were col-

lected. The flow signals were decomposed into DC

(smoothed) and AC (difference between the original signal

and the smoothed one) components. Next, several measures

of flow were obtained. In cases of devoicing during /h/

abduction, the measured parameters included AC flow, DC

flow, and AC frequency (i.e., F0) at the voice offset and

onset before and after the /h/ flow peak, respectively.

For the present study, only productions of /@hA/ were

used, in order to keep the first vocal tract formant as high as

possible and therefore minimize its influence on the vocal

fold oscillation. Further, only the cases of normal loudness

were used, to minimize subglottal pressure variations. From

the remaining set of 112 tokens, 16 were eliminated: 14

tokens had negative flow values, probably due to imprecision

of calibration, and 2 tokens had small DC flow values at

voice onset and produced much larger offset/onset ratios of

threshold flow than the other tokens. Table II shows a sum-

mary of measured values.

Assuming a constant subglottal pressure throughout the

glottal abduction–adduction gesture, then the glottal area is

proportional to airflow [Eq. (26)]. This is actually a crude

simplification, because an abducted glottis offers less resist-

ance to the air flow, and therefore causes a drop of subglottal

pressure (for a constant lung pressure). In an experimental

study on /s/ and /t/ production, subglottal pressure variations

between voice offset and onset up to 20% were reported

(Hirose and Niimi, 1987). Further, computer simulations

using the above data produced subglottal pressure drops up

to 50% at the peak abduction, relative to the pressure at the

adducted position (Lucero and Koenig, 2005).

If glottal airflow and area are assumed proportional,

then the normalized oscillation amplitude at voice offset is

aoff ¼
A

x0

¼ offset AC flow

offset DC flow
: (33)

Flow variations are produced by x0 variations; however,

the data also show frequency differences between onset and

offset. The frequency differences reflect the stress pattern of

the utterance, namely that the /h/ initiated a stressed syllable.

In this case, the normalized flow at voice offset, relative to

the flow at voice onset, is given by

uoff ¼
xon sinðxoffsoffÞ
xoff sinðxonsonÞ

1

pðaoffÞ
; (34)

where p is given by Eq. (25).

Table III shows mean values of uoff and aoff computed

from the data. It also shows mean values of factor 1/p(aoff),

computed by letting b¼ 0. Therefore, those are its maximum

possible values. This factor represents offset/onset differences

due to the oscillation hysteresis. When there is no hysteresis,

its value is 1. Note that it is very close to 1, and further, its in-

crement above 1 is much smaller than the increment of the

offset flow from the onset flow, i.e., 1/p(aoff)� 1� uoff� 1.

The coefficients of determination of 1/p(aoff)� 1 vs uoff� 1

are in the range R2¼ 0.009 – 0.0164. Therefore, only a very

small part of the offset/onset flow variation may be attributed

to the oscillation hysteresis,

Equation (34) was fitted to the data assuming 1/p(aoff)¼ 1,

for simplicity. For each subject, values were computed for

soff and son using a least squares algorithm implemented in

MATLAB to minimize the squared error between the values of

TABLE II. Means and standard deviations, in parentheses, of airflow measures from six female subjects (F1–

F6) producing speech. Airflow is in cubic centimeter per second (cm3/s); frequency is in hertz (Hz).

Parameter

Subject

F1 F2 F3 F4 F5 F6

N tokens 11 28 14 4 20 19

Offset

DC flow 781.2 (259.8) 880.0 (126.7) 325.6 (185.5) 114.0 (54.8) 158.2 (46.3) 502.6 (95.2)

AC flow 43.1 (20.9) 25.7 (10.9) 40.8 (13.0) 6.5 (2.2) 31.5 (11.0) 26.4 (15.6)

F0 184.0 (7.8) 168.5 (8.9) 212.1 (15.7) 178.3 (26.3) 131.5 (13.0) 199.1 (18.7)

Onset

DC flow 701.2 (300.0) 634.9 (116.7) 239.7 (177.6) 106.5 (39.8) 88.9 (40.2) 402.3 (77.9)

AC flow 69.6 (37.0) 41.3 (23.3) 64.4 (22.1) 15.0 (13.6) 31.1 (13.2) 34.2 (19.3)

F0 205.9 (11.4) 204.0 (15.1) 241.3 (14.8) 197.4 (7.8) 179.7 (18.6) 251.9 (37.4)
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uoff computed from the data and those predicted by Eq. (34).

Figure 12 illustrates results of the fit, and Table III presents a

summary. Assuming a glottal channel height T¼ 3 mm, then

the computed time delays s correspond to mucosal wave

velocities c¼T/(2s)¼ 0.7–3.9 m/s, and phase delays

d¼ 2sx/T¼ 17	/mm to 112	/mm. These ranges overlap the

lower range of values found by Titze et al. (1993), c¼ 0.5–

2.0 m/s and d¼ 30	/mm to 60	/mm, respectively.

In general, poorer fits of the model were obtained for

those subjects with values of offset/onset flow ratios scat-

tered over a larger interval (e.g., compare subjects F1 and F6

with subjects F3 and F5). Since flow is proportional to glottal

area, a larger flow ratio means larger variation of glottal area

from oscillation offset to onset. As noted above, variations

in glottal area cause variations in subglottal pressure, which

has been assumed constant. Therefore, the larger errors

might be attributed to the effect of neglecting subglottal

pressure differences between offset and onset.

Let us also note that the fit has been done by assuming

that the time delays soff and son have constant values across

all tokens, for each subject. However, other assumptions

may be adopted instead. For example, Titze (1988) pointed

out that the mucosal wave velocity c should increase with

the oscillation frequency F0. In case of a linear relation, then

the phase delay xs should be constant. Therefore, a fit may

be done by assuming constant values of the phase delays

xoffsoff and xonson across all tokens, for each subject. This

alternative fit was also tested, with similar results to those

shown above and rms errors slightly higher (16.1%–58.2%).

IX. CONCLUSIONS

The main conclusions from this analysis may be sum-

marized as follows.

The proposed model may be applied to analytical stud-

ies of the ruling principles of the vocal fold oscillation. Its

main improvements over Titze’s (1988) original model are

two: First, it allows for large amplitude oscillations, and

therefore it describes the oscillation dynamics not only at

phonation onset but also after it has developed a sustained

amplitude. Second, it considers arbitrary time delays, which

has the consequence of incorporating the oscillation fre-

quency as a control parameter of its oscillatory behavior

(Lucero and Koenig, 2007).

In the model, the oscillation onset is described by a

Hopf bifurcation. Both the supercritical and subcritical types

are possible, depending on the form of the nonlinear damp-

ing factor. The threshold equation that relates the various pa-

rameters at the oscillation onset includes the oscillation

frequency, but the type of bifurcation is independent of it. In

case of the subcritical bifurcation, an oscillation hysteresis

may be formed, with different threshold values for oscilla-

tion onset and offset.

The phonation threshold flow may be used as a relevant

parameter of the oscillation, as a convenient alternative to

the phonation threshold pressure. However, it must be

TABLE III. Means and standard deviations, in parentheses, of parameters computed from data in Table I, and from fitting Eq. (34) to the data.

Parameter

Subject

F1 F2 F3 F4 F5 F6

uoff(measured) 1.17 (0.21) 1.41 (0.26) 1.88 (1.21) 1.41 (0.54) 2.05 (0.89) 1.25 (0.15)

aoff 0.05 (0.02) 0.02 (0.01) 0.16 (0.08) 0.04 (0.01) 0.22 (0.10) 0.05 (0.03)

1/p(aoff) 1.0010 (0.0009) 1.0003 (0.0003) 1.0085 (0.0091) 1.0006 (0.0004) 1.0157 (0.0139) 1.0009 (0.0009)

uoff(fitted) 1.17 (0.04) 1.35 (0.23) 1.87 (0.77) 1.41 (0.31) 2.08 (0.60) 1.25 (0.06)

soff 0.82 1.55 0.20 0.69 2.13 0.56

soff 1.01 1.39 1.96 1.63 2.31 0.70

rms error 16.6% 17.1% 48.4% 27.2% 29.7% 11.3%

FIG. 12. Computed vs measured flow offset/onset ratios. On the diagonal

line computed and measured values are equal.
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pointed out that this is an output parameter, resultant from the

simultaneous action of several controlling factors. For instance,

it may assume different values at voice onset vs offset, but the

relation between those values depends on how the voice onset–

offset is produced: by varying the subglottal pressure, or glottal

abduction, or a combination of these and other factors.

Differences measured at voicing onset vs offset do not

necessarily mean an oscillation hysteresis phenomenon. Hys-

teresis indicates the existence of two possible co-existent states

for a system, as illustrated by Fig. 7. Within the region of co-

existence (e.g., subglottal pressure between the onset and off-

set thresholds), the system may be in one or the other state

(i.e., oscillating or at rest), depending on its history (the sub-

glottal pressure is increasing from zero, or it is decreasing

from the oscillation onset level). However, in the case of air-

flow measures of consonants produced in speech, several fac-

tors may influence phonation offset–onset differences in

addition to hysteresis effects (which assume that laryngeal and

supralaryngeal conditions are held constant). In the case of the

/h/ data presented here, much of the onset–offset difference

appears to be a consequence of the fundamental frequency. In

obstruent consonants, variations in laryngeal timing and supra-

glottal pressures must also be considered. Thus, in most conso-

nantal contexts, pure oscillation hysteresis effects might be

small compared to the effects of variations in f0, intraoral pres-

sure, and the magnitude and timing of vocal fold abduction.

This analysis has disregarded effects of the vocal tract

on the oscillation. A follow-up study using a simple vocal

tract model is currently under way, to explore laryngeal

source-vocal tract interactions.
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