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Abstract
Objectives—To analyze if genetically determined Amerindian ancestry predicts the increased
presence of risk alleles of known susceptibility genes for systemic lupus erythematosus.

Methods—Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for
SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy
controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry
proportions were determined using STRUCTURE. Association analysis was performed using
PLINK, and correlation of the presence of risk alleles with ancestry was done using linear
regression.

Results—A meta-analysis of the genetic association of the 16 SNPs across populations showed
that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-
Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the
MHC region, previously associated in a genome-wide association study in Europeans, were also
associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles
when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0%
American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are
predicted to carry one additional risk allele.

Conclusion—Amerindian ancestry increased the number of risk alleles for lupus.

Introduction
Differences in the prevalence and severity of systemic lupus erythematosus (SLE) between
various ethnicities are well documented. In particular, individuals of self-reported Hispanic
(or Mestizo), Asian or of African ancestry in the United States and Europe have been shown
to have an earlier age of onset, a higher frequency of severe renal disease and a higher
frequency of relapses than individuals of European ancestry (1–8). While socioeconomic
factors do play a role in the increased morbidity and mortality of Hispanic individuals, it has
never been analyzed if the presence of genetically defined ancestry does correlate with an
increased frequency of risk alleles for lupus. We have previously shown that the increased
proportion of Amerindian genome increases the risk for SLE (9). This observation has been
confirmed (10). Further, we also described the strong genetic association between IRF5 and
SLE in Mexican individuals combined with an increased frequency of homozygozity for the
risk haplotype (11).

In the present work we have analyzed 804 Mestizo individuals with lupus for genetic
association with polymorphisms within 16 confirmed SLE susceptibility loci (12–31) and
queried if the frequency of risk alleles correlates with a higher proportion of genetically
determined Amerindian ancestry defined using a set of admixture informative markers.

Herein, we describe that Amerindian ancestry increases the odds of having more lupus risk
alleles as compared to European ancestry in Mestizo lupus patients.
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Materials and Methods
Cases and controls

A total of 804 patients with SLE and 667 healthy controls were from two main sources: one
source was the OMRF collection from the Lupus Family Registry and Repository (LFRR;
http://lupus.omrf.org) comprising 373 cases with SLE and 272 controls. The great majority
of these individuals are of Mexican ancestry born or living in the United States. The second
source were cases recruited within a multicenter collaboration from Argentina: 242 cases
and 240 controls that have been previously reported and were used in the analysis of genetic
associations described previously for STAT4 (12), IRF5 (13), BANK1 (19), and TNFSF4
(20). The remaining of samples are individuals reported here for the first time from an
ongoing collection of SLE patients from Latin America known as GENLES. These comprise
101 SLE cases and 64 controls collected throughout Mexico (specifically from the cities of
Guadalajara, Morelia, Culiacán and Mexico City) and 88 cases and 91 controls from the city
of Lima, Peru, in South America.

All cases fulfilled the American College of Rheumatology classification criteria for lupus in
its latest version (32).

Genotyping
Genotyping was performed using the Illumina Custom Bead system on the iSCAN
instrument. Genotypes for the following SNPs within 16 confirmed susceptibility genes for
SLE were used: rs2476601 (PTPN22), rs1801274 (FCGR2A), rs2205960 (TNFSF4),
rs7574865 (STAT4), rs231775 (CTLA4), rs11568821 (PDCD1), rs6445975 (PXK),
rs10516487 (BANK1), rs907715 (IL21), rs3131379 (MSH5 within the MHC class III
region), rs1270942 (CFB, within the MHC class III), rs2070197 (IRF5), rs13277113
(C8ORF13-BLK region), rs1800450 (MBL2), rs4963128 (KIAA1542) and rs1143679
(ITGAM) (12–31).

In addition, 347 admixture informative markers (AIMs) were also used to genotype all
individuals (Supplementary table 1) (33–35). We have selected a panel of AIMs that had
large frequency differences between European populations and Amerindian populations. In
addition, the inter-marker distance between two adjacent AIMs was at least 1Mb to ensure
that the AIMs were not in linkage disequilibrium in the parental populations.

Population structure determination—Population structure was analyzed with
STRUCTURE v2.3.1 (36), which implements a model-based clustering method for inferring
population substructure using AIMs. We set most of parameters to their default values as
advised in the user’s manual. Specifically, we chose the admixture model and the option of
correlated allele frequencies between populations as suggested by Falush et al.(36). The
range of possible populations we tested was from K= 3 to 5 as described (37). The best
fitting K was 4, as a mixture of four populations: African, European, Asiatic and
Amerindian. We selected genotypes from European (CEU), Amerindian (MEX), Asiatic
(CHB) and African (YRI) individuals from HapMap version 3 dataset as potential ancestral
populations (38). Outliers were excluded when they showed more than 10% African or
Asian ancestry, in order to enrich for two ancestral populations, European and Amerindian.
Among the samples 45 individuals were excluded from further analyses.

Principal Component Analysis—To account for confounding population substructure
or admixture in the studied population we used principal component analysis (PCA) (39–42)
as implemented in HelixTree using genotype data from the 347 AIMs. The first three PCs
explained 71.7% of the variance among the first 10 PCs and had the following eigenvalues
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42.1, 21.3 and 8.3. The eigenvalues for PC4-PC10 showed a plateau, suggesting that the first
three PCs account for most of the populations’ substructure in this analysis. All individuals
who were not clustering with the main Amerindian cluster (deviation of more than 4 SD
from cluster centroids) were excluded from subsequent analysis. Using this method we
identified 23 outlier individuals (15 healthy controls and 8 SLE patients).

Statistical Genetic Analysis
The genetic association analysis was done using PLINK v1.0.7 (43). First quality control
filters were applied to remove SNPs with differential missing rate between cases and
controls (P<0.05), significant deviation from Hardy-Weinberg equilibrium in controls
(P<0.001) or a minor allele frequency < 1%. Allele frequencies of the remaining SNPs (16
of 16) were tested for significant association by a χ2 test within each study population. The
Meta-analysis of the all populations was conducted using standard methods based on
Cochran-Mantel-Haenszel test (44). The Breslow-Day test (45) was performed for all SNPs
to assess heterogeneity of the odds ratios in different populations. The pooled OR was
calculated according to a fixed-effects model (Mantel-Haenszel meta-analysis) for SNPs
with homogeneity between populations as well as random effects model (DerSimonian-
Laird) when heterogeneity was present, using the StatsDirect v2.4.6 software.

Alternatively, we also derived principal components on a population-specific basis using
HelixTree software v7.2.3, and applied an adjustment for the five first principal components.

Regression analysis—We used linear regression to model the relationship between the
proportion of Amerindian ancestry and the number of SLE risk alleles. Our initial model
included the proportion of Amerindian ancestry, gender, and the interaction between gender
and Amerindian ancestry as predictor variables for the number of SLE risk alleles. There
was no evidence of interaction, so we refit the model with the two remaining predictor
variables. Since we were interested in the association between the number of risk alleles and
the proportion of Amerindian ancestry, we removed gender from the model as neither
predictor variables were significant while both were fit. Our final model included the
proportion of Amerindian ancestry as a predictor for the number of SLE risk alleles. All
linear modeling assumptions were assessed and met.

Results
Population structure analyses showed the following mean proportions of Amerindian
ancestry for each of the sets included (Table 1): Amerindian ancestry was 30.7% for OMRF
Hispanics, 24.7% for Argentine, in agreement with what we had described previously (46),
52.3% for Mexicans and 72.6% for Peruvians. OMRF Hispanics differed from the Latin
American set by having higher proportions of North European ancestry, suggesting that
some of these samples may include second or third generation Mexican-Americans where
inclusion of the European-American genetic pool, mainly of North European ancestry has
occurred. On the other hand, Latin American sets had clearly a South European proportion,
as expected by the known history of these populations (Table 1).

For individual ancestry proportions, there were no differences between cases and controls in
the four clusters. In addition, we did not observe any differences after comparing the clusters
with and without population priors.

Using all cases and controls we first determined the genetic association between all Hispanic
cases and controls and SLE with the 16 SNPs. Association was observed for TNFSF4,
STAT4, IRF5, MSH5, CFB, and ITGAM and a trend of association was observed for PDCD1
(Table 2). The SNPs for C8orf13-BLK, BANK1 and PXK showed a significant degree of
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heterogeneity ((P<0.0001; P = 0.023; and P =0.001, respectively) across the different
country sets and this could have contributed to the fact that the final meta-analysis did not
provide a genetic association for these genetic variants. This is particularly true for the
C8orf13-BLK SNP, however might not explain the results for BANK1 and PXK, where it
could relate to insufficient power for detection of the genetic association.

We have previously shown that Amerindian ancestry increases the risk for lupus (9), and
this was later confirmed (10). Therefore we analyzed if the individual proportion of
Amerindian ancestry had any effect on the number of risk alleles.

Linear regression (Figure 1) showed that on average, we predict a 2.34 increase of risk
alleles of a subject with 100% Amerindian ancestry as compared to a subject with 0% of
such ancestry. In other words, an individual with 43% more Amerindian ancestry will on
average have one additional risk allele.

Discussion
It has been consistently shown that individuals of Mestizo (Hispanic) descent have a more
severe clinical lupus disease accompanied with earlier age of onset and severe renal disease.
Mestizos are a very heterogeneous group of individuals with different cultural backgrounds
but in general a common mother tongue, Spanish. The complexity of the Mestizo population
does not allow for appropriate genetics studies unless such complexity is taken into
consideration (1). With the aim to investigate if genes identified in lupus in Europeans also
play a role in the disease in Mestizos, we have selected a group from Latin American
countries with an enrichment of Amerindian and European ancestries based on population
history and a set of Hispanics from the United States primarily originating from Mexico.

In general, the populations of Mexico, Peru and Argentina have lower African ancestry and
primarily European and Amerindian ancestry. Our collection also includes samples from
Southern Europe (Spain and Portugal) as reference, so we were able to discern between
North and South Europeans. In this regard, OMRF Hispanics showed a high proportion of
North European ancestry, in line with recent inclusion of European-American gene pool.

Testing of the 16 SNPs representing risk variants of lupus susceptibility genes described in
Europeans, we confirmed the genetic association previously found in IRF5, STAT4,
TNFSF4, ITGAM and to a lesser degree the two SNPs within the MHC region and PDCD1.
Interestingly, the two SNPs used here for the MHC were the same included in the GWAS
that detected the highest genetic association in Europeans. Here, the genetic associations of
the non-MHC variants was stronger than for the MHC, suggesting two possibilities: either
the MHC effect originates from the European admixture in the Amerindian background and
it is “diluted” and/or, other Amerindian genes play a very important role in disease
susceptibility in Hispanics and in some way substitute for the strong effect that the MHC has
in Europeans. However these do not tag MHC haplotypes and cannot be seen as representing
the main effect on the MHC region in this population. For this, dense coverage of the region
would be required. Such studies are underway. We are at present performing a GWAS in
Hispanic-Mestizo individuals to answer this question. Of the remaining genetic association
it is important to point out that this replication is not completely independent: the Argentine
samples have been used previously in our work on BANK1, IRF5, TNFSF4 and STAT4
(12,13,19,20). In fact, our previous work (9) showed an increased frequency of Amerindian
genome in patients with SLE in this same set of Argentine patients. Here we observe a very
similar average in the proportion of Amerindian genome between cases and controls, but we
also have included new samples. The previous work used a completely different set of
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AIMS, although the number was smaller. At this point we are unable to explain the reason
for this controversy.

As the individual sets of Mexican and Peruvian samples are new but each is relatively small,
the associations were not discernible at the individual cohort level. The Peru sample showed
a weak association for FCGR2A (P = 0.02), IRF5 (P = 0.004) and ITGAM (P = 0.01), while
the Mexico set showed association with BANK1 (P = 0.0002) and ITGAM (P = 0.001). Most
of the contribution to the genetic associations observed in the meta-analysis was provided by
the Argentine and the OMRF Hispanic sets.

PDCD1 deserves further discussion. We identified PDCD1 as a susceptibility gene for lupus
after linkage analysis in Icelandic and Swedish multiplex families and we described a
polymorphism in intron 4 associated with SLE with a replication in European-Americans,
Swedish and Mexican cases with SLE (31). A second independent report replicated this
genetic association in Mexican pediatric SLE patients (47) and we recently described a
correlation between surface levels of PDCD1 protein (PD-1) in CD4+CD25+ T cells and the
associated variants (known as PD1.3) (48). Here, the association was only observed in the
Argentine SLE cases and controls (P = 0.013), a set never before analyzed for this
polymorphism. Importantly, and possibly affecting our results is the fact that the Argentine
set is the most European and is possibly also why the association is detectable in that set.
Finally, no association was observed for CTLA4, IL21, MBL2 and KIAA1542, while BLK
showed, as mentioned, extensive heterogeneity. The negative results of the meta-analysis for
BLK should be viewed with caution.

What is the significance of the increased risk for individuals with Amerindian genome to
carry risk alleles of lupus susceptibility genes identified in Europeans? First, it is possible
that in Hispanics/Mestizos, the “European” risk alleles interact with genes important in the
Amerindian background. This is somewhat reminiscent of what happens in the New Zealand
mouse strains, where the New Zealand White background interacts with genes found in the
New Zealand Black background leading to a strong and florid lupus-like disease in the
resultant F1 strain (49,50). To some degree Mestizo individuals from Latin America behave
as a sort of genetic F1 where unknown genetic interactions might occur leading to an
increased risk to develop severe SLE in the admixed population. On the other hand, our
results might also be explained by an enrichment of European risk alleles due to positive
selection.

From the data presented here we can suggest that the admixture may in part be responsible
for the increased susceptibility for the disease and that the Amerindian background genome
contributes to this increased risk. The identification of genes of Amerindian origin
contributing to the increased risk for the disease is clearly justified.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Scatter plot of the input data overlaid with the fitted regression line, 95% confidence limits,
and 95% prediction limits. The 95% confidence limits in the plot are point-wise limits that
cover the mean number of risk alleles for a particular proportion of Amerindian ancestry
with probability 0.95. The 95% prediction limits illustrate the point-wise limits for a future
measurement of risk alleles for a given proportion of Amerindian ancestry with probability
0.95.

Sanchez et al. Page 11

Arthritis Rheum. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sanchez et al. Page 12

Ta
bl

e 
1

A
ve

ra
ge

 A
nc

es
try

 P
ro

po
rti

on
s o

f t
he

 P
op

ul
at

io
n 

Se
ts

 U
se

d

Po
pu

la
tio

n
N

r.
 In

di
vi

du
al

s
A

m
er

in
di

an
So

ut
h 

E
ur

op
ea

n
N

or
th

 E
ur

op
ea

n
A

fr
ic

an

Y
or

ub
a 

(H
ap

M
ap

3)
16

7
0.

00
1

0.
00

0
0.

00
1

0.
99

8

C
EU

 (H
ap

M
ap

3)
16

5
0.

00
3

0.
00

3
0.

99
4

0.
00

0

Sp
ai

n
10

62
0.

01
3

0.
86

8
0.

11
4

0.
00

4

Po
rtu

ga
l

38
6

0.
00

8
0.

86
3

0.
12

6
0.

00
3

M
ex

ic
o

16
5

0.
52

9
0.

35
3

0.
09

6
0.

02
2

Pe
ru

17
9

0.
72

6
0.

19
0

0.
05

2
0.

03
2

A
rg

en
tin

a
48

2
0.

24
7

0.
64

5
0.

10
0

0.
00

8

O
M

R
F 

H
is

pa
ni

c
64

5
0.

30
7

0.
45

4
0.

15
3

0.
08

5

Arthritis Rheum. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sanchez et al. Page 13

Ta
bl

e 
2

M
et

a-
an

al
ys

is
 o

f t
he

 G
en

et
ic

 A
ss

oc
ia

tio
n 

of
 1

6 
ris

k 
ge

ne
 p

ol
ym

or
ph

is
m

s i
n 

H
is

pa
ni

cs

G
en

e
SN

P
A

A
%

A
a

%
aa

%
A

lle
le

 A
%

A
lle

le
 a

%
P 

va
lu

e
O

R
95

%
 C

I

PT
PN

22
rs

24
76

60
1 

(C
>T

)
SL

E 
(n

= 
79

4)
71

2
89

,7
81

10
,2

1
0,

1
15

95
94

,8
83

5,
2

C
on

tro
ls

 (n
= 

64
8)

59
6

91
,8

49
7,

6
3

0,
6

12
41

95
,6

55
4,

4
0,

28
32

1,
23

3
0.

86
6–

1.
75

4

FC
G

R2
A

rs
18

01
27

4 
(C

>T
)

SL
E 

(n
= 

76
7)

18
4

25
,8

38
5

50
,2

19
8

24
78

1
51

75
3

49

C
on

tro
ls

 (n
= 

64
0)

17
8

22
,7

31
7

49
,5

14
5

27
,8

60
7

47
,4

67
3

52
,6

0,
11

82
0,

88
5

0.
76

2–
1.

02
7

TN
FS

F4
rs

22
05

96
0 

(G
>T

)
SL

E 
(n

= 
79

4)
31

0
39

38
1

48
10

3
13

10
01

63
58

7
37

C
on

tro
ls

 (n
= 

64
9)

32
9

50
,7

26
5

40
,8

55
8,

5
92

3
71

37
5

28
,9

1,
65

E-
06

1,
48

8
1.

26
9–

1.
74

5

ST
AT

4
rs

75
74

86
5 

(G
>T

)
SL

E 
(n

= 
72

7)
26

8
36

,9
35

0
48

,1
10

9
15

88
6

61
56

8
39

C
on

tro
ls

 (n
= 

59
5)

25
5

42
,9

27
6

46
,4

64
10

,8
78

6
66

,1
40

4
33

,9
5,

81
E-

05
1,

41
1.

2–
1.

65
9

C
TL

A4
rs

23
17

75
 (G

>A
)

SL
E 

(n
= 

78
3)

29
4

37
,5

36
4

46
,5

12
5

16
95

2
60

,8
61

4
39

,2

C
on

tro
ls

 (n
= 

64
0)

24
6

38
,4

30
0

46
,9

94
14

,7
79

2
62

48
8

38
0,

78
82

0,
97

6
0.

83
8–

1.
13

7

PD
C

D
1

rs
11

56
88

21
 (G

>A
)

SL
E 

(n
= 

77
8)

67
1

86
,2

10
2

13
,1

5
0,

6
14

44
92

,8
11

2
7,

2

C
on

tro
ls

 (n
= 

63
6)

52
9

83
,2

99
15

,6
8

1,
3

11
57

91
11

5
9

0,
05

71
0,

75
8

0.
57

6–
0.

99
7

PX
K

rs
64

45
97

5 
(T

>G
)

SL
E 

(n
= 

78
5)

33
2

42
,3

35
0

44
,6

10
3

13
,1

11
14

64
,6

55
6

35
,4

C
on

tro
ls

 (n
= 

64
7)

29
0

44
,8

28
0

43
,3

77
11

,9
86

0
66

,5
43

4
33

,5
0,

62
2

1,
07

7
0.

8–
1.

45

BA
N

K
1

rs
10

51
64

87
 (G

>T
)

SL
E 

(n
= 

75
3)

53
6

71
,2

19
0

25
,2

27
3,

6
12

62
83

,8
24

4
16

,2

C
on

tro
ls

 (n
= 

61
2)

40
2

65
,7

17
9

29
,2

31
5,

1
98

3
80

,3
24

1
19

,7
0,

19
4

0,
71

1
0.

42
5–

1.
18

9

IL
21

rs
90

77
15

 (G
>A

)
SL

E 
(n

= 
78

1)
35

3
45

,2
34

5
44

,2
83

10
,6

10
51

67
,3

51
1

32
,7

C
on

tro
ls

 (n
= 

63
5)

30
7

48
,3

26
7

42
16

9,
6

88
1

69
,4

38
9

30
,6

0,
22

98
1,

10
7

0.
94

2–
1.

29
9

M
SH

5
rs

31
31

37
9 

(C
>T

)
SL

E 
(n

= 
79

6)
69

2
86

,9
10

2
12

,8
2

0,
3

14
86

93
,3

10
6

6,
7

C
on

tro
ls

 (n
= 

65
1)

60
2

92
,5

48
7,

4
1

0,
2

12
52

96
,2

50
3,

8
0,

00
13

1,
77

3
1.

25
5–

2.
50

5

C
FB

rs
12

70
94

2 
(T

>C
)

SL
E 

(n
= 

79
6)

69
8

87
,7

96
12

,1
2

0,
3

14
92

93
,7

10
0

6,
3

C
on

tro
ls

 (n
= 

65
2)

60
8

93
,3

43
6,

6
1

0,
2

12
59

96
,5

45
3,

5
0,

00
07

1,
88

1
1.

31
1–

2.
69

8

IR
F5

rs
20

70
19

7 
(T

>C
)

SL
E 

(n
= 

76
8 

)
50

7
66

23
3

30
,3

28
3,

6
12

47
81

,2
28

9
18

,8

Arthritis Rheum. Author manuscript; available in PMC 2011 December 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sanchez et al. Page 14

G
en

e
SN

P
A

A
%

A
a

%
aa

%
A

lle
le

 A
%

A
lle

le
 a

%
P 

va
lu

e
O

R
95

%
 C

I

C
on

tro
ls

 (n
= 

53
6)

42
1

78
,5

10
4

19
,4

11
2,

1
94

6
88

,2
12

6
11

,8
1,

65
E-

09
2,

05
8

1.
63

2–
2.

59
5

C
8o

rf
-B

LK
rs

13
27

71
13

 (G
>A

)
SL

E 
(n

=7
53

)
23

2
31

36
2

48
,3

15
5

20
,7

82
6

55
,1

67
2

44
,9

C
on

tro
ls

 (n
=6

11
)

25
2

41
,2

26
2

42
,9

97
15

,9
76

6
62

,7
45

6
37

,3
0,

38
69

1,
22

8
0.

77
1–

1.
95

5

M
BL

2
rs

18
00

45
0 

(G
>A

)
SL

E 
(n

= 
79

3)
51

0
64

,3
25

3
31

,9
30

3,
8

12
73

80
,3

31
3

19
,7

C
on

tro
ls

 (n
= 

64
8)

42
4

65
,4

19
5

30
,1

29
4,

5
10

43
80

,5
25

3
19

,5
0,

58
31

1,
05

8
0.

87
8–

1.
27

6

K
IA

A1
54

2
rs

49
63

12
8 

(G
>A

)
SL

E 
(n

= 
76

2)
37

5
49

,2
31

1
40

,8
76

10
10

61
69

,6
46

3
30

,4

C
on

tro
ls

 (n
= 

63
2)

35
8

51
,7

28
0

40
,4

55
7,

9
99

6
72

39
0

28
0,

87
61

0,
98

3
0.

83
5–

1.
15

7

IT
G

AM
rs

11
43

67
9 

(G
>A

)
SL

E 
(n

= 
79

5)
53

8
67

,7
23

4
29

,4
23

2,
9

13
10

82
,4

28
0

17
,6

C
on

tro
ls

 (n
= 

65
0)

54
1

83
,2

10
2

15
,7

7
1,

1
11

84
91

,1
11

6
8,

9
6,

22
E-

11
2,

23
2

1.
76

7–
2.

81
8

Arthritis Rheum. Author manuscript; available in PMC 2011 December 1.


