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A discriminative method for family-based protein
remote homology detection that combines
inductive logic programming and propositional
models
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Abstract

Background: Remote homology detection is a hard computational problem. Most approaches have trained
computational models by using either full protein sequences or multiple sequence alignments (MSA), including all
positions. However, when we deal with proteins in the “twilight zone” we can observe that only some segments of
sequences (motifs) are conserved. We introduce a novel logical representation that allows us to represent physico-
chemical properties of sequences, conserved amino acid positions and conserved physico-chemical positions in the
MSA. From this, Inductive Logic Programming (ILP) finds the most frequent patterns (motifs) and uses them to
train propositional models, such as decision trees and support vector machines (SVM).

Results: We use the SCOP database to perform our experiments by evaluating protein recognition within the
same superfamily. Our results show that our methodology when using SVM performs significantly better than
some of the state of the art methods, and comparable to other. However, our method provides a comprehensible
set of logical rules that can help to understand what determines a protein function.

Conclusions: The strategy of selecting only the most frequent patterns is effective for the remote homology
detection. This is possible through a suitable first-order logical representation of homologous properties, and
through a set of frequent patterns, found by an ILP system, that summarizes essential features of protein functions.

Background
An important problem in Computational Biology is the
detection of remote homologous proteins, that is, pro-
teins that have a common ancestor but that have
diverged significantly in their primary sequence in evo-
lutionary history. In practical terms, remote homology
detection is the problem of detecting homology in cases
of low sequence identity, frequently below 30%. This is
an important and hard problem, thus the development
of methods to identify homologs between proteins is
essential for functional and comparative genomics. In a
general way, homology detection methods are today
very important to help for sequence annotation and to
guide laboratory experiments.

Traditional methods, such as BLAST [1], deal with the
homology detection problem by searching for regions of
local similarity among pairs of sequences. Certainly, the
performance of these methods is directly related to
sequence identity, and since remote homologous
sequences have low identity, those methods fail to give
satisfiable answers. An alternative to BLAST are genera-
tive methods. First, they train a model to represent a
group of homologous sequences (a protein family), and
then match a query sequence against the model to eval-
uate the similarity of the query sequence to the group/
family. Profile Hidden Markov Models (pHMMs) [2]
and PSI-BLAST are examples of such approaches, also
known as family-based or sequence-profile based
approaches. PSI-BLAST builds a probabilistic model
based on Position Specific Score Matrix (PSSM) from
the results of the first BLAST alignment. Next, this
PSSM is used to further search on the database for new
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matches, and is updated for subsequent iterations with
newly detected sequences. Several studies have shown
that sequence-profile based approaches perform better
than methods based on pairwise comparison only [3],
but they still largely fail to detect distant homologous
proteins. A significant improvement over those methods
were made possible by comparing profile-profile instead
of sequence-profile. Methods such as PROF-SIM [4],
COMPASS [5] and HHsearch [6] build a profile from
the query protein and then compare it against a profile
database constructed from the target proteins.
The performance of generative methods degrades as

sequence similarity decreases. This limitation has moti-
vated researchers mainly in two directions, i) to com-
bine extra information to previous approaches, such as
phylogenetic [7] and protein structure information [8,9],
and ii) to search for new accurate methods. Among the
new approaches, a family of methods called “discrimina-
tive”, have been able to attain additional accuracy to
remote homology detection by modeling the differences
between positive and negative examples. The most pop-
ular discriminative method applied to the remote
homology detection problem is Support Vector Machine
(SVM) [10-26]. Basically, SVMs learn a classification
function, from positive and negative training examples,
that optimally separates the unseen data into two cate-
gories, for instance, homologous and non-homologous
proteins. The kernel function that measures the similar-
ity between a pair of examples has a key role in the
SVM performance. Typical approaches represent each
protein sequence as a fixed-length vector, where each
vector’s item is a protein property, and design a kernel
function taking the inner product between these vectors.
Several feature protein vector representations have been
proposed. SVM-Fisher [10] represents each protein x as
a vector of Fisher scores. These scores are obtained
comparing x to the pHMM built from the positive train-
ing sequences (a protein family). SVM-pairwise [14] also
uses scores to compose its feature vector, those are
extracted from pairwise alignments of x and each
sequence in the training set. Some methods use repre-
sentations based on primary-sequence motifs, where a
sequence x is represented in a vector space indexed by a
set of precomputed motifs [11]. GPkernel [23] is another
method based on motifs, but instead of using precom-
puted motifs coming from an existing database, it gener-
ates motifs from training data. Other methods have used
structural motifs in place of primary-sequence ones for
feature extraction task. The SVM-I-sites method [12]
constructs the feature vector of a protein x by compar-
ing the x profile (built by using PSI-BLAST) to the I-
sites library of local structural motifs. Later, this work
was improved taking into account the order and rela-
tionship of the I-sites motifs [15]. A series of works

have explored the use of k-mers (short subsequences of
size k). Mismatch kernel [13] represents a sequence x as
a vector of k-mers occurrence, that is, each vector posi-
tion has a non-zero weight if the k-mer is present in x
and zero weight otherwise. A k-mer is said to be present
in x if x contains a substring that has at most n mis-
matches to the k-mer. Profile kernel [19] vector repre-
sentation is similar to Mismatch kernel one. However, it
considers a k-mer to be present if x contains a substring
whose PSSM-based ungapped alignment scores with the
k-mer is above an user defined threshold. A feature vec-
tor representation based on distances between k-mers
was introduced in [21]. Statistical and relevant features
have been extracted from all possible k-mers (coming
from training protein sequences) by using latent seman-
tic analysis (an efficient feature extraction technique
from natural language processing) in [22]. Later, this
work was improved by using Top-n-grams that are
extracted from protein sequence frequency profiles [24].
On the other hand, some approaches have followed a

way that is alternative to the feature protein vector
representation by pre-computing a kernel matrix where
each element is the measure of similarity between a pair
of examples. This matrix can be used directly as a ker-
nel function. Some new tools have followed this way,
such as SVM-LA [16], which measures the similarity
between a pair of sequences by summing up scores
obtained from its local alignment, and SW-PSSM [20],
which uses profiles scoring schemes for measuring the
similarity between pairs.
Most of SVMs are family-based, that is, a protein family

is required to train them, and the aim is to classify unseen
proteins as member or non-member of this family. Cer-
tainly, these methods are limited to the number of known
families. In order to overcome this drawback, a new SVM
category has been proposed, that is, pairwise SVM [25,26].
Here, the aim is to rank proteins that are homologs to a
given query protein. These methods are an alternative to
the most commonly used methods in the biology commu-
nity, that is: BLAST and PSI-BLAST.
In fact, in the SVM-HUSTLE [25] a training strategy

was presented that could convert a family-based SVM
into a pairwise SVM. Like PSI-BLAST it iteratively
searches for homologs against a database by using
BLAST in the first iteration. Next, it trains concurrent
SVMs from positive sequences selected from BLAST
output, and negative sequences selected randomly from
the remaining database. Then, trained SVMs scan the
database searching for new homologs that are added to
the positive set. The algorithm stops when no new sam-
ple is classified as positive or when a maximum number
of iterations is achieved.
To improve the performance some methods have been

applied the semi-supervised training strategy, that is,
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they combine information from labeled and unlabeled
databases in order to recruit more training sequences.
This strategy is generally applied when unlabeled data is
abundant while labeled data is limited, and this is the
actual scenario of protein classification, since there is a
large group of still unannotated proteins. However,
semi-supervised approaches can become computation-
ally hard when unlabeled large databases are used, such
as nrdb90. Among methods that employ this strategy
are RANKPROP [27], SVM-HUSTLE [25], Top-N-Gram
[24] and SW-PSSM [20].
SVM methods are among the most effective and accu-

rate methods for solving the remote homology detection
problem. They classify query sequences as member or
non-member of homologous proteins, but they do not
provide any insight to the user concerning the reasons
for the separation. Moreover, SVM is not able to work
directly over relational data. However, biological data is
naturally relational. For example, a specific amino acid
in a protein could belong to an a-helix and at the same
time belong to the active site of that protein. Therefore,
methodologies that explore relational data are expected
to be more suitable to deal with biological data. In this
vein, we focus our attention on Inductive Logic Pro-
gramming (ILP) [28]. ILP is a relational data-mining
method that uses first-order logic predicates to repre-
sent background knowledge, theories and examples
(positives and negatives). From those an ILP system can
learn a hypothetical logic program which entails all the
positive and none of the negative examples. This logic
program is a comprehensible set of logical rules that
can be used to classify unseen examples. Moreover,
when applied to remote homology detection problem, it
can provide insights into conserved features of homolo-
gous protein families.
To the best of our knowledge, researchers have devel-

oped two approaches for applying ILP to remote
homology detection. The first method is known as
Homology Induction [29,30] and uses ILP to improve on
conventional sequence-based homology method. The
second method uses a hybrid ILP-propositional machine
learning method to predict protein functional classes
directly from sequences [31,32]. First, it represents each
protein through first-order logic predicates. It creates
predicates based on properties extracted directly from
sequences, such as frequency distribution of single resi-
dues, and on properties predicted from sequences such
as secondary structure elements. Second, it uses
WARMR [33], an ILP data-mining program, to identify
the most frequent patterns in its knowledge base. Third,
it converts these frequent patterns into binary attributes
to be used in propositional learning. Finally, it uses
decision trees (DTs) [34] as propositional machine
learning method.

Our work is based on the same basic approach
[31,32]. However, there are significant differences. First,
we have proposed a novel first-order logical representa-
tion based on conserved amino acid positions in a mul-
tiple sequence alignment (MSA). Second, we have
related the first-order logical representation based on
sequence properties, proposed in [31,32,35], with our
novel representation based on conserved positions for
creating a hybrid representation that takes into account
conserved physico-chemical positions in a MSA. Third,
we have joined features created by these representations
to train propositional models. In a general way, this
combination of features has improved the performance
of models. Fourth, we have proposed to use SVM as
propositional machine learning method rather than
DTs. Figure 1 summarizes the proposed methodology.
We confirmed that building models using only the

most frequent patterns is a suitable methodology to the
remote homology detection problem. Remote homolo-
gous proteins seem to share only the essential properties
in order to keep their function, and these properties can
be represented by first-order logic predicates. For
instance, Figure 2 shows the partial alignment of “Glu-
cocorticoid receptor-like (DNA-binding domain)” super-
family sequences. The sequence identity of this
alignment is smaller than 30%. We can observe that
some positions are completely conserved (marked by *).
Also, there are positions which are partially conserved
(marked by •). Methods that have the ability of explor-
ing only these positions most likely will outperform the
methods that consider the whole alignment, since non-
conserved positions could add noise to the model.
Our intention in this paper was to investigate if the

performance of remote homology detection methods
could be improved only by exploring the most frequent
patterns into homologous sequence groups. Therefore,
we did not use any extra-information, such as structural
properties or phylogenetic trees, contrary to [31,32] that
used structural properties. All training data was
extracted from sequences and MSAs. We carried out
experiments on remote homology benchmarks and
showed that SVM outperforms DTs when they are
trained by using only the most frequent patterns. Also,
we have demonstrated that good performance can be
achieved when we used first-order logical representa-
tions for the protein sequences based on conserved
amino acid positions and based on conserved physico-
chemical positions in the MSA. Moreover, we showed
that the combination of features created by different
first-order logical representations improves the perfor-
mance of propositional models. Finally, we compared
the performance of our models with state of the art
methods and showed that they are comparable to or
better than its competitors, this includes the cases
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Figure 1 Flowchart of the method. A) Training phase. Each sequence in the positive training set is represented through first-order logic
predicates. WARMR learns logical rules on the set. These rules are converted into binary attributes in order to train propositional models; this
step is called propositionalization. Next, each sequence in the positive and negative training set is represented through binary attributes, and
finally propositional models, such as DTs or SVM, are trained. B) Test phase. Each sequence in the positive and negative test set is represented
through binary attributes that correspond to the logical rules learned during the training phase. Next, the propositional model is tested and its
output is divided into sequences classified as positives and sequences classified as negatives.
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where sequence identity is low (below 30%). However,
the output of our method can be interpreted biologically
to provide insights into conserved features of homolo-
gous protein families.

Results and Discussion
In order to assess our methodology, we have trained
DTs and SVMs using representations described in
Methods. We called Seq those models that are trained
from sequential properties only, and we named Alncons
those models that are trained from conserved amino
acid positions in a MSA. We have created a hybrid
representation that takes into account conserved
physico-chemical positions in a MSA (see R6 in Table 1),
the resulting models were called Alnpc, where pc is an
abbreviation for physico-chemical properties. Addition-
ally, we created models by joining Seq, Alncons and Alnpc
features. We named ILP-SVM and ILP-DT models
trained from our methodology. Table 2 summarizes
results (see also Figure 3 that shows only ILP models
with best performance). ILP-DT models did not reach
good performance on Sfull and S30 databases (see Meth-
ods). ILP-SVM-Seq-Alncons-Alnpc models outperformed
all other ILP methods for both databases.
We highlighted that the novel logical representation,

based on conserved amino acid positions (Alncons) and
based on conserved physico-chemical positions (Alnpc)
in MSA, that we propose here, is able to achieve better
prediction accuracy than the sequential logical represen-
tation commonly used by related works. This result is
expected since it is known that MSAs contain more

functional and structural information than properties
extracted from unaligned sequences. On the one hand,
the combined models (Seq-Alncons, Alncons-Alnpc and
Seq-Alncons-Alnpc) were able to attain better accuracy
than single models (Seq, Alncons and Alnpc) for the Sfull
database. On the other hand, for the S30 database, the
sequential logical representation does not contribute to
improve the model performances. Based on the observa-
tion that MSA information is richer than sequential
properties, we tested the hypothesis that below 30% of
sequence-identity, MSA information is still rich enough
to build accurate models and that sequential properties

Figure 2 Partial alignment of “Glucocorticoid receptor-like
(DNA-binding domain)” superfamily sequences. Some conserved
positions are highlighted: * marks completely conserved positions, •
marks partially conserved positions. The alignment is built by using
CLUSTALW.

Table 1 Logical rules constructed by WARMR

WARMR output

R1 : Homologous(A):- col(A,c,24), col(A,c,27), col(A,c,51) 1.0

R2 : Homologous(A):- col(A,c,45) 0.7

R3 : Homologous(A):- col(A,k,29) 0.45

R4 : Homologous(A):- hydrophobic(A,2) 0.7

R5 : Homologous(A):- aminoacidPairRatio(A,cg,1) 0.77

R6 : Homologous(A):- col(A,B,34), small(B) 1.0

Interpretation

R1 : 100% of homologous proteins have the C amino acid in positions
24, 27 and 51.

R2 : 70% of homologous proteins have the C amino acid in position 45.

R3 : 45% of homologous proteins have the K amino acid in position 29.

R4 : 70% of homologous proteins have between 10 and 20% of
hydrophobic amino acids.

R5 : 77% of homologous proteins have at least 1 pair of CG.

R6 : 100% of homologous proteins have a small amino acid in positions 34.

Some logical rules learned from “Glucocorticoid receptor-like (DNA-binding
domain)” sequences and their alignment (see Figure 2). They are shown in
their original WARMR output and their interpretation is given below.

Table 2 Average AUC for Sfull and S30 databases

Sfull S30

ILP-SVM-Seq 0.79 0.77

ILP-SVM-Alncons 0.81 0.81

ILP-SVM-Alnps 0.80 0.81

ILP-SVM-Seq-Alncons 0.85 0.80

ILP-SVM-Alncons-Alnps 0.82 0.82

ILP-SVM-Seq-Alncons-Alnps 0.87 0.82

ILP-DT-Seq 0.67 0.65

ILP-DT-Alncons 0.70 0.69

ILP-DT-Alnps 0.68 0.67

ILP-DT-Seq-Alncons 0.72 0.69

ILP-DT-Alncons-Alnps 0.71 0.71

ILP-DT-Seq-Alncons-Alnps 0.74 0.71

SVM-Ngram-LSA 0.79 0.77

SVM-LA 0.87 0.80

PSI-BLAST 0.75 0.69

HMMer-3.0 0.63 0.60
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might add noise within combined models. In fact, we
observed that ILP-SVM-Alncons outperformed ILP-SVM-
Seq-Alncons, while ILP-SVM-Seq-Alncons-Alnpc and ILP-
SVM-Alncons-Alnpc achieved a similar perfomance.
When we compare ILP-SVM models with ILP-DT

models, all ILP-SVM models outperformed ILP-DTs. In
fact, SVMs are often more accurate than DTs. We
observed that ILP-DTs have produced fewer and simpler
rules for both databases and they presented a poorer
classification on test examples. In order to provide a
comparison with [31,32], we considered for comparison
the ILP-DT-Seq model, since it uses all properties
handled in [31,32], except those predicted from
sequences, such as secondary structure. Our results
show that all models proposed here outperformed ILP-
DT-Seq for both databases.

When we combine the representations the number of
features can increase creating sparse data. However, this
can be avoided by using a feature selection technique.
Here, we applied chi-square statistical test to remove
class uncorrelated rules. We set δ for 0.05 and 0.25, see
Methods. Table 3 shows how AUC values vary accord-
ing to and without the chi-square test. We can observe
that for most methods the performance was kept with
δ = 0.05 with a significant reduction in the number of
features. On the other hand, δ = 0.25 worsened the per-
formance for all methods. In fact, for some families δ =
0.25 removed all logical rules.
We compared our best models, that is, those trained

from Seq-Alncons-Alnpc features, with two models based
on SVM (SVM-Ngram-LSA [22] and SVM-LA [16]), and
also with two other widely used methods: HMMer-3.0
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Figure 3 Performance as measured by AUC-ROC. For each SCOP family, we run SVM and DT models T times (see Methods) over the same
positive set, but over several different negative sets. We calculated the AUC-ROC for each run and the AUC-ROC of SCOP family by averaging
the AUC-ROC on all runs. We plot the AUC-ROC versus the number of families that achieved a given AUC-ROC score or better for the database
Sfull (A) and for the database S30 (B). We shows only ILP models that achieved best performance. We carried out rank-sum test [38] to compare
the curves, see Table 4. For both databases ILP-SVM-Seq-Alncons-Alnps outperformed all methods, except SVM-LA, and ILP-DT-Seq-Alncons-Alnps
outperformed only HMMer-3.0.

Table 3 Average AUC and number of logical rules according to chi-square test for Sfull and S30 databases

Methods Sfull
AUC (#logical rules)

S30
AUC (#logical rules)

no chi-square δ = 0.05 δ = 0.25 no chi-square δ = 0.5 δ = 0.25

ILP-SVM-Seq 0.79 (228.59) 0.79 (89.15) 0.75 (59.30) 0.77 (311.09) 0.77 (91.04) 0.70 (26.4)

ILP-SVM-Alncons 0.81 (44.91) 0.81 (34.98) 0.77 (12.76) 0.81 (56.72) 0.80 (36.44) 0.72 (13.16)

ILP-SVM-Alnps 0.80 (191.65) 0.79 (139.61) 0.75 (66.15) 0.81 (241.96) 0.81 (178.72) 0.73 (71)

ILP-SVM-Seq-Alncons 0.85 (311.09) 0.83 (144.07) 0.79 (35.8) 0.80 (381.12) 0.80 (178.56) 0.74 (49.96)

ILP-SVM-Alncons-Alnps 0.82 (236.56) 0.82 (174.59) 0.79 (46.04) 0.82 (283.12) 0.82 (209.76) 0.80 (57.28)

ILP-SVM-Seq-Alncons-Alnps 0.87 (502.74) 0.85 (283.69) 0.81 (74.3) 0.82 (623.56) 0.82 (357.28) 0.79 (90.96)

ILP-DT-Seq 0.67 (228.59) 0.67 (89.15) 0.62 (59.30) 0.65 (311.09) 0.65 (91.04) 0.61 (26.4)

ILP-DT-Alncons 0.70 (44.91) 0.70 (34.98) 0.72 (12.76) 0.69 (56.72) 0.69 (36.44) 0.65 (13.16)

ILP-DT-Alnps 0.68 (191.65) 0.68 (139.61) 0.64 (66.15) 0.67 (241.96) 0.67 (178.72) 0.62 (71)

ILP-DT-Seq-Alncons 0.72 (311.09) 0.71 (144.07) 0.67 (35.8) 0.69 (381.12) 0.68 (178.56) 0.63 (49.96)

ILP-DT-Alncons-Alnps 0.71 (236.56) 0.71 (174.59) 0.73 (46.04) 0.71 (283.12) 0.70 (209.76) 0.62 (57.28)

ILP-DT-Seq-Alncons-Alnps 0.74 (502.74) 0.74 (283.69) 0.69 (74.3) 0.71 (623.56) 0.71 (357.28) 0.63 (90.96)
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[36] and PSI-BLAST [37]. We carried out rank-sum tests
[38] to compare models listed in Figure 3, and we show
in Table 4 statistical measures for this comparison. For
both databases, ILP-SVM-Seq-Alncons-Alnpc outper-
formed SVM-Ngram-LSA, PSI-BLAST and HMMer-3.0,
and achieved comparable performance to SVM-LA. ILP-
DT-Seq-Alncons-Alnpc model achieved better results than
HMMer-3.0, and achieved similar performance to
PSI-BLAST. Based on ILP-SVM-Seq-Alncons-Alnpc perfor-
mance, we can conclude that the combination of align-
ment information and sequence properties, and the
strategy of selecting only the most important features can
yield a more accurate model than those that explore all
alignment positions, as HMMer-3.0 and PSI-BLAST, and
those that extract Ngram from unaligned sequences,
such as SVM-Ngram-LSA.
Although the results show that ILP-SVM-Seq-Alncons-

Alnpc outperformed some state-of-art methods, we
emphasize that the performance of PSI-BLAST depends
on the number of iterations and on the size of the data-
base used to build the profiles. Thus, to extract the
maximum performance of PSI-BLAST, we adopt the
semi-supervised training strategy and we used nrdb90 as
unlabeled database and set the number of iterations to
20, as done in [26]. Unsurprisingly, it performed better
than our ILP-SVM models. For example, PSI-BLASTnr20

achieved a AUC of 0.88 for the database Sfull and 0.83
for the database S30. Certainly, methods trained from
the nrdb90 database are expected to build more accu-
rate models and be more effective in annotating remote
homologous proteins. However, the computation time
of methods that adopt semi-supervised training depends
on size of the unlabeled database. Therefore, PSI-
BLAST run on this configuration is computational time
consuming. In conclusion, when supervised training
strategy is employed ILP-SVM methods obtain better or
comparable performance than its competitors.
In order to provide an example of the biological inter-

pretation of the logical rules constructed by WARMR,

we show in Table 1 some rules which have been learned
on members of the “Glucocorticoid receptor-like (DNA-
binding domain)” superfamily. Rules R1, R2 and R3 were
learned from conserved amino acid positions (Alncons)
and R6 from conserved physico-chemical positions
(Alnpc), see Figure 2, while rules R4 and R5 were learned
from sequential properties. These rules represent only
the conserved properties of “Glucocorticoid receptor-
like (DNA-binding domain)” superfamily members, that
is, these rules catched essential features identifying the
superfamily members. This was possible by using first-
order logic predicates to represent the properties of
each superfamily member, and by applying ILP in order
to filter the essential features.

Conclusions
We have combined ILP and propositional models for
improving the accuracy of remote homology detection
methods. Our approach can be segmented into three
parts. First, training sequences are represented through
first-order logic predicates. Similar to [31,32,35], we
have used a representation based on sequence proper-
ties. Additionally, we introduced a novel representation
based on conserved amino acid positions in protein
alignments. Also, we related the logical representation
based on sequential properties with our logical represen-
tation based on conserved positions creating a new
representation for conserved physico-chemical positions
in a MSA. Second, we executed WARMR, an ILP sys-
tem, in order to find only the most frequent patterns in
our training set. Third, the logical rules learned in the
previous stage were converted in binary attributes for
training propositional models. Here, we applied decision
trees and the widely used support vector machine as
propositional methods.
Our methodology is partly similar to the study devel-

oped in [31,32]. However, we proposed a novel logical
sequence representation based on conserved positions in
MSA; we combined this representation with the logical
representation based on sequence properties only, pro-
posed in [31,32,35]; we applied SVMs rather than DTs.
We showed that the prediction performance of our
method, that uses logical representation of alignment
information, is better than the prediction performance
of our models trained only on the sequential representa-
tion. Also, the combined representations improved the
performance of ILP-DT models in any sequence identity
range and the performance of ILP-SVM for the original
database. We carried out comparisons among the mod-
els proposed here with models based on SVM (SVM-
Ngram-LSA and SVM-LA), a model closer to the model
proposed in [31,32], that is, ILP-SVM-Seq, HMMer-3.0
and PSI-BLAST. Our experiments showed that for the
same data set, ILP-SVM models achieves a superior or a

Table 4 Rank-sum test p-values for curves of Figure 3

Sfull

SVM-
LA

SVM-Ngram-
LSA

PSI-
BLAST

HMMer-
3.0

ILP-SVM-Seq-Alncons-
Alnps

0.93 4.93e-05 2.55e-07 5.63e-07

ILP-DT-Seq-Alncons-
Alnps

7.27e-06 2.23e-04 0.17 5.44e-07

S30

ILP-SVM-Seq-Alncons-
Alnps

0.07 0.05 3.85e-05 1.33e-06

ILP-DT-Seq-Alncons-
Alnps

1.44e-05 0.015 0.41 1.2e-05

We consider a result with p ≤ 0.05 to be significant.
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comparable performance for any sequence identity
range. In particular, our method produces a human-
understandable output that can provide insights about
conserved features of protein families.
We can conclude that the first-order logic language is

suitable to represent conserved protein properties, and
that from this representation, an ILP system can learn
the essential rules that discriminate between homolo-
gous and non-homologous proteins. Our methodology
supports the intuition that proteins with remote evolu-
tionary relationship have suffered several mutational
events, and that only essential amino acids and their
physico-chemical properties are kept in evolved
sequences. Thus, computational methods that explore
only the conserved positions are more suitable to the
remote homology detection problem than the methods
that explore all amino acids within sequences.
We have confirmed through this study that conserved

alignment positions play an important role in recogniz-
ing remote homologous proteins contrary to sequential
properties extracted from unaligned sequences. We
highlight that sequential properties can be useful for
helping to identify remote homologous proteins, how-
ever, when the sequence identity is smaller than 30%,
this information might become noise and worsens the
performance of methods, as we observed for ILP-SVM-
Seq-Alncons.
Another advantage of our methodology is the simpli-

city to include additional sequence properties. For this
we can create a new predicate that represents the prop-
erty and no modification of the algorithm is necessary.
In this study, we used only properties that can be
extracted directly from sequences or from conserved
alignment positions. We considered a limited number of
amino acid physico-chemical properties (only 16), since
our logic sequential representation is based on previous
ones [31,32]. However, the Amino Acid Index Database
[39] has defined amino acid numerical indices for more
than 500 different kinds of physico-chemical properties.
Some methods used these indices to train SVM and
achieved a good performance [26]. Thus, we intend to
create a logic sequential representation that takes into
account properties of the Acid Index Database. Other
points that we would like to explore are: the presence of
short hydrophobic blocks in homologous proteins, as
well as, structurally conserved amino acids [9], and
functional amino acids, that is, active and binding sites.
Moreover, we would like to replace WARMR with
MineSeqLog [40]. MineSeqLog is an extension of
WARMR that works on sequences where each sequence
is an ordered list of ground predicates. This approach
seems to be more suitable to deal with protein
sequences, since the amino acid order is taken into
account. PSI-BLAST performs better when run on

nrdb90 with 20 iterations, and the use of PSI-BLAST
output, as done in [24], to train our models provides
another path to be explored.

Methods
Here, we present our approach in detail. First, we
describe the benchmark used for performing our experi-
ments. Second, we present the first-order logical repre-
sentations for protein sequences, this step is essential
for using ILP systems. We present three kinds of logical
representations. The first, named sequential, is based on
properties coming directly from sequences. This repre-
sentation being already proposed in previous works
[31,32,35]. The second, named alignment, is based on
conserved amino acid positions in a MSA. As the third
representation, we related the first two representations
creating a new one that takes into account conserved
physico-chemical positions in a MSA. To the best of
our knowledge the second and the third logical repre-
sentations have been proposed here for the first time.
Third, we present WARMR, the ILP system used here
to learn logical rules, and explain how these rules are
converted into binary attributes to train propositional
models. Fourth, we describe the methodology used to
assess and compare different methods. Finally, we dis-
cuss parameter settings and tools used in this work.

Dataset description
In order to evaluate our methodology we used a com-
mon superfamily benchmark, that is SCOP database
[41]. SCOP is a reference dataset for evaluating the per-
formance of remote homology detection methods
[9,16,21,22,24]. SCOP classifies all protein domains of
known structure into a hierarchy with four levels: class,
fold, superfamily, and family. In our study, we work at
the superfamily level: it groups families for which a
common evolutionary origin is not easily deduced from
sequence identity, but rather from an analysis of struc-
tural and functional features. To provide a good com-
parability with previous approaches, we used the same
database version used in [12,14,16,21,22,24]. It contains
54 families and 4352 proteins selected from SCOP ver-
sion 1.53. All protein sequences were extracted from the
Astral database [42] and all pairwise alignments have
E-value no greater than 10-25.
We adopted the leave-one-family-out experimental

methodology, as used in previous works. Thus, the
sequences of each SCOP family are taken as positive
test samples, and the proteins outside the family but
within the same superfamily are taken as positive train-
ing samples. Negative samples are selected from outside
of the superfamily and are separated into training and
test sets. Previous works have considered random sam-
ples by splitting the remaining SCOP database (that is,
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SCOP minus the positive dataset) into training and test
respecting the same ratio as the positive samples. This
strategy produces unbalanced datasets: negative
instances far outnumber the positive instances. For
example, for the family test set “Nuclear receptor” in
the “Glucocorticoid receptor-like (DNA-binding
domain)” superfamily, there are 20 positive training
sequences and 3204 negative training sequences. See the
complete list with the distribution of positive and nega-
tive samples in Additional File 1 Table S1. If an unba-
lanced dataset is used to train a classifier, this latter will
tend to predict that most of the incoming data belong
to the majority class, that is the negative class. As a
result, it would present poor predictive accuracy over
the minority class, that is the positive one. To the best
of our knowledge, previous works do not use a perfor-
mance measure that evaluates the predictive accuracy
over the minority class. They have used the area under
the ROC curve (AUC-ROC) as performance measure,
and AUC-ROC can present an excessively optimistic
view on the algorithm performance when there is a
large difference between positive and negative sample
distributions [43]. We observed this behavior in Addi-
tional File 1 Table S2, where the AUC-ROC presents
higher values than the area under the Precision-Recall
curve (AUC-PR). Moreover, methods as “ILP-SVM-Seq”
and “ILP-SVM-Alncons“, appear to be comparable in
ROC Space, while in PR space, “ILP-SVM-Alncons“ has a
clear advantage over “ILP-SVM-Seq”.
Our analysis of protein sequence-identity in this unba-

lanced database, see Additional File 1 Figure S1-A,
shows that around 46% of protein pairs have at least
30% of sequence-identity. Also, around 25% have
sequence-identity between 90 and 100%. Moreover, we
observed a bias in the composition of negative and posi-
tive classes: pairs of sequences in the negative set have,
on average, higher sequence-identity than pairs of
sequences in the positive set. This average is 22% for
positive sequences, against 57% for negative sequences,
see Additional File 1 Figure S1-B. We argue that this
unbalanced database is not appropriate to evaluate the
performance of remote homology detection methods,
mainly because negative sequences are not into the Twi-
light Zone. Thus, we adopted a new experimental meth-
odology to train and to test discriminative methods
applied to the remote homology detection problem. The
positive samples were taken as before, that is, within a
SCOP superfamily. However, several negative samples
were constructed by randomly selecting sets of
sequences from the remaining SCOP database of size
that is comparable to the size of the positive set. We
constructed as many negative samples as it is needed to
statistically cover the remaining SCOP database. For
this, let Tr+ and Te+ be sizes of positive training and

positive test sets, respectively. Also, let D* = D (Tr+ +
Te+) be the size of the remaining SCOP database, where
D is the total number of sequences in the SCOP data-
base. Thus, we repeated the random selection of nega-
tive samples T times, where T is given by equation 1.

T =
⌊
D∗/min

(
Tr+, Te+)⌋ , (1)

In order to examine more systematically the perfor-
mance of remote homology detection methods, we pro-
duced a database of sequences from the original one
getting only sequences with identity smaller than 30%. It
is named S30 and the original database Sfull. S30 contains
25 families and 2362 sequences.

Logical representations
In order to use ILP systems, such as WARMR, first we
have to represent each training and test examples as
relational data. Good ILP overviews, including first-
order logic concepts, can be found in [28,44,45]; here,
we describe them briefly. We created three kinds of pre-
dicates, the first, called sequential predicates, represent
each protein in terms of its physico-chemical properties
and the frequency of their amino acids (taken alone or
in pairs). The second, called alignment predicates, are
based on conserved amino acid positions within a pro-
tein MSA. Additionally, we related both predicates to
represent conserved physico-chemical positions within a
protein MSA. The next sections explain them in detail.
First-order logic concepts
First-order logic, also called predicate logic, represents
logic sentences in a more sophisticate way than the pro-
positional logic. For example, consider the following
sentences: “the amino acid i is hydrophobic” and “the
amino acid m is hydrophobic”. In propositional logic
these sentences are treated as two unrelated proposi-
tions. On the other hand, the first-order logic can
related them creating the predicate hydrophobic(X),
which asserts that the amino acid represented by the
variable X is hydrophobic. First-order logic allows us to
define relation about properties that are shared among
objects. For example, we can observed from Table 5
that a tiny amino acid is also a small amino acid. Then,
we can denote this relation by using the logical rule Ra:
∀(X)(tiny(X) ® small(X)), where the symbol ® is a logic
connective used to denote a conditional (if/then) state-
ment, and the symbol ∀ ("for all”) is the universal quan-
tifier symbol. The other quantifier is the ∃ ("there
exists”) called existential quantifier. The part of Ra

before connective ® is called antecedent and the part
after is called consequent. The standard logic connec-
tives are ⋀ for conjunction, ⋁ for dis-junction, ® for
implication, ↔ for bi-conditional and ¬ for negation.
Next, we define some syntax rules for the first-order
logic language. A variable (X, Y and W in Table 5) is a
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term. If t1, ..., tn are terms and f is a function symbol
then f(t1, ..., tn) is a term, where n is arity (number of
arguments) of the function, and n ≥ 0. A function of
zero arity (n = 0) is a constant (c, k, cg, 24, 27, ... in

Table 1). If t1, ..., tn are terms and p is a (n ≥ 0) predi-
cate symbol then p(t1, ..., tn) is an atomic formula, also
called here predicate. More complex formulae can be
built using the logical connectives and quantifiers.
A substitution s = X/i is an assignment of term i to vari-
able X. For example, when s is applied to the predicate
hydrophobic(X) an instantiation of the predicate hydro-
phobic(i) is created. A ground predicate is a predicate
without any variables.
Sequential predicates
The sequential predicates are based on properties that
can be calculated directly from sequences. These include
groups of amino acids that share some physico-chemical
properties as done in [35], see Table 5 from property 1
to 16. Additionally, we created predicates to represent
the distribution for singles and pairs of residues as done
in [29-32], showed in Table 5 properties 17 and 18. All
predicates used in this study are listed in Table 5. The
variable Y can assume only numerical values, however
ILP systems such as WARMR are not very suitable for
handing with numerical values. To overcome this limita-
tion we map each percentage value Y to ⌊Y/10⌋ + 1, as
done in [31,32].
Alignment predicates
Additionally, we created a predicate based on conserved
positions in a protein MSA. The predicate that repre-
sents each alignment position is col(X, W, Z), where X is
the sequence identifier, Z is the alignment position
where the amino acid W belongs. To illustrate how
these predicates are created, see Figure 4. The sequences
in the positive training set (S+) are aligned and a ground
predicate is created for each amino acid in each align-
ment position. For example, the ground predicate col(s1,

Table 5 Sequential Predicates

Property/amino acid set Predicate

1- small {A,G,S,T} small(X,Y)

2- polar {D,E,H,K,N,Q,R,S,T,W,Y} polar(X,Y)

3- polar uncharged {N,Q} polarUncharged(X,Y)

4- aromatic {F,H,W,Y} aromatic(X,Y)

5- charged {D,E,H,I,K,L,R,V} charged(X,Y)

6- positively charged {H,K,R} positivelyCharged(X,Y)

7- negatively charged {D,E} negativelyCharged(X,Y)

8- tiny {A,G} tiny(X,Y)

9- bulky {F,H,R,W,Y} bulky(X,Y)

10- aliphatic {I,L,V} aliphatic(X,Y)

11- hydrophobic {I,L,M,V} hydrophobic(X,Y)

12- hydrophilic basic {K,R,H} hydrophilicBasic(X,Y)

13- hydrophilic acidic {E,D,N,Q} hydrophilicAcidic(X,Y)

14- neutral weakly hydrophobic {A,G,P,S,
T}

neutralWeakHydrophobic(X,
Y)

15- hydrophobic aromatic {F,W,Y} hydrophobicAromatic(X,Y)

16- acidic {E,D} acidic(X,Y)

17- amino acid ratio aminoacidRatio(X,W,Y)

18- amino acid pair ratio aminoacidPairRatio(X,W,Y)

For each predicate like property(X, Y) numbered from 1 to 18, X is the
sequence identifier, Y is the percentage of amino acids with some physico-
chemical property. For the predicate aminoacidRatio(X, W, Y), X is the
sequence identifier, W is an amino acid, and Y is the percentage of amino
acid W within sequence X. For the predicate aminoacidPairRatio(X, W, Y), X
and Y are defined as before, and W is a pair of amino acids.

v s e g

v t c g

1 2 3 4

s1

s2

Alignment positions

Alignment of positive 
training sequences

Logical atoms for s1
col(s1, v, 1), col(s1, s, 2),

Logical atoms for s2 
col(s2, v, 1), col(s2, t, 2)
col(s2, c, 3), col(s2, g, 4)col(s1, e, 3), col(s1, g, 4)

Positive training 
Sequences (S+)

Figure 4 Creating ground predicates from alignment positions. A ground predicate is defined for each alignment position. For instance, the
ground predicate col(s1, v, 1) means that the sequence s1 has the amino acid v in the first alignment position.
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v, 1) means that the sequence s1 has the amino acid v in
the first alignment position.
The creation of these ground predicates for the

sequences of the positive training set is a trivial task,
since they can be extracted directly from the MSA.
However, how can we create ground predicates for the
query sequences? We aim to find out how a query
sequence is aligned in respect to the positive training
alignment (homologous proteins). If the query sequence
is closely matched to the positive training alignment,
probably this suggests much higher conservation than
for a query sequence weakly matched. Therefore, we
must x the positive training alignment and align a query
sequence against it, that is, we aligned each query
sequence with the consensus sequence of the positive
training alignment. To do this, we built a pHMM from
the positive training alignment, and used it for matching
the query sequences.
A pHMM represents an alignment of homologous

sequences by creating a sequence of nodes, where each
node is composed of three states: match (M), insert (I)
and delete (D), for example, {M1, I1, D1} in architecture
of Figure 5. Match states model conserved regions in
the alignment, and insert and delete states model indel
regions. During the training phase each alignment posi-
tion is mapped to a node, and parameters of the model
are estimated. Next, inference algorithms like Viterbi are
used to match a query sequence against the model.
The Viterbi algorithm also gives us the pHMM’s state

sequence that better has recognized the query sequence,
that is, it maps each amino acid in the query sequence
to a match (M), insert (I) or delete (D) states. Since,
each alignment position corresponds to a pHMM state,
we can determine how the query sequence was aligned
in respect to the positive training alignment. The
schema of Figure 5 shows how to create ground predi-
cates based on alignment positions for negative training
sequences, and for positive and negative test sequences.
Relating sequential and alignment predicates: conserved
physico-chemical position in a MSA
Through first-order logic, new knowledge statements
can be extracted from data relations. For example,
observe the position 34 in the alignment shown in
Figure 2. All amino acids in this position are small (see
Table 5) thus, we can learn a logical rule that relates
position 34 to small amino acids (see R6 in Table 1).
This rule allows us to introduce the new concept of
“conserved physico-chemical position” in a MSA.

Construction of propositional classifiers
In our approach we aim to build models that will be
able to explore the most frequent patterns in the homo-
logous protein datasets. As a first step we run WARMR
program to learn these most frequent patterns on the

positive training set. The WARMR algorithm discovers
frequent patterns on databases applying an extended
version of APRIORI algorithm [46]. WARMR learns
association rules over multiple relations in relational
datasets. Basically, WARMR algorithm works as a filter
on all possible rules selecting, for example, those rules
with confidence above a threshold. The confidence of an
association rule is a percentage value that shows how
frequently the rule occurs. In other words, the confi-
dence value indicates how reliable this rule is. As a sec-
ond step (propositionalization step), we converted each
rule learned by WARMR into a binary attribute (feature)
for the training of propositional learning methods. An
attribute ai has value 1 for a specific protein sequence if
the corresponding query ri succeeds, and 0 if the query
fails. Finally, we trained two propositional models from
these attributes, DTs and SVMs.

Comparison between different methods
To statistically analyse remote homology detection
methods, we run them several times over the same

Figure 5 Using pHMMs to create ground predicates for
alignment positions. A) First, the positive training sequences are
aligned. B) Second, a pHMM is built from this alignment. Each query
sequence (negative training sequences, and positive and negative
test sequences) is matched by pHMM producing the Viterbi output
that shows the correspondence between each amino acid in the
query sequence and pHMM states (match (M), insert (I) or delete
(D)). C) Finally, we know the mapping between alignment positions
and pHMM states, thus we create, for each query sequence, ground
predicates in a similar way to Figure 4.
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positive set, but over several negative sets. In each run
the number of positive samples is equal to the number
of negative samples. Since datasets are now balanced
curves in the AUC-PR space are similar to curves in the
AUC-ROC space [43]. Therefore, we just show AUC-
ROC as the classification accuracy measure. For each
protein family, the AUC-ROC score was averaged over
T runs (see equation 1), and the overall performance of
each method was averaged over all families.

Parameter settings and tools used
We used CLUSTALW [47] version 2.0.10 in order to
provide the positive training alignments. The CLUS-
TALW parameters were kept at default. We used
HMMer [48] version 2.3.2 (default parameters) to build
the pHMMs from positive training alignments. These
pHMMs were used to score query sequences and their
output was used to construct logical representations
based on alignment positions. In order to learn logical
rules we used WARMR. The confidence parameter (c%)
of the WARMR filters the most frequent patterns, that
is, only those with frequency above c% are considered.
We tested several threshold values for c% and the best
results were obtained with 25% for logical representa-
tions based on sequential properties and based on con-
served amino acid positions, and 50% for the
representation based on conserved physico-chemical
positions.
Next, the rules generated by these representations

were converted into binary attributes for training propo-
sitional models. We have created two kinds of proposi-
tional models: DT and SVM. For SVM we have used
the publicly available Gist SVM package version 2.1.1
http://svm.sdsc.edu. We used radius basis function as
kernel function and other parameters by default, and
DT models were built using the WEKA software
(default parameters) available in http://www.cs.waikato.
ac.nz/~ml/weka/index_downloading.html. In order to
compare our approach with state of the art methods, we
consider SVM-LA [16], SVM-Ngram-LSA [22], PSI-
BLAST and HMMer-3.0. SVM-LA is a complex method
kernel that defines a similarity measure between protein
pairs by summing up scores obtained from their local
alignment. The SVM-LA parameters were kept as
default. SVM-Ngram-LSA extracts N-gram from protein
sequences and uses them to train a SVM model. To
consider only the most significant N-grams it applies
Latent Semantic Analysis (LSA), which is a feature
extraction technique from natural language processing.
We downloaded SVM-Ngram-LSA from http://www.
insun.hit.edu.cn/news/view.asp?id=413 and used it with
parameters described in [22]. HMMer-3.0 was trained
from MSAs produced by CLUSTALW, and all para-
meters were kept as default. PSI-BLAST was ran on two

configurations: in the first, we used the same dataset
used to train the other methods and 4 iterations; in the
second we used nrdb90 and 20 iterations. We also con-
sidered to compare to Top-N-gram [24], a recent work
that applies SVM to the remote homology detection
problem. However, the program was unavailable. We
used chi-square as a feature selection approach, and we
set the parameter δ to 0.05 and 0.25 values, as done in
[49], δ specifies the confidence level for the chi-square
test selection. We carried out rank-sum test [38] to
compare the curves showed in Figure 3.

Availability and Requirements
The software is available upon request. It was imple-
mented in JAVA and perl and works on linux plataform.
WARMR and GIST are required to run our system.

Additional material

Additional file 1: Analysis and characteristics of original unbalanced
database. We carried out an analysis on the original dataset, that is, the
database communally used to evaluate the performance of the state of
art methods.
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