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Abstract

Bacteria spend most of their lifetime in non-growing states which allow them to survive extended periods of stress and
starvation. When environments improve, they must quickly resume growth to maximize their share of limited nutrients.
Cells with higher stress resistance often survive longer stress durations at the cost of needing more time to resume growth,
a strong disadvantage in competitive environments. Here we analyze the basis of optimal strategies that microorganisms
can use to cope with this tradeoff. We explicitly show that the prototypical inverse relation between stress resistance and
growth rate can explain much of the different types of behavior observed in stressed microbial populations. Using analytical
mathematical methods, we determine the environmental parameters that decide whether cells should remain vegetative
upon stress exposure, downregulate their metabolism to an intermediate optimum level, or become dormant. We find that
cell-cell variability, or intercellular noise, is consistently beneficial in the presence of extreme environmental fluctuations,
and that it provides an efficient population-level mechanism for adaption in a deteriorating environment. Our results reveal
key novel aspects of responsive phenotype switching and its role as an adaptive strategy in changing environments.
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Introduction

In their natural habitats unicellular organisms are frequently

exposed to stress or starvation and only rarely encounter

conditions that allow them to grow. In a competitive environment

where growth and stress periods alternate, the species with the

largest time-averaged growth rate will generally outcompete the

others. To achieve this goal, unicellular populations need strategies

that both enhance survival during stress and allow rapid

resumption of growth as soon as the conditions improve.

Controlling these strategies is important for the improvement of

biotechnological processing and in the food industry, where

microbial survival and regrowth is the main cause of food spoilage

[1,2]. Also the latency times of severe infectious diseases such as

cisteriosis, listeriosis and tuberculosis depend on the survival and

recovery of microbes, e.g., inside the macrophages. A better

understanding of microbial life-strategies may therefore also

contribute to the improvement of antibiotic treatments [2–4].

The question how a population can maximize its growth in a

changing environment is a classic problem in microbiology. Cells

can exist in different phenotypes, where each phenotype provides

a growth advantage in a particular environment, but a

disadvantage in other environments (compared to other pheno-

types). Cells can increase long-term fitness by switching between

the phenotypes. Previous works have studied the benefits of

phenotypic diversity as well as of responsive and stochastic

switching between phenotypes [5–12]. A central assumption of

these works is that the magnitude of the switching rates for a given

phenotype can be tuned free from any constraints, and that the

transition between phenotypes is instantaneous. Many phenotype

transitions, however, take significant time because they involve

profound metabolic reorganization and morphological changes,

e.g. for starvation survival [13]. A classic example is returning to a

fast-growth vegetative state from a non-growing stress-resistant

state, which has been observed to take longer the higher the stress

resistance [1,14–19]. Here, we envisage a scenario that explicitly

accounts for the tradeoff of higher phenotypic fitness in one

environment at the cost of longer transition times between

phenotypes.

Adopting a stress resistant phenotype frequently involves growth

arrest and the adoption of a metabolically downregulated state

[20–23]. Maintaining functional growth machinery, such as

ribosomes, represents the highest energetic expenditure for

stressed cells, which therefore divert their resources towards

survival rather than growth when conditions deteriorate, see Fig. 1.

Approximately 80% of bacterial biomass resides in such reduced

activity states [24] and mutants deficient of such responses rapidly

die when exposed to stress [16,25–27]. Downregulated states are

thus tremendously important and form an integral part of microbial

life [22,23].

In many species stress-induced and growth-induced pathways are

antagonists, cf. Fig. 1 [14,28], hence stress resistance is inversely

correlated to growth [18,19]. Therefore, to restart growth after

stress, cells must first re-activate the growth machinery. For starved
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E.Coli, this process can involve a massive production of ribosomes,

from n&500 to n&25000, and causes a significant growth

retardation with lag-times of up to 20 h [29]. Throughout many

species and stressors, this lag time increases with the stress resistance.

More specifically, cells able to resume growth quickly (cells with

short growth lags) do not survive extended periods of stress, whereas

cells surviving prolonged stress periods have significantly longer

growth lags. Some examples are E.Coli, L. monocytogenes, M. vibrio and

S. pombe, after depletion of glucose or nitrogen, exposure to heat

stress, freezing, and acidic and salt stress for variable durations.

[1,2,15,17].

Thus, when exposed to stress, cells face a tradeoff problem

between longer survival and longer growth lags [14,30]. Highly

responsive, most individuals may lose viability by the time nutrient

appears. Highly downregulated and resistant, they might resume

growth too late, when nutrient has been washed away already or

consumed by a competing species [20]. Indeed, long-term

evolution experiments have revealed strong selective pressures

towards shorter lag phases [30]. The resulting tradeoff is

epitomized in the first postulate of microbial ecology: ‘‘If you

are asleep you won’t get dinner’’ [31].

In the present article we focus on how cells tackle this tradeoff to

select optimal strategies for coping with a changing environment.

Can populations benefit from delaying a stress response? What

determines whether dormancy is a good strategy or not? We

consider both homogeneous and heterogeneous populations,

taking into account the effects of continuous cell-cell variability,

a hallmark of microbial populations under stress. Addressing these

questions is important, e.g., for biotechnological processing and

treatment of infectious diseases as mentioned above, yet

experimental work that can answer them is still sparse [4,32].

We think our article will stimulate more experimental work: It

makes verifiable predictions on the behavior of microbial

populations under variable conditions (summarized in the

discussion section) and establishes a framework that can guide

further experimental investigations. In the discussion section we

propose experimental procedures which can verify our predictions.

Materials and Methods

To understand the implications of the stress-resistance vs.

growth-lag tradeoff we propose a model based on the death rates

and growth lags of stress resistant and vegetative (active) states.

Upon stress exposure cells can enter a stress-protected state,

characterized by a reduced death rate DvDhi compared to the

death rate of the vegetative state Dhi (or of cells unable to respond

adequately to stress [16,25–27]). Many species have a short term

and a long term stress response which are activated over different

time scales [4,13,25,27,28]. For simplicity we assume that both

provide the same stress resistance, i.e., D is independent of time.

When stress ceases at time Ts, populations start redirecting their

resources towards growth. In a growth curve N(t) this reactivation

appears as a lag phase during which the growth rate increases in

time until it reaches a maximal specific growth rate G,

characterizing the exponential phase. This transition can be

modeled by a growth rate function m(t)~G(1{exp({t=L)) with

a lag time Lw0. In Fig. 2 we show that this function reproduces

experimental growth curves taken from [33,34], with fitting

parameters L and G. The steady state growth rate G has been

shown to be independent of the time L needed to resume growth

[29]. We use this equation as a model for recovery and thus can

write the growth rate in stress and growth phases of durations Ts

and Tg, respectively

m(t)~
{D tv Ts

G 1{e{(t{Ts)=L
� �

Ts ƒ t v Ts z Tg :

(
ð1Þ

The population size at time t is then obtained from

N(t)~N0exp(m(t)t) ð2Þ

with the time-averaged growth rate m(t)~(1=t)
Ð t

0
m(t
0
)dt
0
. After L

complete cycles of stress exposure and growth (durations Ts(i) and

Tg(i)), and a total time t~
PL

i~1 Ts(i)zTg(i) the time-averaged

growth rate m(t) becomes

m(t)~
1

t

XL

i~1

{DTs(i)zG(Tg(i){Lm(L,Tg(i)))
� �

: ð3Þ

Here m(L,Tg) is the growth rate at the end of a growth phase

Tg. We quantify the tendency of a population to induce stress

resistance against the ability to quickly resume growth by the

Figure 1. Antagonism of stress-resistance and growth. Growth
signals typically repress stress-activated genes and pathways while
upregulating growth machinery and growth pathways. Most stress
response activators, on the other hand, such as the UspA and MprAB
proteins and the SAPK pathway act as growth inhibitors. In most
eucaryotes and procaryotes high stress resistance and fast growth are
therefore mutually exclusive, and meanwhile cells with high stress-
resistance can endure longer stress durations they also have longer
reactivation times (growth lags) compared to cells with lower stress
resistance (which survive short stress exposure only). We assume that
cells which remain vegetative upon stress exposure and do not adapt
to stress die at a maximal rate Dhi , but can quickly resume growth after
a short reactivation lag Lmin once environmental conditions improve.
By downregulating the metabolic activity and entering a stress resistant
state, cells can reduce the death rate D by a factor a~D=Dhiƒ1, which
on the other hand requires them to go through a longer reactivation
lag L(a)wLmin when the environment improves. Thus, aƒ1 quantifies
the tradeoff between stress resistance and growth lag and measures
the cellular downregulation during stress exposure.
doi:10.1371/journal.pone.0018622.g001
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relative reduction of the death rate in the protected state, and

define the ‘‘activity parameter’’ a~D=Dhiƒ1 (cf. Fig. 1).

The exact dependence of the growth lag on the death rate has

not yet been quantified in detail. It is known, however, that the lag

time increases with the stress resistance [1,2,15,17], i.e., with 1=a
in our model. Expanding this relationship in powers of 1=a around

the vegetative state a~1 with L(a~1)~Lmin up to linear order,

we obtain a first order approximation and can write

L(a)~Lminz(1{a)=a: ð4Þ

Hence, the growth lag has a minimum Lmin for populations

which remain in the vegetative state upon stress exposure

(a~1,D~Dhi ), and increases for populations which induce a

stress protected state and have higher stress resistance

(av1,DvDhi). We thus quantify the level of downregulation

upon stress exposure by a single parameter a.

Results

Costs and benefits of downregulation
To study the tradeoffs when adopting stress-protected states we

first consider a single cycle of a stress and a regrowth phase of

durations (Ts,Tg) with two homogeneous populations. Figure 3A

shows their momentary growth rates and population sizes as

obtained from Eqs. 1 and 2. One population (dashed red

line) downregulates upon stress exposure into a protected state

with typical parameters D~0:01=h and L~10h (top panel)

[9,16,17,25,26,33,35]. We also consider a population which does

not downregulate to avoid the growth lag after stress (full green line)

and therefore remains prone to stress. For this strain we assume a

death rate Dhi~0:1=h as is the case for starvation-response deficient

E.Coli, Vibrio S14, and Salmonella typhimurium mutants, and a lag phase

Lmin~1h [9,16,25,26]. Most cells of the downregulated strain

survive the stress period, whereas a vast majority of the vegetative

strain dies (Fig. 3A bottom panel). The survivors of the vegetative

strain, however, can quickly resume growth at a high rate (Fig. 3A

top panel) as they remained active and maintained an intact growth

machinery during stress. For the exposure times considered here

(Ts~40 h, Tg~20 h) the population that remained vegetative has a

higher time-averaged growth rate and outgrows the one which

adopted a protected state, despite a ten-fold lower number of stress-

surviving cells (note the logarithmic scale).

The population size ratio w(Ts,Tg)~Nv(Ts,Tg)=Nd (Ts,Tg) of

the vegetative population Nv and of the downregulated population

Nd is thus greater than one at the end of the cycle. After L cycles

in a time periodic environment of durations (Ts,Tg) the population

size ratio becomes w(L,Ts,Tg)~w(Ts,Tg)L, hence differences

within one cycle increase exponentially with the number of cycles.

To determine the more competitive strategy it is therefore

sufficient to consider one cycle only.

To understand which environments favor which strategy

(maintaining ability to grow vs. maintaining viability) we calculate

the population size ratio w(Ts,Tg) for environmental cycles of

different durations (Ts,Tg ), using Eqs. 3 and 2. Figure 3B shows in

light green the regime ww1 in which the remaining-active strategy

is more competitive than the stress-resistant strategy. The black

line shows the phase boundary and indicates the maximal stress

duration bTsTs(Tg) for which the remaining-active strain can outgrow

the downregulated one. It is obtained by solving the equation

w(Ts,Tg)~1 which yields

bTsTs(Tg)~
Lm(L,Tg){Lminm(Lmin,Tg)

Dhi{D
: ð5Þ

According to Fig. 3B two conditions must be fulfilled for the

remaining vegetative strategy to be more competitive: i) the stress

duration Ts must be sufficiently short such that the difference in

stress surviving cells Nd (Ts){Nv(Ts) remains small, and ii) the

growth period Tg must be sufficiently long such that the active

strain can reestablish a large population before the protected strain

resumes growth. At very long Tg both strains have enough time to

reach the exponential growth phase and eventually grow at the

same exponential rate G. Hence the fraction w and the phase

boundary become independent of Tg. There exists also a maximal

stress duration above which the stress-protected population always

resumes growth before the vegetative strain reestablishes a

comparable population size.

Figure 2. Fit of the growth rate model to experimental growth curves. Values of the fitting parameters L (growth lag) and G (steady state
growth rate in exponential phase) are given in the figures. (A) Batch culture growth kinetics of a mixed bacterial community taken from a biomass
recycle reactor after 8 days of starvation. Data taken from Fig. 4B in [33]. (B) Growth curve of Brochotrix Thermosphacta after plating on TSA Medium.
Data taken from Fig. 1 in [34].
doi:10.1371/journal.pone.0018622.g002
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We thus predict that in environments which are characterized

by frequent but short stress periods, a population that remains

active and eventually delays its stress response can have significant

growth benefits compared to populations which rapidly adopt a

protected state upon stress exposure.

Net-growth requires a minimal level of downregulation
during stress

As we have shown in the previous section, populations which

remain in the vegetative state during stress can sometimes outgrow

stress-resistant competitors. On the other hand it is clear that such

populations will go extinct under sustained stress conditions,

i.e., they will have a negative time-averaged growth rate

m(TszTg)v0. The latter is a measure of fitness in a changing

environment [5,9–11] and depends on the death rate during stress

and on the lag time during recovery, see Eq. 3, and thereby on the

level of downregulation according to Eq. 4. It is likely that

unicellular stress response systems have been evolutionary tuned to

ensure survival during stress. Thus, we envisage the level of

downregulation a~D=Dhi as a variable quantity with 0vaƒ1,

see Fig. 1. Indeed, individual cells within an isogenic population

can have very different survival and growth lags [1,2,15–17,29].

How much must a population downregulate during stress to not go

extinct during the typical cycles of duration (TszTg)? In Fig. 4 we

Figure 3. Tradeoffs when adopting stress-protected states. (A) Growth rate m(t) and population size N(t) under stress (duration Ts) and
subsequent regrowth. A population that maintains the active state and remains vegetative upon stress exposure (a~1, full green line) dies at the
maximal rate Dhi (top panel) and can resume the maximal growth rate G after a minimal growth lag Lmin when the environment improves at t~Ts .
Despite resuming growth with a ten fold lower number of stress-surviving cells, it can outgrow a second population which adopted a stress-
protected state (a~0:1, red dashed line) that provides enhanced stress survival DvDhi but requires a significantly longer lag time LwLmin. (B)
Environmental regimes of stress and growth durations (Ts,Tg) where the stress-resistant (red) or the remaining-active population (green) are more
competitive, separated by the black phase boundary bTsTs(Tg). When the typical environment is characterized by frequent but short stress periods,
populations can benefit from remaining vegetative upon stress, delaying the protected state, and thereby avoiding growth-retardation after stress.
However, the active population also needs a minimal growth duration to reestablish the part of the population that was lost during stress, note the
curved phase boundary. Above a maximal stress duration, given by the phase boundary, the loss in viable cells of the vegetative population during
stress becomes too large; it cannot reestablish the initial population size before the stress-protected population resumes growth.
doi:10.1371/journal.pone.0018622.g003

Figure 4. Time-averaged growth rates m(a,TszTg) as a function of the downregulation levels 0vaƒ1 for different environmental
cycles of durations (Ts,Tg). (A) At short stress durations the survival-benefit of a downregulated state (av1) is smaller than the cost of the growth
lag after stress. Therefore the time-averaged growth rate decreases with the level of downregulation. (B) At intermediate durations (Ts,Tg)
populations which do not sufficiently downregulate (a 1) have a negative time-averaged growth rate and go extinct after several environmental
cycles. Such populations can increase fitness by adopting a state of higher stress resistance, i.e., by further decreasing a. On the other hand, if
populations downregulate too much (a *> 0) they cannot resume growth sufficiently fast and cannot take advantage of the growth environment.
Such populations can enhance their long-term fitness by increasing responsiveness to the improving environment (increasing a, shortening L),
although this results in a lower fitness during stress exposure. (C) At very long stress durations no net growth is possible in the typical environments
(Ts,Tg). Here the growth benefit which could be obtained during the typical growth period Tg , by maintaining the ability to resume growth
throughout the stress environment Ts, is outweighed by the cost of reduced survival during Ts.
doi:10.1371/journal.pone.0018622.g004
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show how the time-averaged growth rate m(a,TszTg) depends on

the level of downregulation a for three different environments

(Ts,Tg). Indeed, positive net growth is not achieved with arbitrary

downregulation levels. Instead, as shown in Fig. 4B a population

that does not downregulate sufficiently during stress (a 1) will

have a negative time averaged growth rate and can only ensure its

survival by further reducing its activity during stress. Thus a

minimal level of downregulation acrit(Ts,Tg) is required to

maintain an overall positive growth rate.

How does the required downregulation level depend on the

environmental conditions? By solving Eq. 3 with m(acrit,Ts,Tg)~0
for acrit using L(a) and D(a) as explained in the model section, we

obtain the downregulation level acrit for which the time-averaged

growth rate is zero, shown in Figure 5A. All states avacrit then

have a positive time-averaged growth rate. According to Figure 5A,

when growth durations are long enough, populations can maintain

a positive net growth rate without adopting a protected state

during stress (acrit~1 indicated in green). In the opposite regime of

very short growth and long stress durations no net growth is

possible (acrit~0 indicated in black). In this regime the cost of

maintaining the ability to resume growth during Tg (a larger death

rate during Ts) is always greater than the growth benefit that can

be obtained during Tg. In the intermediate regime, populations

with awacrit have too little stress resistance and a negative time-

averaged growth rate. These populations will eventually go extinct.

To achieve a positive net growth-rate populations must

sufficiently downregulate such that the death rate during stress

falls below a threshold. We showed that the degree to which stress

resistance must be induced not only depends on the conditions of

the stress environment but also on the durations of the growth

periods.

Optimal downregulation levels during stress
In natural environments populations must not only survive but

rather they must achieve a higher net growth rate than their

competitors which means enhancing survival and resuming growth

faster. As explained previously, the time-averaged growth rate

depends on the death rate during stress and on the growth lag after

stress. An interesting question to ask is whether there exist optimal

induction levels of stress response systems and how these optimal

induction levels depend on the characteristics of the microbial

habitat. It can be seen already from Fig. 4 that long-term fitness

can be maximized by adapting the downregulation level a.

Phrased in the context of our model we thus ask for the optimal

downregulation levels a�(Ts,Tg) and how they depend on the

characteristic environment (Ts,Tg)?

To answer this question we solve for the state a� [ 0,1½ � that

maximizes m(a,TszTg) of Eq. 3, i.e. by finding the zeros of

dm(a,TszTg)=da. The numerical solutions a�(Ts,Tg) are shown

in Fig. 5B and reveal three different regimes of optimality

corresponding to the three panels shown in Fig. 4.

In the regime of short stress durations and long growth times,

the benefit of enhancing survival during stress is always smaller

than the cost of a longer growth lag. Adopting a protected state

upon stress exposure reduces the time-averaged growth rate, see

Fig. 4A. Hence, in this regime the optimal strategy is to remain

vegetative in order to quickly resume growth after a brief stress

period.

In the regime of long stress and short growth periods no net

growth is possible, as explained in the previous section, see also

Fig. 4C. In this regime the optimal strategy is to adopt a dormant

state which provides maximal fitness during stress, even if this

means to not resume growth during Tg where growth is possible in

principle. In this regime net-proliferation is achieved when Tg

fluctuates to longer than typical values.

In the regime of intermediate stress and growth durations

populations must reconcile survival with fast recovery. This is

achieved at intermediate downregulation levels a�, see also Fig. 4B.

In this tradeoff-regime suboptimally adapted populations with

ava� have superior survival during stress, but cannot resume

growth sufficiently fast and eventually miss out part of the growth

period. These populations can increase fitness by increasing

Figure 5. Sufficient and optimal strategies for growth in environments of stress and growth durations (Ts, Tg). (A) To ensure survival
over environmental cycles (Ts,Tg) populations must downregulate their death rate by a factor avacrit during the stress phases. At long growth and
short stress durations a positive time-averaged growth rate can be maintained without adopting a protected state (acrit~1). Here the growth benefit
during Tg exceeds the death cost during Ts for all levels a. For long stress and short growth durations no net growth is possible because the benefits
during growth are outweighed by the costs during the stress phase (acrit:0). (B) Optimal downregulation levels a � (Ts,Tg) that maximize the time-
averaged growth rate m(a,TszTg). For sufficiently short stress durations Ts the survival-benefits of stress-protected states are always outweighed by
the costs of longer growth-lags after stress. In this regime, limited by the black line, populations need not trade off against survival. The optimal
strategy is to remain vegetative upon stress exposure (a �~1). When typical stress durations lay above the black line, populations must reconcile fast
recovery with survival. Populations which do not downregulate sufficiently have too large death rates, and eventually go extinct, whereas
populations that downregulate too much cannot resume growth sufficiently fast. Such populations can increase long term fitness by decreasing
short term fitness, see also Fig. 4B. When the typical growth durations Tg fall below the full white line the optimal strategy is to adopt the state of
highest stress resistance, i.e., dormancy, even if this implies to not resume growth during the typical growth durations Tg . Note that populations with
particular downregulation levels are optimal on a line in parameter space (see dashed white line on which a �~0:25).
doi:10.1371/journal.pone.0018622.g005
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responsiveness a8a�, despite reducing the number of stress-

surviving cells. Populations with awa� have too large death rates

and can increase fitness by increasing survival a:a�, see also

Fig. 4B. For very large growth durations Tg it can be shown that

the optimal activity is given by a � (Ts)&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G=(DhiTs)

p
, i.e. the

optimal stress resistant state becomes independent of Tg only when

Tg is very large; an optimal population that has reached the steady

state growth rate G continues to be optimal as growth times

increase.

A population is optimal not only in one environment (Ts,Tg) but

in a set of environments, indicated by the dashed white line for

a �~0:25 in Fig. 5B. A property which will be important in the

context of cell-cell variability, discussed further below.

The inverse relationship between stress-resistance and growth-

lags predicts the existence of three optimal strategies where cells

would delay their stress response, adopt an intermediate

downregulation level or become dormant. Which strategy provides

the maximal fitness depends on the typical environmental

durations (Ts,Tg). Importantly we found that within the broad

regime of intermediate growth durations, the long-term fitness is

not maximized by maximizing the momentary fitness in each

environment; adopting a highly downregulated state ava� during

stress can only provide a short term survival-advantage but does

not allow cells to resume growth sufficiently fast. The optimal state

during stress exposure therefore also depends on the durations of

the growth environment.

Survival and growth in stochastic environments
Although periodic environments are common in nature, more

generally the environmental durations Ts(i), Tg(i) of cycles

i~1:::L will be random variables. How does this randomness

affect our predictions? According to Eq. 3 the time-averaged

growth rate m(t) up to a time t depends on the death rate and lag

time as well as the durations Ts(i) and Tg(i). After many

environmental cycles L??, however, the time and fluctuation-

averaged growth rate approaches a constant M(D,L), see Fig. 6A.

Using the law of large numbers we can replace the summation in

Eq. 3 by averages to find

M(D,L)~
{DTszGTg{LSm(L,Tg)Tfl

TszTg

ð6Þ

here Sm(L,Tg)Tfl denotes the fluctuation average of m(L,Tg) (the

growth rate reached by the end of the growth phase) over Tg; the

fluctuation averages of Tg and Ts are equal to their time-averages

Tg, Ts. Hence, for Sm(L,Tg)Tflvm(L,Tg) a population will have a

higher long-term growth rate in the fluctuating environment of

mean duration Tg than in a periodic environment of this duration

(compare to Eq. 3). Calculating Sm(L,Tg)Tfl explicitly for an

exponential distribution of Tg around the average Tg we find

Sm(L,Tg)Tfl~
G

L

1

Tg

z
1

L

� �{1

ð7Þ

ƒG 1{e{Tg=L
h i

: ð8Þ

The second line is the value of m(L,Tg) in a periodic environment,

see Eq. 3, and the equality follows for Tg&L. Hence, fluctuations

of Tg become negligible when Tg is large compared to the lag time

L. In the opposite case, however, a strain will develop into a larger

population in a fluctuating than in a periodic environment, see

Fig. 6B. This is astonishing, considering that the exponential

distribution has a maximum not at Tg but at Tg~0, thus the

growth period will mostly be shorter than its average. Since growth

is exponential, however, a fluctuation towards longer than average

durations during the recovery provides a significantly larger

benefit than the loss of benefit for shorter than average durations

of the same magnitude.

The optimal downregulation levels a � (Ts,Tg) (shown in

Fig. 6C) which maximize the long term growth rate can be

calculated numerically using L(a) and D(a) as explained in the

model section and from Eqs. 6 and 7. For very long growth

durations Tg, these are identical to a � (Ts,Tg) in a periodic

environment, compare Figure 5B.

Effects of cell-cell variability on survival and recovery
Cell-cell variability within an isogenic population has been

observed in the stress survival of individual cells [1,2,8,17] and in

the single-cell lag times when resuming growth after stress

[1,2,4,17,29,32]. Stress activated promoters in Yeast are enriched

in TATA-boxes and have systematically nosier expression

Figure 6. Growth in stochastic environments. Panel (A) shows the momentary growth rate m(t) during stress and growth phases (full red line),
and the time-averaged growth rate m(t) (dashed blue line) which approaches an asymptotic constant M after several environmental cycles. (B) Long-
term time-averaged growth rates in periodically m(a,TszTg) and stochastically M(a,Ts,Tg) changing environments of mean durations (Ts,Tg) as a
function of the downregulation levels. In stochastic environments populations which strongly downregulate (a *> 0) can have a time-averaged growth
rate (full gray line) several times higher than in a time-periodic environment (dashed blue line). These differences become negligible when
populations recover much faster than the average growth durations, e.g. at (a 1). (C) Optimal downregulation levels a � (Ts,Tg) that maximize net-
growth M(Ts,Tg) in stochastic environments of mean durations (Ts,Tg). The phase boundaries follow similar lines as in the periodic case.
doi:10.1371/journal.pone.0018622.g006
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compared to growth activated genes [36]. Also the nuclear

shuttling of Mdm2 appears highly variable from cell to cell. These

findings raise the question whether unicellular microbes promote

variability during stress rather than suppressing it. Yet it is not

obvious what the benefits of intercellular noise could be.

We assume that upon stress exposure the population diversifies

into subpopulations of high and low stress resistance, following

a gamma distribution P(a,a,b) of the downregulation level

a~D=Dhi around an average SaT, and with parameters a and

b. The gamma distribution allows to study symmetric and highly

skewed distributions while keeping the average downregulation

level constant, and makes the following calculations analytically

tractable.

A distribution of downregulation levels results in a distribution of lag

times according to the transformation P(L,a,b)~P(a,a,b) da=dLj j{1
,

which yields

P(L,a,b)~
exp {1=(b(1{LminzL))½ �
(1{LminzL)az2:ba:C(a)

ð9Þ

where L(a~1)~Lmin. This expression is fitted in Fig. 7 to

experimentally measured lag-time distributions with Lmin,a and b as

fitting parameters. The good agreement supports the use of the

gamma distribution for the downregulation levels a.

We measure the (dis-)advantage of intercellular noise by

comparing the size of a homogeneous population Nhom(t) of

activity ~aa, with the size of a heterogeneous population Nhet(t) that

has the same population-averaged stress response SaTt~0~~aa at the

onset of stress exposure.

For an average downregulation level SaT with a standard

deviation s the gamma distribution P(a,a,b) has two parameters

given by a = SaT2=s2 and b = s2=SaT and reads

P0(a,a,b)~aa{1= baC(a)ð Þexp {a=bð Þ. We consider only val-

ues of a, b for which the probability of a lying outside the interval

½0,1� is negligible (ƒ0:01%). The population size Nhet(Ts) after

stress exposure during a time Ts is obtained from the integral

Nhet(Ts)

Nhet(0)
~

ð?
0

daP0(a,a,b)exp({TsaDhi) ð10Þ

~ 1z
aDhi

a
Ts

	 
{a

ð11Þ

where Nhet(0) is the initial population size, and P0(a,a,b) refers to

the distribution of a at t~0 with the average ~aa. According to Eq.

11, Nhet(Ts) decays algebraically and approaches an exponential

decay at small intercellular noise (a??).

Importantly, when Eq. 11 provides a reasonably good fit to a

colony forming units (CFU) curve under stress, then the fitting

parameters ~aa and a give an estimate of the average death rate and

its variability. The distribution of stress resistance in a population

thereby becomes readily assessable without the need for single-cell

measurements and the generation of histograms.

To understand the resumption of growth of a heterogeneous

population we must know the distribution of downregulation levels

and lag times by the time Ts, when stress ceases and recovery begins.

Normalizing the decaying distribution P0(a,a,b):exp({aTs) by the

total number of surviving cells Nhet(Ts), cf. Eq. 11, yields the

distribution of downregulation levels PTs
(a,a,b) after stress exposure

during Ts

PTs (a,a,b) ~ P0(a,a,bTs
)

with bTs
~ b=(1zbDhiTs):

ð12Þ

Thus, a population with gamma distributed death rates maintains

the gamma distribution, however, with a time dependent scale

parameter bTs
. Figure 8A shows how the distribution of

downregulation levels PTs (a,a,b) changes while stress prevails for

~aa~0:25,s~0:2. Subpopulations with large death rates aDhi rapidly

decline and only subpopulations which have downregulated

sufficiently survive. This results in a time-dependent population-

averaged activity SaTTs~abTs
(indicated by the dashed black line)

and a time dependent population death rate. Figure 8B shows the

resulting algebraic decay Nhet(Ts) and compares it to the

exponential decay of the homogeneous population Nhom(Ts).

Hence, population heterogeneity of a stress protected state

provides a substantial survival benefit at long stress durations.

However, as shown in Figure 8A, the survivors are strongly

downregulated cells. Therefore, the average lag-time and the tail

of the lag time distribution increase significantly with increasing

stress exposure time, as observed in [1,2,29,32,33] and shown in

Fig. 9. This may strongly impede the subsequent resumption of

growth.

To understand under which conditions population heterogene-

ity provides a benefit during resumption of growth we must solve

the population size equation, Eq. 2, for a distribution of lag times,

Figure 7. Fits of the lag time distribution P(L) to experimental data. In (A) to the distribution of lag times of E.Coli cells resuming growth in
LB medium without a foregoing starvation period. Data taken from Fig 4A in [2]. And in (B) to the E.Coli lag time distribution after acid stress during
21 days at pH~3:5. Data taken from Fig. 1D in [2]. Values of the fitting parameters a, b and Lmin are shown in the figures.
doi:10.1371/journal.pone.0018622.g007
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or of downregulation levels respectively. For one cycle of stress and

regrowth it reads:

Nhet(Ts,Tg)

Nhet(Ts)
~Sexp G(Tg{Lm Tg,L

� �
)

� �
Ta

ð13Þ

where Nhet(Ts) is the population size by the end of the stress

period Ts and the average is taken over the distribution of

downregulation levels PTs (a,a,b) at the time Ts, when recovery

begins. This integral can only be solved numerically.

It is helpful to first understand the effect of cell-cell variability on

the population growth-lag only. We therefore set Ts~0h in Eq. 13

and define the fraction whet(Tg)~Nhet(Tg)=Nhom(Tg) as a measure

of fitness. Figure 8C shows the regimes whetw1 in light gray and

whetv1 in dark gray as a function of the steady-state growth rate in

the exponential phase G, and of the cell cell variability s, for

Tg~10h and ~aa~0:25. At sufficiently high steady-state growth

rates G, the heterogeneous population benefits from a small but

fast recovering subpopulation. The latter can quickly initiate

growth, proliferate at a high rate G, and therefore soon drive the

growth of the whole population (tail of the activity-distribution

driven recovery). In this case the population growth-lag is shorter

than the population-averaged growth lag (whetw1, light gray). On

the other hand, when G is small, the high activity and fast

recovering subpopulations proliferate too slowly to drive popula-

tion growth. In this case, whole-population recovery does not set in

before the bulk of the distribution with longer than average lag

times has recovered (the median of P(L,a,b) is smaller than its

average SLT cf. Fig. 9). In this regime the population growth-lag is

longer than the population-averaged growth lag, hence whetw1 for

the bulk driven recovery. Because the distribution is skewed, at

increasing variability s an increasing fraction of the population has

lower than average downregulation levels, i.e., longer than average

growth lags. To compensate for this, and keep the population

growth-lag shorter than average, the decreasing number of fast

responding cells needs larger steady-state growth rates G. This

threshold value G(s) on which whet~1 is indicated by the black

line in Fig. 8C. Thus, at large G heterogeneous populations can

recover faster than homogeneous populations through the tail-of-

the-distribution driven recovery mode whereas at small G recovery

proceeds through a slower bulk-driven recovery mode.

Having considered the heterogeneous population-decline and

heterogeneous population growth-lag separately so far, we now ask

for the benefits of cell-cell variability in complete cycles of stress

and growth (Ts,Tg), for which we calculate the fitness fraction

whet~Nhet(t)=Nhom(t) at times t~TszTg according to Eqs. 2 and

13. Figure 8D shows regimes of beneficial variability (whetw1) and

of disadvantageous variability (whetv1) in light gray, or dark gray

respectively, for parameters ~aa~0:25, s~0:2. The white line

indicates the optimal environments (Ts,Tg) for a �~0:25, also

shown in Figure 5B. Within the dark gray regime, where the

population average is sufficiently well adapted, cell-cell variability

represents a disadvantage because it decreases the fraction of cells

around the optimal state a�. For shorter stress durations Ts,

however, the heterogeneous population has a shorter growth lag

because fast recovering cells can survive short stress periods and

quickly resume the maximal growth rate G. At very long stress

durations the heterogeneous strain is more competitive because it

contains a number of highly stress resistant cells, see Fig. 8A and

8B. In the regime of short growth and long stress durations, fitness

is determined by survival only, because no net-growth is possible

on average (cf. white boundary in Fig. 5B). A heterogeneous

Figure 8. Costs and Benefits of resting state cell-cell variability.
(A) Change of the distribution of resting states PTs

(a) during stress for
the initial parameters SaT0~0:25,s~0:2. Subpopulations potentially
able to resume growth quickly (large a) rapidly decline upon stress
exposure, resulting in a time dependent average activity (dashed black
line) and death rate. (B) The population decay therefore deviates from
the exponential decay of a homogeneous population. Panel (C) shows
regimes in which cell-cell variability reduces (light gray, whetw1) or
enhances (dark gray, whetv1) the population growth lag. At large
steady state growth rates G, population recovery is driven by the tail of
the activity distribution with shorter than average growth lags. At small
growth rates G, or large variability s, the recovery is driven by the bulk
of the distribution with longer than average growth lags. Panel (D)
shows regimes of benefits (light gray, whetw1) and costs (dark gray,
whetv1) of cell-cell variability in full cycles of stress and regrowth.
Heterogeneity represents a disadvantage when the population average
is optimally adapted, i.e. when environments are sufficiently periodic
and close to the white line compare with Fig. 5B. When environments
fluctuate over a wide range, heterogeneous populations benefit from
fast responders when the stress duration Ts is short, and from highly
stress resistant cells when Ts is large.
doi:10.1371/journal.pone.0018622.g008

 

 

Figure 9. Change of the lag time distribution P(L) with the
duration of stress exposure. Cells able to resume growth quickly do
not survive extended periods of stress, hence the distribution P(L)
moves to larger values L. In agreement with the observations in [2] and
[29], the most probable value changes only little during the first days of
stress, i.e., by a factor of two, whereas the fraction of cells with very long
lag times grows significantly as stress prevails. To display all
distributions in the same figure, the maximum of each distribution
was set to one.
doi:10.1371/journal.pone.0018622.g009
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population always maintains a larger population during stress,

hence the lower part of the right phase-boundary in Fig. 8D partly

follows the full white line in Fig. 5B.

During stress exposure the distribution of downregulation levels

moves to ever decreasing values, due to the death of active and

responsive cells. Resting state variability therefore provides a

population-level mechanism that progressively sacrifices respon-

siveness while at the same time increasing stress resistance. This is

particularly advantageous in the absence of an energy source,

where an energy consuming regulatory mechanism to reliably

sense and integrate environmental conditions over time and

progressively downregulate individual cells, would represent an

additional energetic burden.

We have shown that cell-cell variability always provides a

survival-advantage due to the presence of highly downregulated

cells. Surprisingly, heterogeneous population recovery can also be

slow compared to a homogeneous population if the growth rate

after cellular recovery is too small (bulk driven recovery). In

environments which are characterized by large fluctuations,

intracellular noise appears as a simple strategy to increase the

time averaged growth rate, whereas populations should suppress

phenotypic variability in deterministically changing environments.

Discussion

In this article we have studied microbial stress responses as an

induced phenotypic switch in stress and growth environments,

including the case of cell-cell variability. We have proposed a

model which parameterizes a metabolically downregulated state

by a single parameter a. It quantifies the experimentally observed

relation between high stress resistance and long growth lags, and

allows for a largely analytical treatment. The model reproduces

experimental data, makes verifiable predictions, and allows to infer

parameters of cell-cell variability from whole-population based

measurements such as CFU curves. Our approach provides a

framework for experimental investigations and can be generalized

to arbitrary functional relationships between stress resistance and

growth lag.

We have shown that the inverse relationship between death rate

and growth retardation explains and determines in which

environmental regimes four commonly observed behaviors of

stressed microbes provide a benefit: i) Delaying the induction of a

stress-protected state, ii) adopting a state of intermediate

downregulation, iii) adopting a dormant state, and iv) diversifying

the population into cells of high and low stress resistance.

Time delays are a common motif in cellular decision making

and frequently appear in microbial stress-responses [37], e.g. in the

induction delay of type I persisters in E.Coli [4] and the HOG-

dependent transcriptional response of yeast to osmotic stress [38].

Our results show that rapidly adopting a downregulated state

upon stress exposure may reduce the long term fitness. An

optimistic strategy which delays downregulation can provide

fitness advantages when organisms frequently face periods of stress

exposure lasting less than a critical duration. Precisely this strategy

seems to be implemented in E.Coli, where the iron stress response

is induced only when stress durations exceed a temporal threshold.

The delay is mediated by a small non-coding RNA, IsrR [39]. Our

predictions on the benefit of time delays may be verified in a

chemostat of controlled iron-stress and growth durations (Ts,Tg)

by measuring the time-averaged growth rates of the wild type and

IsrR knock-out strains used in [39].

In the other extreme, when growth durations are frequently

shorter than a limit, a pessimistic strategy becomes optimal:

leaving the protected state to resume growth when stress ceases

can reduce the long term fitness. In this regime dormancy provides

the highest fitness despite the absence of growth in short periods

where growth is possible in principle [9,32]. Here, net growth

occurs only during environmental fluctuations in which growth

durations are longer than expected. Thus, whether dormancy is a

good strategy for survival and growth, not only depends on the

stress but also on the growth environment. Importantly, we find

that long-term population growth is higher in a stochastic

compared to a time-periodic environment. This underlines the

importance of periodicity in antibiotic treatments and raises the

question for optimal frequencies at which pathogens should be

exposed to antibiotics in order to minimize their survival.

Frequently unicellular organisms do not fully shut down their

metabolism when facing starvation or stress, but maintain a finite

basal activity [13,15,16,24,25,27]. Under selective pressures many

cellular responses are tuned to optimize certain functions, e.g. the

growth rate [5,40]. An intriguing question is what determines the

optimal induction levels of stress response systems. We predict that

over a wide regime the optimal metabolic downregulation level

during stress is intermediate and determined by the tradeoff

between enhancing survival during stress vs. reducing the growth-

lag after stress. Optimal downregulation levels thereby depend on

the typical durations of the stress and growth environments. A

suitable model organism to verify this prediction are Mycobacteria

with externally inducible mpr-AB promoters [35]. MprA and MprB

activity is necessary for long-term survival, e.g., under amino acid

deprivation, but it also represses growth. We propose an

experiment in a chemostat, in which an mpr-AB inducible strain

[35] is exposed to alternating stress and growth conditions, where

only the stress environments contain a defined concentration of

mpr-AB inducer. We predict the existence of an optimal expression

(induction) level of the stress response system. Overexpression of

MprAB can increase the number of stress-surviving cells. These,

however, will need too much time to degrade and dilute the

growth repressors MprAB after stress and to resume the maximal

growth rate. On the other hand, suboptimal expression will result

in a large population fraction not surviving the stress phase.

These findings have profound consequences for our current

view on the role of responsive phenotype switching. When higher

phenotypic fitness comes at longer transition times, i.e., when it

involves morphological changes and considerable metabolic

reorganization [13,21,41], the optimal phenotype to induce in

an environment only rarely maximizes the fitness in that

environment. Instead it must trade off the phenotypic fitness

against the transition time and thus it also depends on the

frequencies of other environmental conditions, e.g., where the

particular phenotype is repressed. This is a novel aspect of

adaptation in fluctuating environments which has not been

discussed so far. It is also in contrast to the case of stochastic

switching where fitness is maximized, when the switching rates

mimic the environmental frequencies [5,10,11].

In heterogeneous populations with intercellular fluctuations of

downregulation levels, highly responsive cells rapidly die when

exposed to stress, whereas only downregulated subpopulations

survive. This results in the prototypic non-exponential decay of

colony forming unit (CFU) curves during stress exposure. We have

derived an analytical expression which allows inference of cell-cell

variability parameters from CFU curves, when the distribution of

stress-resistance states in the population is continuous. This is

particularly useful because it circumvents the extensive measure-

ments needed to generate histograms and may therefore show

great promise for better understanding population survival.

In heterogeneous populations, differential cell death under stress

leads to a gradually decreasing population-averaged activity.
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Thereby the population passively sacrifices responsiveness and

increases stress resistance in a deteriorating environment. Such a

passive adaptive mechanism which does not require active and

energy consuming regulation provides an advantage in the

absence of nutrient. An active mechanism which integrates stress

conditions over time to progressively downregulate individual cells

would represent an additional energetic burden and reduce

population fitness.

Previous works found that heterogeneity is advantageous, when

individual cells cannot respond sufficiently fast to environmental

changes [5,10,11]. We have shown that cell-cell variability can also

increase the population response time under some conditions, and

that it can be disadvantageous when stress durations are

intermediate and predictable. In the more general case of irregular

environments heterogeneous populations can resume growth more

rapidly after brief stress exposure, while better surviving long stress

periods. Promoting cell-cell variability therefore appears as a

favorable and simple strategy to cope with large environmental

fluctuations, which prevail in nature.

Finally we would like to comment on the robustness of our

results with respect to the specific details of the model. As yet the

exact inverse dependence of the lag-time on the death-rate has not

been measured in detail. In this article we have adopted a first

order approximation where L!1=D. More generally a higher

order approximation may be assumed. As long as it is strictly

inverse, however, the only change would be a decrease or an

increase of the lag-times compared to our first order approxima-

tion. This will result in a distortion of the phase diagrams, but

would not introduce qualitative changes, e.g., in the general

structure of the phase diagrams. We have also performed our

analysis using lognormal and normal distributions of death rates

and used a sigmoidal recovery function in place of Eq. 1. The

results differed in a quantitative way but the conclusions remain

unaffected.

Recently many of the molecular players involved in microbial

stress responses and cellular downregulation have been identified

and the single cell regulatory kinetics have been characterized

[4,32,35,38,39,42,43]. In the present article we have provided a

first approach to quantify the ecological consequences of the stress-

resistance vs. growth constraints, which we hope will stimulate

more experimental work.
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