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Purpose: By performing registration of preoperative multiprotocol in vivo magnetic resonance
�MR� images of the prostate with corresponding whole-mount histology �WMH� sections from
postoperative radical prostatectomy specimens, an accurate estimate of the spatial extent of prostate
cancer �CaP� on in vivo MR imaging �MRI� can be retrospectively established. This could allow for
definition of quantitative image-based disease signatures and lead to development of classifiers for
disease detection on multiprotocol in vivo MRI. Automated registration of MR and WMH images of
the prostate is complicated by dissimilar image intensities, acquisition artifacts, and nonlinear shape
differences.
Methods: The authors present a method for automated elastic registration of multiprotocol in vivo
MRI and WMH sections of the prostate. The method, multiattribute combined mutual information
�MACMI�, leverages all available multiprotocol image data to drive image registration using a
multivariate formulation of mutual information.
Results: Elastic registration using the multivariate MI formulation is demonstrated for 150 corre-
sponding sets of prostate images from 25 patient studies with T2-weighted and dynamic-contrast
enhanced MRI and 85 image sets from 15 studies with an additional functional apparent diffusion
coefficient MRI series. Qualitative results of MACMI evaluation via visual inspection suggest that
an accurate delineation of CaP extent on MRI is obtained. Results of quantitative evaluation on 150
clinical and 20 synthetic image sets indicate improved registration accuracy using MACMI com-
pared to conventional pairwise mutual information-based approaches.
Conclusions: The authors’ approach to the registration of in vivo multiprotocol MRI and ex vivo
WMH of the prostate using MACMI is unique, in that �1� information from all available image
protocols is utilized to drive the registration with histology, �2� no additional, intermediate ex vivo
radiology or gross histology images need be obtained in addition to the routinely acquired in vivo
MRI series, and �3� no corresponding anatomical landmarks are required to be identified manually
or automatically on the images. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3560879�
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I. BACKGROUND AND MOTIVATION

Recently, magnetic resonance �MR� imaging �MRI� has
emerged as a promising modality for detection of prostate
cancer �CaP�, with several studies showing that 3 T endorec-
tal in vivo T2-weighted �T2-w� imaging yields significantly
higher contrast and resolution compared to ultrasound
�U.S.�.1 For example, Fig. 1�a� shows a typical in vivo U.S.
image of a prostate, in which internal anatomical details,
such as the urethra, ducts, and hyperplasia, are barely dis-
cernible, while in the segmented T2-w MR image shown in
Fig. 1�b�, internal anatomical details within the prostate are

clearly visible. An additional advantage offered by MRI is
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the ability to use different acquisition protocols to capture
orthogonal sources of information, including functional
�dynamic-contrast enhanced �DCE��, metabolic �magnetic
resonance spectroscopy �MRS��, vascular �diffusion
weighted imaging �DWI��, and structural �T2-w� attributes.
Since multiple protocols can be acquired in the same scan-
ning session, little additional setup time is required.

The use of multiprotocol MRI for CaP diagnosis has been
shown to improve detection sensitivity and specificity com-
pared to the use of a single MR imaging protocol.2–4 Previ-
ous studies have demonstrated improved CaP detection sen-

sitivity and specificity by simultaneous use of multiple MRI
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protocols, including DCE and T2-w MRI,5 MRS and T2-w
MRI,6 and DWI with both T2-w �Ref. 7� and DCE MRI.8

Since the current clinical diagnostic protocol involves no
image-based detection of CaP, the ability to utilize in vivo
multiprotocol diagnostic images for detection and localiza-
tion of CaP in vivo would have clear implications for �1�
noninvasive image-based screening, �2� targeted biopsies,
and �3� conformal radiation therapy.

If the spatial extent for CaP on multiprotocol in vivo ra-
diological imaging can be accurately delineated, it may then
be possible to define specific imaging parameters with the
greatest diagnostic accuracy in reliably characterizing CaP
on in vivo clinical, radiologic images. The definition of such
image signatures would be invaluable in building �a� a
computer-assisted disease detection system6,9–11 or �b� spatial
disease atlases which could serve as training and educational
tools for medical students, radiology residents, and fellows.
However, direct annotation of disease extent on MRI is often
challenging even for experienced radiologists. Thus, to reli-
ably ascertain the extent of CaP on in vivo radiological im-
ages, it is necessary to utilize ex vivo tissue specimens, upon
which “ground truth” estimates of CaP extent may be estab-
lished by histopathologic inspection. �In the context of pa-
tients diagnosed with CaP and scheduled for radical prostate-
ctomy �RP�, in several centers in the United States,
preoperative imaging is performed to identify presence of
extracapsular spread.12� Figure 1�c� shows a whole-mount
histology �WMH� section of a RP specimen on which can-
cerous tissue has been manually annotated, following micro-
scopic examination of the excised gland.

Spatial correlation of diseased regions on histology and
MRI may be performed by �a� visually identifying and label-
ing corresponding structures on each modality9,13–15 or �b�
using a semiautomated or fully automated image registration
procedure.16–19 For example, the spatial extent of CaP on
MRI, obtained by manually labeling the in vivo image while
visually referencing the histology, is shown in Fig. 1�d�. On
the other hand, the disease extent established by the elastic
registration of the MR and histology images in Figs. 1�b� and
1�c� is shown in Fig. 1�e�. Note that the shape of the disease

FIG. 1. �a� Ultrasound imagery of the prostate provides poor soft tissue re
anatomical details of the prostate with greater clarity. Ground truth for CaP
hematoxylin and eosin stained tissue section. The histopathologic CaP exten
MRI using histology as a visual reference or �e� automatically mapping CaP e
is better preserved in the mapping from �c� onto �e� as compared to �d�.
mask mapped onto the MRI in Fig. 1�e� more closely re-
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sembles the histopathological ground truth for CaP extent in
Fig. 1�b� compared to the manually annotated region shown
in Fig. 1�d�. Thus, with an accurate registration technique,
CaP extent on MRI can be established with greater accuracy,
efficiency, and consistency compared to manual labeling.

The registration of images from different modalities such
as histology and radiology is complicated on account of the
vastly different image characteristics of the individual mo-
dalities. For example, the appearance of tissue and anatomi-
cal structures �e.g., hyperplasia, urethra, and ducts� on MRI
and histology are considerably different, as may be appreci-
ated from Figs. 1�b� and 1�c�. The shape of the WMH is also
significantly altered due to uneven tissue fixation, gland slic-
ing, and sectioning, resulting in duct dilation, gland deforma-
tion, and tissue loss. Traditional intensity-based similarity
measures, such as mutual information �MI�, are typically in-
adequate to robustly and automatically register images from
two such significantly dissimilar modalities. There have been
several efforts to complement intensity information with al-
ternative image information, including image gradients,20 co-
occurrence information,21 and color22 and image
segmentations23 in conjunction with MI variants, specifically
adapted to incorporate these additional channels of informa-
tion. Similar to the use of calculated features to complement
image intensity, it may also be advantageous to leverage ad-
ditional imaging protocols that may be available. For in-
stance, multiprotocol MR imaging is part of standard clinical
practice at a number of medical centers for disease diagnosis
and treatment.24,25 These additional channels may provide
complementary structural, metabolic, and functional data to
complement image intensity for the registration process.

In this paper, we present an information theoretic ap-
proach, multiattribute combined mutual information
�MACMI�, to simultaneously utilize all available imaging
channels, such as registered multiprotocol imagery �or image
features calculated from the original images�, in the registra-
tion of several images. In this work, we demonstrate the
application of MACMI for establishing spatial extent of CaP
on radiological imaging via registration of annotated ex vivo
histology sections with corresponding multiprotocol in vivo

ion, while �b� high resolution MRI �ex vivo image shown� shows internal
t is obtained only through histopathologic analysis of �c� the corresponding
�c� can be mapped onto the MRI in �b� by either �d� manually labeling the
from �c� via image registration. Note that the morphology of the CaP extent
solut
exten
t on
xtent
MRI.
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II. PREVIOUS WORK

The registration of prostate images is important for �a� the
planning, guidance, and retrospective evaluation of radio-
therapy procedures;26–29 �b� the fusion of diagnostic images
for improved CaP detection accuracy;30–33 and �c� the auto-
mated annotation of radiological images via histopathologic
correlation.18,34,35 Intramodality prostate image registration
has been utilized by Bharatha et al.26 for image-guided pros-
tate surgery via elastic registration of preoperative and intra-
operative prostate MRI and by Foskey et al.27 for monitoring
therapy related changes over time by registration of serial CT
images. Lee et al.30 investigated the use of multimodal pros-
tate images �MRI, CT, and SPECT� to characterize CaP, per-
forming automated multimodal registration of MRI to
SPECT via MI and manual registration of MRI to CT using
a graphical user interface. Automated rigid registration of
MRI with CT has been addressed by several groups,31–33

while automated elastic registration has only recently been
addressed by Park et al.36 using a spatially constrained
B-spline. Methods for the registration of MRI and 3D tran-
srectal ultrasound for real-time MRI-guided prostate biopsy
have been presented by both Xu et al.28 and Singh et al.29

The unique set of challenges associated with the registra-
tion of ex vivo histology and multiprotocol MRI of the pros-
tate has begun to be addressed by several recent studies;
these studies have, however, primarily been in the context of
high resolution ex vivo MRI11,19,34,37 utilized a thin plate
spline �TPS� to model the elastic 2D deformations of histol-
ogy to ex vivo MRI of prostate specimens using control
points. However, “block face” photographs of thick tissue
sections of the prostate, taken prior to microtome slicing and
slide preparation, were used to facilitate correction of the
nonlinear tissue deformations and in the creation of a histol-
ogy volume. While these photographs allowed Park et al.34

to overcome the nonlinear deformations to histology and ad-
dress the issue of slice correspondences �identifying a one-
to-one relationship between histology sections and slices in
the MRI volume�, such photographs are not generally ac-
quired as part of routine clinical practice. Recently, Ou et
al.19 aligned ex vivo MRI and histology sections of a prostate
specimen with the aid of precise cancer labels on both mo-
dalities to improve their objective function for registration.
As part of an integrated registration and segmentation strat-
egy, the required cancer extent on MRI was established via a
pixelwise supervised classifier. The authors, however, did not
address how classifier errors would affect registration accu-
racy. While high resolution �4 T� ex vivo MRI provided suf-
ficient segmentation accuracy in Ref. 19, it is not clear that
disease extent can reliably be established on in vivo clinical
images. Zhan et al.37 also performed registration of ex vivo
MRI and histology sections using pairs of automatically de-
tected control points on each modality. However, automated
identification of a large number of landmark pairs across ex
vivo WMH and in vivo MRI �of lower image resolution and
quality compared to the ex vivo MRI used in Ref. 37� may
not be feasible.
The registration of clinical in vivo radiologic images with
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WMH of the prostate has also been recently
addressed.18,30,35,38 Lee et al.30 performed histopathologic
validation of CaP estimates on CT and MRI by 2D elastic
registration of histology sections with CT and MRI. Manu-
ally identified control points �anatomical landmarks�, placed
primarily along the gland boundary, were used to define a
TPS interpolant. In a rat brain study, Meyer et al.35 also
leveraged available block face photographs of the gland prior
to sectioning �similar to Ref. 34� to generate a histology
volume for 3D registration. Their approach also utilized an
intermediate ex vivo MRI series, to which WMH was aligned
via a TPS-based approach using manually selected initial
control points, followed by MI-driven refinement of the co-
ordinates of the control points. Subsequently, ex vivo MRI
was registered to in vivo MRI, thus indirectly aligning the in
vivo MRI and histology slices of the rat brains. Park et al.18

extended this approach to the human prostate and to include
multiprotocol �T2-w and DWI� in vivo MRI and PET, again
using block face photographs and ex vivo MRI as an inter-
mediate. While the works of Park18 and Meyer35 successfully
address the need to rely on approximate slice correspon-
dences, neither block face photographs nor ex vivo MRI of
prostate specimens are usually available in the course of the
clinical workflow. This might also explain why only two
patient studies were employed in Ref. 18 and one rat brain
slide in Ref. 35.

Alignment of more than two images or volumes repre-
senting very different structural or functional attributes of the
same object is not well studied. One approach to the regis-
tration of multiple images is to take a groupwise �GW� ap-
proach, whereby all images are simultaneously aligned, usu-
ally to some reference image or coordinate frame. The
limitations of fully GW approaches are that they either �1�
involve optimization problems with many degrees of free-
dom arising from multiple simultaneous transformations or
�2� are limited to images with similar intensity and/or defor-
mation characteristics. In the GW registration method pre-
sented by Bhatia,39 all images contribute to the same histo-
gram used for entropy calculation. This limits the technique
to images of the same modality. On the other hand, the GW
method of Studholme40 utilizes a high dimensional distribu-
tion suitable for multimodal data, but the use of a dense
deformation field requires a constraint that penalizes defor-
mations that deviate from an average deformation. However,
in the context of large deformation fields, such as might be
present between ex vivo and in vivo images, this technique is
restrictive. Other methods require repeated refinement of in-
dividual transformations prior to convergence.41 More re-
cently, Balci42 performed simultaneous interpatient registra-
tion of a large number �50� of brain MRI scans using a sum
of univariate �1D� entropy values �“stack entropy”� calcu-
lated at every pixel location. However, since this cost func-
tion requires a large number of images to calculate entropy at
each pixel location, it is suited only for the registration of
very large populations of images from the same modality, as
opposed to a smaller number of multimodal images from a
single patient. Thus, while a GW approach is generally pref-

erable to several pairwise �PW� registration steps, GW meth-
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ods can be restrictive or computationally prohibitive.
Given the challenges and constraints of GW registration

approaches, simple sequential PW registration steps are most
commonly performed to bring multiple images from differ-
ent modalities into alignment. This was the method of choice
for the prostate work in Refs. 30 and 38, where several mo-
dalities are registered in steps using two images at a time.
Figures 2�a� and 2�b� illustrate two possible approaches to
PW registration of an ex vivo prostate histology �A� image to
corresponding in vivo T2-w MR �B� and in vivo T1-w �single
time point of a DCE series� �C� MR images. Figure 2�a�
illustrates the case where image A is independently regis-
tered to both B and C. Figure 2�b� illustrates a scenario
where the multiprotocol MR images are coregistered by the
alignment of C to B and A is registered to just B, thus bring-
ing A into alignment with both B and C. For this particular
set of multimodal images, the approach illustrated in Fig.
2�b� is preferable to that shown in Fig. 2�a� since the align-
ment between multiprotocol MRI is less complicated com-
pared to the multimodal alignment of ex vivo histology and
in vivo MRI. The latter approach involves dealing with
highly elastic deformations and dissimilar intensities. In both
instances �illustrated in Figs. 2�a� and 2�b��, the two registra-
tion steps are independent and utilize only two images at a
time.

III. NOVEL CONTRIBUTIONS AND SIGNIFICANCE

Both PW approaches illustrated in Figs. 2�a� and 2�b�
consider only two images at a time. Hence, they exploit only
a fraction of the available data in driving each registration
step. Further, in subsequent alignment steps, it is necessary
to select only a single image from the set of coregistered
images for use as a reference. A more effective approach is to
exploit all the information acquired from prior alignment
steps to drive the subsequent registration operations. As il-

C

A

B C

(b)(a)
FIG. 2. Registration of an ex vivo prostate histology �A� image to correspond
Two possible approaches using PW image registration involve �a� PW alig
alignment of multiprotocol MRI �C→B� and alignment of histology to just T
with histology at the end of the two registration steps. Alternatively, �c� a m
from the same modality �T1-w and T2-w MRI� as in �b�, followed by alignm
MRI via a similarity measure specifically defined for high dimensional data
lustrated in Fig. 2�c�, following registration of C to B, both
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the newly aligned images could be considered in unison �as a
“multiattribute” image� to drive the registration with A. Such
an approach would exploit the fact that C and B are �a� in
implicit alignment and �b� represent different and informa-
tive image attributes �in this case, structural and functional�.
This approach is akin to previous studies that have used ad-
ditional textural and gradient feature images20 to comple-
ment image intensity in order to improve image registration.

Multivariate formulations of MI have been shown to be
useful in incorporating multiple image attributes �e.g.,
texture�.21,38 Thus, multivariate MI may also be applied in
the context of applications where multiprotocol imaging
�e.g., T2-w and T1-w MRI� needs to be registered to another
modality �e.g., histology�.

The novel contribution of this work is a formal quantita-
tive image registration framework, which we refer to as
MACMI. MACMI allows for incorporation of multiple mo-
dalities, protocols, or even feature images in an automated
registration scheme, facilitated by the use of multivariate MI.
MACMI is distinct from previous GW approaches in that it
handles images that can significantly vary in terms of image
intensities �e.g., multimodal data� and deformation character-
istics �e.g., in vivo to ex vivo�. Additionally, it involves a
simple �low degree of freedom� optimization procedure
whereby individual image transformations are determined in
sequence. The use of an information theoretic similarity
measure is central to the ability of MACMI to handle �1�
multimodal data, which may contain nonlinear relationships
between the image intensities of different modalities, and �2�
high dimensional �multiattribute� observations, which may
contain redundancies between the attributes that can be dis-
counted via joint entropy. Finally, by employing a sequential
approach to the alignment of multiple images within the mul-
tiattribute representation, each successive optimization pro-
cedure remains as simple �in terms of degrees of freedom� as

B

A

1

2

A

C B

(c)
vivo T2-w �B� and T1-w �C� MR images can be achieved in different ways.

t of histology to each individual MRI protocol �A→B and A→C� or �b�
MRI �A→B�. In the latter case, T1-w MRI would be in implicit alignment
ttribute image registration scheme involves initial PW alignment of images
f histology to a multiattribute image comprising the registered multiprotocol
ing in
nmen
2-w
ultia
ent o
with the conventional PW registration.
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In this work, we evaluate MACMI in the context of a
clinical problem involving multiprotocol �T2-w and DCE�
MRI of the prostate and WMH sections, the sections being
digitized following gland resection. Registration of WMH to
corresponding multiprotocol MRI is then performed to map
CaP extent from ex vivo WMH �previously delineated by
pathologists� onto in vivo MRI. This procedure involves �1�
initial affine alignment of the T2-w and DCE �T1-w� images
�Figs. 3�d� and 3�e�� using MI to generate a multiattribute
MR image �Fig. 3�c��, followed by �2� multimodal elastic
registration of WMH with the multiattribute MRI.

Our scheme for registration of in vivo MRI and ex vivo
WMH of the prostate is distinct from previous related
efforts18,30,35 in that �1� information from all in vivo imaging
protocols is being utilized simultaneously to drive the pro-
cess of automated elastic registration with histology; �2� no
additional, intermediate ex vivo radiology or gross histology
images need be obtained in addition to the clinically acquired
in vivo MRI series; and �3� no point correspondences are
required to be identified manually or automatically.

For the registration of 150 corresponding sets of prostate
images from 25 patient studies with T2-w and DCE MRI, we
quantitatively compare MACMI to a PW registration ap-
proach using conventional MI �Fig. 2�b��. For 15 patients for
which apparent diffusion coefficient �ADC� MRI was also
acquired, we further demonstrate MACMI for including the
third MR protocol in the elastic registration of histology with
all three MRI series for 85 sets of images �in vivo T2-w, DCE
and ADC MRI slices, and ex vivo WMH sections�. We also
quantitatively evaluate MACMI on a synthetic brain MRI
study from BrainWeb,43 whereby T1-w and T2-w MR im-

Cancer Gold Standard

Multi-attrib
(Co-registered Mul

Multi-attribute
Registration
(MACMI)

(a)

(b)

(c)

FIG. 3. Establishing disease signatures on in vivo multiprotocol MRI using M
T1-w MRI. Alignment of the T2-w and T1-w MRI allows generation of �c�
used to align �a� WMH to �c� the multiattribute MRI. CaP extent on the �b�
ages are registered to PD MRI, where both the T1-w and
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T2-w protocols are simultaneously considered. MACMI is
compared to PW MI-based approaches where T1-w and
T2-w MR images are individually registered with PD MRI.

IV. METHODS

IV.A. Theory on mutual information and MACMI

IV.A.1. Mutual information between scalar-valued
images

Equation �1� below is a common formulation of MI for a
pair of images �or random variables� A1 ,A2 in terms of Sh-
annon entropy.

I2�A1,A2� = S�A1� + S�A2� − S�A1,A2� , �1�

where I2�A1 ,A2� describes the interdependence of two vari-
ables or intensity values of a pair of images.20 As I2�A1 ,A2�
increases, the uncertainty about A1 given A2 decreases.
Thus, it is assumed that the global MI maximum will occur
at the point of precise alignment, when maximal uncertainty
about intensities of A1 can be explained by A2.

IV.A.2. Mutual information between high
dimensional „multiattribute… images

The conventional MI formulation can be extended to high
dimensional observations by combining the multiple dimen-
sions or attributes via high order joint entropy calculations.
We refer to this application of MI as MACMI to distinguish
it from conventional applications of MI and higher order MI
and denote it as I2

�. Unlike the more familiar higher order MI
�In ,n�2�, the goal of MACMI is not to measure only the

T2-w MRI

T1-w MRI

MRI
otocol MRI)

Multiprotocol
Registration

(d)

(e)

MI for registration of �a� WMH sections to corresponding �d� T2-w and �e�
ultiattribute MRI comprised of coregistered multiprotocol MRI. MACMI is
tically registered WMH is mapped directly onto both MR images in �c�.
ute
tipr

AC
the m

elas
intersecting information between multiple sources
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�A1 , . . . ,An�, but to quantify the combined predictive value
of one multivariate source �e.g., �A1 , . . . ,An�� with respect
to another �e.g., �B1 , . . . ,Bn��. Here we introduce the notion
of an image ensemble as the concatenation of n intensity-
valued images �I1 , . . . ,In� into an n-dimensional �multiat-
tribute� image, denoted as �I1 , . . . ,In�. In the simplest case,
the MI �I2

�� that a single image A1 shares with an ensemble
of two other images, B1 and B2, is

I2
��A1,�B1,B2�� = S�A1� + S�B1,B2� − S�A1,B1,B2� . �2�

By considering B1 and B2 as simultaneously measured semi-
independent variables in the multidimensional ensemble
�B1 ,B2�, any dependence that exists between B1 and B2 may
be discounted and I2

� remains bounded by the smaller of
S�A1� and S�B1 ,B2�. The generalized form of MI between
the n-dimensional ensemble �n

A= �A1 , . . . ,An� with the
m-dimensional ensemble �m

B = �B1 , . . . ,Bm� is

I2
���n

A,�m
B� = S��n

A� + S��m
B� − S��n

A,�m
B� . �3�

Thus, MACMI accomplishes fusion of the multiple dimen-
sions of a multiattribute image, allowing only intersecting
information between two such images �e.g., �n

A and �m
B� to be

quantified. Calculation of I2
���n

A ,�m
B� is discussed in Sec.

IV C.

IV.B. Framework for registration of multiple images
using MACMI

In Sec. IV B 1, we present a generalized algorithm
�MACMIreg� for performing registration of m images
Z1 , . . . ,Zm in a specific order. The order is specified using a
hierarchical organization of the images within a family of
sets Z and by progressively aligning and accumulating the
registered images into an single ensemble �. In Sec. IV B 2
we illustrate the operation of the algorithm for four images
�Z1 ,Z2 ,Z3 ,Z4�, where Z is structured to register Z1 with Z2

and Z3 with Z4, prior to the alignment of the two resulting
ensembles.

IV.B.1. Algorithm

Consider a family of sets Z that contains m�2 images
Z1 , . . . ,Zm distributed throughout n�m ordered subsets Z j

�j� I�, where I= �1, . . . ,n�, �i.e., � j�IZ j = �Z1 , . . . ,Zm� and
� j�IZ j =��. Each subset Z j �j� �1, . . . ,n�� may also be a
family �i.e., have subsets of its own� or simply an ordered set
of registered images. For example, if Z j

= ��Z1
�j� ,Z2

�j�� , �Z3
�j�� , �Z4

�j���, we define Z j as a family of �Z j�
=3 subsets, containing a total of k= �Z j�=4 images. We fur-
ther denote the ensemble of all k images in Z j as �= 	Z j

= �Z1

�j� , . . . ,Zk
�j��. By organizing the m images into a hierar-

chy of subsets within the family Z, the order in which the
images are registered and combined into multiattribute im-
ages is determined. The procedure for alignment of all im-
ages �within and between each Z j� into a single ensemble �
of registered images is described in the following recursive
algorithm MACMIreg. Here we define the notation �←�d as

the expansion of an n-dimensional multiattribute image �en-
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semble� � into an �d+n�-dimensional ensemble by concat-
enation with a d-dimensional ensemble �d. We also denote
Z j ⇐� as the assignment of each of the m dimensions �in-
tensity images� in � to the existing m total members of Z j

�independent of the organization of images within the family
structure�, thus replacing or updating Z j with the contents of
�.

Algorithm MACMIreg

Input: Z= �Z1 , . . . ,Zn�, n�1.

Output: �.
Auxiliary Data Structures: Index k , j ,�; Image
ensemble �0.
begin
0. for j=1 to n do
1. k= �Z j�;
2. if k�1 then
3. Obtain ensemble �0=MACMIreg�Z j�;
4. Update Z j ⇐�0;
5. endif;
6. endfor;
7. Initialize � as an empty ensemble;
8. �← �Z1 , . . . ,Zk�, k= �Z1�;
9. �=k+1;
10. for j=2 to n do
11. k= �Z j�;
12. �0= �Z� , . . . ,Z�+k�;
13. Obtain T=argmaxT�I2

��� ,T��0���;
14. Obtain �̃0=T��0�= �Z̃� , . . . , Z̃�+k�;
15. �← �̃0;
16. �=�+k+1;
17. endfor;
end

Lines 1–6 of MACMIreg use recursive calls to MAC-
MIreg to register the images within each Z j containing more
than one image. When MACMIreg�Z j� is executed on line 3,
the algorithm is recursively instantiated in order to coregister
the images within the subset Z j and any of its subsets, re-
turning the registered images within ensemble �. Line 4 then
updates each Z j by replacing its constituent elements with
the coregistered member images contained within �. Lines
7–17 of MACMIreg perform the registration between the
multiattribute images generated from each Z j, each of which
now comprise only coregistered images �or a single image�
following lines 1–6 of the algorithm. A spatial transforma-
tion T of the current moving image ensemble �0 into align-
ment with the stationary growing ensemble � is determined
on line 13. The registered ensemble �̃0, obtained via T on
line 14, is then combined with � on line 15. The algorithm
continues to align each subsequent Z j with the expanding
reference ensemble �.

IV.B.2. Instance of MACMI for registration of four
images

The operation of the MACMI algorithm is illustrated in
Fig. 4 for a scenario involving the registration of four images
�Z1 ,Z2 ,Z3 ,Z4�, of which Z3 and Z4 are designated to be
coregistered prior to alignment with Z1 and Z2. In this ge-

neric example, Z1 and Z2 could represent images from two
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different modalities, such as CT and PET, and Z3 and Z4

could represent multiprotocol images from the same modal-
ity such as T1-w and proton density �PD� MRI that may be in
proximal alignment through hardware configuration or
through prior application of a registration routine.

The operation of MACMIreg�Z� for Z
= ��Z1� , �Z2� , ��Z3� , �Z4��� begins by registration of images
within each Z j �j� �1,2 ,3��, where only Z3= ��Z3� , �Z4��
contains more than one image. Thus, as in Fig. 4�b�,
MACMIreg�Z3� is called to register Z3 to Z4 and update Z3

with ensemble �= �Z1 , Ẑ2� �lines 3–4 of MACMIreg�. Hav-
ing registered the images within each Z j �lines 1–6 of MAC-
MIreg�, all images in Z are registered as in Fig. 4�a� in two
steps �lines 7–17 of MACMIreg�. At each registration step,
an optimal spatial transformation T of �0 to � is determined
by argmaxT�I2

��� ,T��0��� �line 13 of MACMIreg� and � is
then expanded by �← �̃0=T��0� �lines 14–15 of MAC-
MIreg�. Thus, Z2 is first registered to Z1, where �= �Z1� and

�0= �Z2�, and �← �̃0= Z̃2 : =T�Z2�. Next, Z3 is registered to

Z1 �and implicitly Z2�, where �= �Z1 , Z̃2� and �0= �Z3 , Ẑ4�
�the output of MACMIreg�Z3��, and �← �̃0= �Z̃3 , Z̃4� :

= �T�Z3� ,T�Z4��. The final output is �= �Z1 , Z̃2 , Z̃3 , Z̃4�,
comprising all of the coregistered images in Z.

The use of both Z3 and Z4 �and both Z1 and Z2� in the
final registration step has the following benefits: �1� Avoids
potential ambiguity in choosing between Z3 and Z4 �between
Z1 and Z2� and �2� potentially provides improved alignment
versus use of just Z3 or Z4 �Z1 or Z2� individually. The
advantage of MACMI is that it yields cumulative incorpora-

Z

Z1 Z3Z2

MACMIreg(Z = ffZ1g; fZ2g; ffZ3g; fZ4

fffZ1g fZ2g

1: " = [Z1]; "0 = [Z2];

2: " = [Z1; ~Z2]; "0 = MACMIreg(Z3);

Output: " = [Z1; ~Z2; ~Z3; ~Z4]

line 3
Line 13 inputs:

jZ3j >

(a)
FIG. 4. �a� Graphical representation of the organization of four images �Z
application of the MACMIreg algorithm for alignment of all four images. S

new instance of the algorithm in �b� with Z= ��Z3� , �Z4�� as the input. The in

to the instance in �a�. The instance in �a� first brings Z1 and Z2 into alignme

the registered images of Z1 and Z2 �= �Z1 , Z̃2�. At each registration step �li
expanded by �← �̃0=T��0� �lines 14 and 15 of MACMIreg�. The output of
tion of all images, while allowing flexibility to choose the
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order of multiattribute image construction. Implementation
of MACMI within a complete registration framework is de-
scribed in Sec. IV C below.

IV.C. Requirements for implementation of MACMI

MACMI can be utilized to leverage multiple image
sources in nearly any registration application by selecting the
following components based on domain requirements:

�1� MI estimation for high dimensional data: The most
straightforward approach to estimating I2

���n
A ,�m

B� is to
formulate the density estimates from high dimensional
histograms. While histogram-based techniques are fea-
sible and effective for up to four-dimensional observa-
tions with appropriate bin size, as demonstrated in Refs.
23 and 21 higher dimensionality necessitates an alternate
estimate of entropy or MI, such as those based on en-
tropic spanning graphs or related quantities such as
�-MI.44

�2� Image transformation model(s): Since MACMI only
dictates the construction of the objective function,
MACMI is agnostic to the deformation model. Further,
different deformation models may be used for each im-
age since the individual image transformations are per-
formed in independent steps.

�3� Optimization scheme to find a maximum of I2
���n

A ,�m
B�:

If the analytical gradient can be derived, as demon-
strated for �-MI in Ref. 45, an efficient stochastic gra-
dient descent method can be used. In the absence of
analytical gradients of I2

���n
A ,�m

B�, methods including di-

Z1 Z2

Z

MACMIreg(Z = ffZ3g; fZ4gg))

; fZ4gg fZ3g fZ4g

Output: " = [Z3; Ẑ4]

" = [Z3]; "0 = [Z4];

lines 1-2)

Line 13 inputs:

(b)
,Z4� within a family of image sets �Z= ��Z1� , �Z2� , ��Z3� , �Z4���� and the
nly Z3 contains subsets �i.e., �Z3�=2�, line 3 of MACMIreg in �a� begins a

e in �b� brings Z3 and Z4 into alignment and returns the ensemble �Z3 , Ẑ4�
d then align the ensemble of registered images from Z3 ��0= �Z3 , Ẑ4�� with

�, a transformation T is determined by argmaxT�I2
��� ,T��0��� and � is then

containing all of the coregistered images in Z, is �= �Z1 , Z̃2 , Z̃3 , Z̃4�.
ggg

Z3g

1 (

1 , . . .
ince o

stanc

nt an

ne 13
rect search �e.g., downhill simplex�, quasi-Newton �e.g.,
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Broyden–Fletcher–Goldfarb–Shanno�, and other finite
difference-based schemes can be employed.

Specific implementation details employed in this work are
described in the following section.

V. EXPERIMENTAL DESIGN

A summary of the clinical prostate and synthetic brain
image data sets investigated in this study is presented in
Table I.

V.A. Synthetic multiprotocol brain MRI

V.A.1. Data description

To quantitatively evaluate the performance of MACMI,
we consider a synthetic registration task using a data set Ss

comprising 20 2D multiprotocol �T1-w, T2-w, and PD� MRI
slices from the BrainWeb simulated brain database.46 We de-
note the T1-w, T2-w, and PD MRI slices as T1, T2, and P,
respectively.

V.A.2. Registration Experiment

Since synthetic brain MRI volumes T1, T2, and P are
initially in alignment, we apply a known nonlinear deforma-
tion �Tap� to P to generate an image Pd, for which misalign-
ment from T1 and T2 is known. The objective of the regis-
tration task is to recover the initial correct alignment via a
corrective deformation �Tco�. We denote the recovered P
slice as Pr. Image transformation is implemented using an
elastic free form deformation �FFD� model with a hierarchi-
cal mesh grid spacing scheme, as described in Ref. 21. Three
mesh grid levels were defined for vertex spacings of approxi-
mately �36, 27, 18� mm at each level �nx,y

� ��6,5� , �8,7� , �12,10�� moving control points on
zero-padded images�. MACMI is performed in a manner
similar to the scenario illustrated in Fig. 2�c�, whereby Pd

�instead of WMH� is registered to the multiattribute image
comprising the coregistered sections T1 and T2 via the re-
covered transformation

TMACMI
co = argmax

T
�I2

����T1T2�,T�Pd��� , �4�

where ��T1T2� represents the ensemble � of T1 and T2. In
order to compare to MACMI, registration is also performed
using objective functions defined by the MI of �1� Pd with
T1 and �2� Pd with T2. Thus, two additional Pr images are

co d co

TABLE I. Summary of the synthetic and clinical data sets registered by MA

Data set Description Modalities

Ss
Synthetic multiprotocol

brain MRI from BrainWeb T2-w, T1-w, PD MR

S1
c

Clinical multiprotocol
MRI and histology of prostate In vivo T2-w, DCE MRI, ex v

S2
c

Clinical multiprotocol
MRI and histology of prostate ADC, T2-w, DCE MRI, ex v
obtained by TPW1=argmaxT�I2�T1,T�P ��� and by TPW2
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=argmaxT�I2�T2,T�Pd���. Estimation of I2 and I2
� was

achieved using 2D and 3D probability density estimates ob-
tained using histograms with 128 and 62 gray level bins,
respectively. The number of bins in each case were chosen
empirically for reliable optimization of Eq. �4� using a
Nelder–Mead simplex algorithm.47

V.A.3. Registration evaluation

For the synthetic data, quantitative evaluation of registra-
tion accuracy can be performed easily since the correct co-
ordinate transformation Tap is known. The magnitude of er-
ror in the transformation Tco determined by registration can
be quantified in terms of mean absolute difference �MAD�
�FMAD�Tco�� and root mean squared �RMS� error
�FRMS�Tco�� from Tap. Both MAD and RMS error are com-
puted over the N total image pixels c in the common coor-
dinate frame C of T1, T2, and P and can be expressed as

FMAD�Tco� =
1

N
�
c�C

�Tco�c� − Tap�c�L2� , �5�

FRMS�Tco� =� 1

N
�
c�C

�Tco�c� − Tap�c��L2
2 , �6�

where N= �C� and � . �L2 is the L2-norm of a coordinate vector.
Further, the original P is compared directly to the resulting
Pr using L2 distance �DL2� as the similarity measure.

V.B. Clinical multimodal prostate MRI and histology

V.B.1. Data description

We address the registration of two prostate data sets, S1
c

and S2
c, comprising multimodal �3 T in vivo MRI and histol-

ogy� and multiprotocol �T2-w, DCE, and ADC MRI� images
�see Ref. 24 for details on acquisition�. Set S1

c comprises 150
corresponding ex vivo WMH sections with CaP delineated
and their closest corresponding 3 T in vivo T2-w and DCE
MRI slices over all 25 patient studies. Set S2

c is a subset of 15
patients �85 image sets� in S1

c, for which DWI was also ac-
quired and ADC maps calculated. We denote the T2-w MRI,
DCE MRI, ADC MRI, and WMH images as S, F, D, and H,
respectively. Each DCE MRI series comprises a sequence of
T1-w gradient echo MRI volumes, acquired following bolus
injection of the gadopentetate dimeglumine contrast agent at
0.1 mmol/kg of bodyweight. Two precontrast and five post-
contrast T1-w MRI volumes were obtained at a temporal

Pixels are square.

Dimensions Studies �images�

181�217 �1 mm pixel� 1 �20�

MH T2-w MRI: 512�512 �0.230–.280 mm pixel� 25 �150�

MH T2-w MRI: 512�512 �0.230–.280 mm pixel� 15 �85�
CMI.

I

ivo W

ivo W
resolution of 95 s. Maximal enhancement was generally ob-
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tained at the third postcontrast time point �denoted as F3�,
which was designated for use in the registration routines. No
ex vivo MRI or gross pathology photographs were acquired.

Following RP and prior to sectioning, the excised prostate
was embedded in a paraffin block while maintaining the ori-
entation to keep the urethra perpendicular to the plane of
slicing. This procedure facilitates the identification of a cor-
responding in vivo 2D axial MRI slice for each 2D histology
slice. Preparation of the digitized WMH sections proceeds as
follows: �1� The excised prostate is cut into sections that are
3–4 mm thick by slicing axial sections from the paraffin
block using a circular blade, �2� a microtome is used to fur-
ther cut the sections into thin slices that are about 5 �m
thick, and �3� a single thin slice from each 3–4 mm thick
section is chosen and digitally scanned. Each slide is then
examined under a light microscope using up to 40� apparent
magnification to identify and delineate the regions of CaP. As
a result of this slide preparation process, spacing of the digi-
tal WMH slides is both coarse and irregular, ranging from
3–8 mm. Further, the nonlinear tissue deformations and arti-
facts introduced during microtome slicing are independent
between slices and no block face photographs or fiducial
markers are available to correct the distortions. Therefore, it
is not feasible to accurately construct a 3D histology volume
suitable for a 3D registration procedure without significant
modifications to the established clinical routine.48,49 Thus,
for each WMH slice with disease, the closest corresponding
T2-w MRI slice was visually identified by an expert radiolo-
gist.

V.B.2. Registration experiments

As previously described, the goal of this task is to register
WMH to each MRI protocol in order to map CaP extent onto
MRI. Since each MRI series was acquired in sequence and
with minimal movement, 3D affine registration of the DCE
to T2-w MRI volume was performed for each of the 25 pa-
tients in S1

c �and S2
c� via MI between the 3D T2-w MRI vol-

ume and the 3D T1-w MRI volume corresponding to the
third postcontrast time point of the 4D DCE MRI volume,
using 256 gray level bins for the joint histogram. For each

axial slice F̃ of the registered 4D DCE MRI volume, a mul-

tiattribute image representation ��SF̃3� was generated, as il-
lustrated in Figs. 3�c�–3�e�. Prior to 2D elastic registration of

each H to each ��SF̃3�, the prostate capsule on the corre-
sponding S images �six slices on average� for each patient
was roughly delineated and the extraneous tissue masked out
during registration. This was done to facilitate a rough global
localization of the prostate on S relative to H.

For data set S1
c, automatic FFD registration of WMH to

the MRI by MACMI is then performed for each of the 150 H
slices usingI2

����SF̃3� ,Te�H��, resulting in a warped WMH

H̃=Te�H�, as shown in Fig. 3�b�. The CaP extent is then

mapped onto S and F̃3 by Te, as shown on Fig. 3�c�. In
addition to MACMI, the elastic registration of H to the co-
ordinate frame of S is also performed using �1� the conven-

e
tional MI of H with S �I2�S ,T �H��� and �2� the conven-
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tional MI of H with F̃3 �I2�F̃3 ,Te�H���. We refer to these
PW registration approaches as PW-T2 and PW-DCE, respec-
tively, and denote corresponding transformations as TMACMI

e ,
TPW-T2

e , and TPW-DCE
e .

For data set S2
c, the 3D ADC volume for each patient is

also registered using a 3D affine transformation to the coreg-
istered T2-w and DCE MRI volumes via a multiattribute

volume �i.e., the volume composed of axial images ��SF̃3��,
hence generating a registered ADC volume comprising slices

D̃. Automated FFD registration of WMH to MRI is then
performed for each set of corresponding H and S slices by

MACMI, which also considers F̃3 and D̃ via

I2
����SF̃3D̃� ,Te�H��. CaP extent is then mapped to each of

S, F̃3, and D̃. PW registration using just H and D is not
performed as the DWI protocol provides insufficient spatial
resolution and anatomical detail for multimodal correlation
based on image intensities alone.

V.B.3. Registration evaluation

Since ground truth for alignment of the clinical prostate
data is not known or easily determinable, evaluation is per-

formed by calculating similarities of both S and F̃3 with
TMACMI

e �H�, TPW-T2
e �H�, and TPW-DCE

e �H�. To exclude the ex-
traneous tissue outside the prostate in registration evaluation,
similarity is calculated in terms of the MI �Eq. �1�� for only
the area in the image containing the prostate. Qualitative
evaluation is also performed by visually comparing the CaP
extent mapped from histology onto T2-w MRI via TMACMI

e ,
TPW-T2

e , and TPW-DCE
e . An estimate of CaP extent manually

established by a radiologist on select slices of the T2-w MRI
is used as the ground truth. This is done for only those spe-
cific MR images where CaP extent could be reliably delin-
eated. It is important to note that these slices are not repre-
sentative of all T2-w MR images with CaP, since easily
delineated lesions are generally associated with dense tumors
�i.e., those with compact cellular arrangements�50 and those
occurring only in the peripheral zone.51 Further, delineation
of the CaP boundary is more challenging than discerning the
presence of a lesion.

VI. RESULTS AND DISCUSSION

VI.A. Synthetic brain registration

Table II presents a comparison of the evaluation measures
FMAD, FRMS, and DL2 for transformations obtained in elastic
registration of the n=20 multiprotocol MRI slices using
MACMI �TMACMI

co � and both PW registration approaches
�TPW1

co and TPW2
co �. The values of FMAD were compared be-

tween TMACMI
co and TPW1

co using a paired t-test under the null
hypothesis that there was no difference in FMAD between
TMACMI

co and TPW1
co . The values of FRMS and DL2 were also

compared between TMACMI
co and TPW1

co . Similarly, the values
of FMAD, FRMS, and DL2 were also compared between

co co
TMACMI and TPW2 �second row of table�. MACMI achieves
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better performance in terms of each measure, with signifi-
cantly lower error �p�0.05 for n=20� compared to one or
both PW methods.

VI.B. Clinical prostate registration

VI.B.1. Mapping CaP extent from WMH onto in vivo
T2-w and T1-w MRI

Figure 5 illustrates the registered WMH images and the
corresponding T2-w MRI along with the contours of the
mapped CaP extent and the urethra �verumontanum�, for a
single set of corresponding images in S1

c �and S2
c�. The S slice

is shown in Fig. 5�a� with the region containing the dominant
intraprostatic lesion �DIL� shown in the box and the urethra
outlined. An expert delineation of the DIL is shown in Fig.
5�b�, while the original WMH image with CaP ground truth
�dotted line� is shown in Fig. 5�c�. As described in Sec. IV B,
affine registration of T2-w and DCE MRI protocol volumes
�containing images S with F� is performed prior to elastic
registration of H. Elastic registration of the H slice �shown
in Fig. 5�c�� to S in Fig. 5�a� is then performed individually
using each method �PW-T2, PW-DCE, and MACMI�. The

elastically warped H �H̃�, obtained using only S �PW-T2�, is
shown in Fig. 5�f� and the CaP extent is shown mapped onto

S in Figs. 5�d� and 5�e�. H̃ obtained using only F �PW-DCE�
is shown in Fig. 5�j� and the CaP extent is again shown

mapped onto S �Figs. 5�h� and 5�i��. Finally, H̃ obtained
using both S and F �MACMI� is shown in Fig. 5�m� and the
CaP extent is again shown on S �Figs. 5�k� and 5�l��. The
contours of the mapped CaP extent on MRI suggest that �1�
accurate elastic registration of WMH directly to correspond-
ing in vivo MRI is feasible using the described FFD frame-
work and �2� MACMI outperforms PW application of MI
using data from only one of the several available MRI pro-
tocols. Note again that while the DIL shown in Fig. 5 is
useful for qualitative evaluation, identifying such a clearly
bounded lesion on T2-w MRI is rare. The positions of the

urethra on H̃ in Figs. 5�f�, 5�j�, and 5�m� also illustrate im-
proved alignment of the image interior via MACMI com-
pared to PW-T2 and PW-DCE. For example, note the im-

TABLE II. Comparison of elastic registration accuracy for MACMI and pair-
wise MI alignment of n=20 pairs of synthetic PD MRI with coregistered
T1-w and T2-w MRI brain images. The measures illustrated below corre-
spond to �i� error of recovered deformation field �in mm� in terms of FMAD

and FRMS and �ii� distance �DL2� between the undeformed and recovered PD
MRI. MACMI results are significantly more accurate compared to either
PW approach �p-values for both tests shown�. The best values are indicated
in bold.

FMAD FRMS DL2

TPW1
co �T1-PD� 0.9117 2.1407 1.83�10+03

TPW2
co �T2-PD� 0.9506 2.0248 2.35�10+03

TMACMI
co ���T1T2�-PD� 0.8348 1.9307 1.71�10+03

p �TPW1
co vs TMACMI

co � 0.0817 0.0578 0.0174
p �TPW2

co vs TMACMI
co � 0.0013 0.2020 1.8�10−10
proved urethral positioning via MACMI in Fig. 5�m�
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compared to the left misalignment by PW-T2 in Fig. 5�f�.
The results in Fig. 5 qualitatively demonstrate that the

general FFD-based registration paradigm described in this
paper is capable of generating good alignment between in
vivo MRI and ex vivo WMH prostate sections without the use
of any additional ex vivo MRI series or gross histology
�block face� photographs. Table III quantitatively illustrates
the advantage of using MACMI over a single MRI protocol.
For each of the n=25 patient studies in S1

c, registration accu-
racy for each of MACMI, PW-T2, and PW-DCE was ap-
proximated by the total MI of the elastically registered his-

tology slices H̃ with all of the corresponding �1� S and �2�
F̃3 slices, both of which are in the same coordinate frame as

S. Table III lists the average MI value Ī2 over n=25 patients

of all registered WMH slices H̃ obtained by MACMI, PW-

T2, and PW-DCE �columns� with either S or F̃3 �rows�. The

values of Ī2�S ,H̃� �and Ī2�F̃3 ,H̃�� were compared between
MACMI and PW-T2 using a paired t-test under the null hy-

pothesis that there was no difference in Ī2�S ,H̃� �and

I2�F̃3 ,H̃�� between MACMI and PW-T2. The comparisons

of Ī2�S ,H̃� and Ī2�F̃3 ,H̃� were also made between MACMI
and PW-DCE. In all comparisons, MACMI demonstrated
significant �p�0.05� improvement over both PW-T2 and
PW-DCE, despite these PW methods using MI as their ob-
jective function.

VI.B.2. Mapping CaP extent from WMH onto ADC,
T2-w and T1-w MRI

For the m=15 patient studies in S2
c for which ADC maps

were also obtained, MACMI was applied in both �1� the 3D

affine alignment of D to ��SF̃3� and �2� the 2D elastic align-

ment of H to ��SF̃3D̃�. Figures 6�a� and 6�b� show the origi-
nal H and the warped H �Te�H��, following elastic align-

ment with ��SF̃3D̃�. Figure 6�c� shows a checker board

visualization of the two coregistered S and F̃3 slices �shown
in Figs. 6�d� and 6�e�� after the 3D registration of the T2-w
and DCE MRI volumes performed for the studies in S1

c. For
each of the studies in S2

c �S1
c, the second 3D affine multipro-

tocol registration step was performed to align the ADC vol-
ume to the T2-w and DCE MRI volumes. This enables the

generation of aligned D̃ images �Fig. 6�f�� for each S �and

F̃3�. S and the registered F̃3 and D̃ images are shown in
Figs. 6�d�–6�f� with the contour of the mapped CaP extent
from Te�H� �Fig. 6�b��. It was observed that the inclusion of

D̃ in ��SF̃3D̃� had little effect on the resulting alignment
with H when compared with the results obtained using only

S and F̃3 as in Sec. VI B 1 above �comparison not shown�.

VII. CONCLUDING REMARKS

Signatures for disease on multimodal in vivo imaging may
be used to develop systems for computer-assisted detection
of cancer or to assist in the training of medical students,
radiology residents, and fellows. To establish in vivo radio-

logical imaging signatures for prostate cancer, an accurate
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estimate of ground truth for cancer extent on each of the
imaging modalities is necessary. In the context of certain
anatomic regions and diseases, the spatial extent of disease
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(a)

(d)

(h)

(k)

FIG. 5. �a� 3T in vivo T2-w MRI of a prostate with a clearly visible DIL and
WMH slice with CaP ground truth �dotted line� and urethra. ��d� and �e��
registration using only T2-w MRI. ��h� and �i�� T2-w MRI with CaP estimate
and �l�� Registration using both T2-w and DCE MRI via MACMI results in
The verumontanum of the urethra is also shown on the registered WMH im
may be obtained by spatial correlation or registration of his-

Medical Physics, Vol. 38, No. 4, April 2011
tology sections with corresponding in vivo images. In this
paper, we presented a new method termed MACMI within an
automated elastic FFD registration framework for alignment

Over-segmentation

(b) (c)

(e) (f)

(i) (j)

(l) (m)

ified in �b� with a manual estimate of CaP extent. �c� Closest corresponding
MRI with estimate of CaP extent as mapped from �f� WMH via elastic
�j� WMH registered to DCE �T1-w� MRI �coregistered to T2-w MRI�. ��k�

r agreement of the registration-derived CaP extent and the manual estimate.
in �f�, �j�, and �m�.
magn
T2-w
from

close
of images from multiple in vivo acquisition protocols with
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corresponding ex vivo WMH sections. Our approach to reg-
istration of in vivo multiprotocol radiology images and ex
vivo WMH of the prostate using MACMI is distinct from
previous related efforts18,30,35 in that �1� information from all
in vivo image sources is being utilized simultaneously to
drive the automated elastic registration with WMH; �2� no
additional, intermediate ex vivo radiology or gross histology
images need to be obtained �this approach does not disrupt
routine clinical workflow�; and �3� no point correspondences
are required to be identified manually or automatically. This
last advantage is particularly relevant in the context of in
vivo MR images where visual identification of anatomical
landmarks is a challenge even for experts.

MACMI performs registration of several images by incor-
porating multiple image sources using an information theo-
retic approach. These may include different modalities, ac-
quisition protocols, or image features. For the clinical
application discussed in this paper, MACMI facilitates the
use of all available in vivo prostate imaging protocols ac-
quired during the standard clinical routine in order to per-
form automated elastic registration with the ex vivo WMH.
Unlike fully groupwise registration techniques, the optimiza-
tion problem remains simple while accommodating both

TABLE III. Comparison of elastic registration accura
studies. The measures illustrated below correspond to

WMH slices H̃, obtained by MACMI, PW-T2, or PW
MRI �rows of table�.

Mean MI with WMH Registration ob

MR protocol MACMI PW-

T2-w: Ī2�S ,H̃� 0.3378 0.33

DCE: Ī2�F̃3 ,H̃� 0.3155 0.30

(a) (b) (c)

(d) (e) (f)

FIG. 6. Using MACMI to include ADC MRI in the elastic registration of �a�
histology to each of �d� T2-w, �e� DCE �T1-w�, and �f� ADC MRI. Prior to
elastic registration of histology, ��d� and �e�� T2-w and T1-w MRI were first
successfully aligned via MI, as seen by �c� the checkerboard overlay of
T2-w MRI and registered T1-MRI. �e� ADC was then registered to both
T2-w and T1-w MRI via MACMI. �b� Elastically registered histology was
obtained using the coregistered multiprotocol MRI via MACMI and CaP

extent was mapped onto ��d�–�f�� MRI.
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highly dissimilar modalities and large deformations of vari-
able magnitude.

We demonstrated the use of MACMI for registration of
150 multimodal �WMH, T2-w, and DCE MRI� prostate im-
age sets from 25 patients; 85 sets of WMH, T2-w, ADC, and
DCE MRI from 15 patients; and 20 sets of synthetic T1-w,
T2-w, and PD MR brain images. Statistically significant im-
provement in registration accuracy was observed in using
MACMI to simultaneously register PD MRI to both T1-w
and T2-w MRI, compared to pairwise registration of PD to
T1-w or T2-w MRI, for the synthetic data set. Qualitative
examination of alignment between multiprotocol clinical
prostate MRI and histology suggested improved performance
via MACMI over pairwise MI. The inclusion of ADC MRI
in the multiattribute registration had little effect on the result-
ing alignment with WMH when compared to the results ob-
tained using only T2-w and T1-w MRI �Sec. VI B 1�. Nev-
ertheless, it is possible that the use of MACMI in the
registration of ADC to the ensemble of registered T2-w and
T1-w MRI helped achieve more consistent multiprotocol
MRI alignment than if either protocol were used alone. We
intend to investigate this application of MACMI further in
the future.

While we utilized histograms for density estimation, other
techniques, such as entropic graphs,44 can be applied for
larger numbers of images. However, independent of the
implemented estimation method, MACMI affects informa-
tion theoretic fusion of multiple image sources by computing
multivariate MI between multiattribute images constructed
as ensembles of coregistered images. It is important to note
that in the absence of a predetermined order for combining
images, MACMI may still be applied by combining images
in a completely arbitrary order. Even in this scenario,
MACMI still represents an improvement over fully pairwise
registration by utilizing all registered images. Future work
will investigate the influence of the order of multiattribute
image construction on alignment accuracy.
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