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Purpose: The purpose of this work is twofold: First, to characterize the artifacts occurring in helical
4D-CT imaging; second, to propose a method that can automatically identify the artifacts in 4D-CT
images. The authors have designed a process that can automatically identify the artifacts in 4D-CT
images, which may be invaluable in quantifying the quality of 4D-CT images and reducing the
artifacts from the reconstructed images on a large dataset.
Methods: Given two adjacent stacks obtained from the same respiration phase, the authors deter-
mine if there are artifacts between them. The proposed method uses a “bridge” stack strategy to
connect the two stacks. Using normalized cross correlation convolution �NCCC�, the two stacks are
mapped to the bridge stack and the best matching positions can be located. Using this position
information, the authors can then determine if there are artifacts between the two stacks. By
combining the matching positions with NCCC values, the performance can be improved.
Results: To validate the method, three expert observers independently labeled over 600 stacks on
five patients. The results confirmed that high performance was obtained using the proposed method.
The average sensitivity was about 0.87 and the average specificity was 0.82. The proposed method
also outperformed the method of using respiratory signal �sensitivity increased from 0.50 to 0.87
and specificity increased from 0.70 to 0.82�.
Conclusions: This study shows that the spatial artifacts during 4D-CT imaging are characterized
and can be located automatically by the proposed method. The method is relatively simple but
effective. It provides a way to evaluate the artifacts more objectively and accurately. The reported
approach has promising potential for automatically identifying the types and frequency of artifacts
on large scale 4D-CT image dataset. © 2011 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3553556�
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I. INTRODUCTION

The spatial accuracy of reconstructed medical images is criti-
cally important in radiation therapy, both for tumors and for
the surrounding normal tissue. Respiratory motion can be a
major source of positional and temporal uncertainty in the
thorax and abdomen, causing a miss with significant dosim-
etric consequences. Four dimensional computed tomography
�4D-CT� provides a way of reducing the uncertainties caused
by respiratory motion. With 4D-CT images, one can assess
the three dimensional �3D� position of the tumor and avoid-
ance structures at the specified phases of the respiratory
cycle and directly incorporate that information into treatment
planning.1–17

4D-CT image sets are a sequence of 3D-CT datasets in-
dexed by respiratory phase, acquired using sorting based on
the respiration amplitude or the phase of fan- or cone-beam
images.18,19 Such methods can be acquired for sequential
table positions, also termed the cine acquisition method,20–22

or by “helical” scanning, also called spiral acquisition,23–27
and the differences between these two methods is
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well-documented.21 Approaches to 4D-CT gating include ret-
rospective gating17,20,24,26,28,29 and prospective gating30 and
commonly applied acquisition methods include
phase-4,24,26,28,31 and amplitude-based sorting.29,32–34 How-
ever, all the current 4D-CT acquisition and reconstruction
methods require multiple cycles of patient respiration, which
frequently lead to spatial artifacts. A recent study showed
these artifacts occurred with an alarmingly high frequency
and spatial magnitude.9

Furthermore, there were several important studies on
strategies for improving 4D-CT including �1� using breathing
training to improve the respiratory regularity that could re-
duce the artifacts,35–37 �2� improved sorting,6,32,33,38–41 �3�
using internal anatomical features instead of external surro-
gates to improve the image quality,42,43 and �4� postscan im-
age processing.44–49 Although these methods propose to re-
duce artifacts in 4D-CT image data, no tool currently exists
to allow clinicians to efficiently evaluate the integrity of the
4D-CT scans or researchers to compare the effectiveness of

corrective strategies. To date, this has been accomplished by
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human observation only,9 which is subjective and variable,
making the evaluation of large numbers of datasets unfea-
sible. There were several methods used to evaluate the qual-
ity of 4D-CT artifacts.46,47 One method used the mean
squared gray value difference between two adjacent slices as
a metric to measure the magnitude of artifacts.46 Another
method first predicted the slices between two adjacent stacks.
The discontinuity measure was computed as the distance be-
tween the predictions and the actual slices from the adjacent
stack.47 However, both methods identified the artifacts
poorly because their metrics can be affected by artifacts and
also by anatomical changes. Additionally, both methods were
proposed to measure discontinuity and were not intended as
a tool to identify the artifacts.

Since artifacts in 4D-CT have a high frequency,9 auto-
matically identifying them in 4D-CT images is very useful,
especially when using a large scale dataset. Furthermore, ac-
curate identification of spatial artifacts is a prerequisite for
correcting aberrant sections of a dataset. Based on this rea-
soning, we present a method to automatically identify and
evaluate the spatial artifacts within 4D-CT scans, providing
indicators for correction strategies as well as establishing a
clinical means to quantify the quality of the reconstructed
4D-CT images.

II. MATERIALS AND METHOD

II.A. Definition of terms

4D-CT image data consists of a series of multiple 3D-CT
volume datasets acquired at different respiratory phases.
Each phase-specific 3D-CT dataset is made of several groups
of 2D images �stacks�, where each stack is reconstructed
from each cycle of respiration during acquisition. For the
purpose of this study, we define the following terms:

• Slice: A 2D CT image denoted as I. The pixel value at
location �x ,y� is denoted as I�x ,y�.

• Stack: Sequence slices acquired at one respiratory cycle
occurring at a certain respiratory phase denoted as
S�i , j�, where i is the respiratory phase index and j is the
respiratory cycle index. A 2D slice in S�i , j� is denoted
as I�p�, i.e., I�p��S�i , j�, where p denotes the pth slice
in S�i , j�.

• 3D-CT: Sequence stacks that cover the full imaged pa-
tient anatomy at a certain respiratory phase denoted as
�S�i ,1� ,S�i ,2� , . . . ,S�i ,N−1� ,S�i ,N��, where N is the
number of respiratory cycles.

• 4D-CT: Series of 3D-CT volume datasets acquired at
different respiratory phases, which can be denoted as
��S�1,1� ,S�1,2� , . . . ,S�1,N−1� ,S�1,N�� , �S�2,1�,
S�2,2� , . . . ,S�2,N−1� ,S�2,N�� , . . . , �S�K ,1�,
S�K ,2� , . . . ,S�K ,N−1� ,S�K ,N���, where K is the num-
ber of respiratory phases and N denotes the number of
respiratory cycles.

The number of stacks required at each respiratory phase
to construct the 3D-CT volume is equivalent to the number
of respiratory cycles needed. This is a function of the ana-

tomical length of the scan, the patient’s respiratory rate, and
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the translation speed of the imaging couch. Each stack S�i , j�
is indexed by its respiratory phase i and the respiratory cycle
j. Two consecutive stacks of the same phase �i.e., S�i , j� and
S�i , j+1�� have continuous couch positions produced by ad-
jacent respiratory cycles.

II.B. Image acquisition

All patients were imaged in accordance with a clinical
trail approved by the Institutional Review Board. Patients
were scanned using a 40-slice CT scanner �Siemens Bio-
graph, Hoffman Estate, IL� operating in helical mode. Imag-
ing parameters were 120 kVp, 2.0 mm slice thickness, 1.2
mm collimator, and B30F medium smooth kernel reconstruc-
tion filter. Acquisition occurred with a pitch of 0.1 and either
a tube rotation speed of 500 ms/rotation �requiring each res-
piratory cycle to not exceed 5 s� or 1000 ms/rotation �for
respiratory cycles to not exceed 10 s�. Since each image was
reconstructed with 180° rotation, the temporal resolutions of
the two tube rotation speed scans were 250 and 500 ms,
respectively. The amplitude of the respiratory motion was
monitored using a strain gauge belt with a pressure sensor
�Anzai, Tokyo, Japan�. The respiratory phase at each time
point was computed by the scanner console software via
renormalization of each respiratory cycle by the cycle-
specific maxima and minima. The patients were allowed to
breathe freely while listening to musical-audio instruction.
The pace of the musical-audio instruction was determined
for each patient during a 10 min respiratory training session
that preceded the 4D-CT scan.

II.C. Characterization of 4D-CT artifacts

Siemens BIOGRAPH 40 software was used to sort raw
4D-CT images into respiratory phase-based bins of 4D-CT
images. The Anzai strain gauge belt utilizes a pressure sensor
to measure changes in strain during respiration. The ampli-
tude of the strain signal is adjusted for each data point rela-
tive to the maximum and minimum inflection points for each
cycle of respiration. The system then calculates a relative
amplitude-based phase at each point of a respiratory trace,
where 0% corresponds to end expiration and 100% corre-
sponds to peak inspiration. The application reads raw 4D-CT
projection data as well as the normalized respiration trace
and assigns a phase to each CT slice according to the tem-
poral correlation between the trace and CT data acquisition.
The reconstructed CT slices are sorted into a dataset corre-
sponding to their amplitude-based respiratory phase: Either
0%, 100%, or one of a series of four phases during the inhale
and exhale sides of the respiratory trace �20%, 40%, 60%,
and 80%�.

Image artifacts caused by irregular breathing are possible
during helical 4D respiratory-gated CT acquisition; an ex-
ample is shown in Fig. 1�a�. Obvious changes occur with the
large variations in patient respiration shown in Fig. 1�b�, al-
though even subtle changes can create a phase shift follow-
ing the normalization process, as shown in Fig. 1�b�. These
artifacts compromise image quality and introduce spatial dis-

tortions that reduce the spatial accuracy of the reconstructed
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image, resulting in inaccurate radiation treatment planning.
For this study, we utilized ten phases for each respiration
cycle consistent with the vendor’s nomenclature—inhalation:
20%, 40%, 60%, 80%, and 100%; exhalation: 80%, 60%,
40%, 20%, and 0%.

Our method is designed to identify spatial distortions
within each CT dataset. Even with contiguous couch posi-
tions, anatomical structures that move with respiration may
have artifacts, particularly when variations in respiration oc-
cur during image acquisition. We have categorized three
types of artifact sources: Low frequency respiration, high
amplitude cycle, and low amplitude cycle. Low frequency
respiration means longer respiration cycles, which result in
the absence of some respiration phases. If the respiration
cycles are longer than the collimator width divided by the
table speed, objects that pass through the collimator field of
view will not be imaged at every phase. In this instance an
anatomical loss in the dataset will occur, as shown in Fig.
2�a�. The anatomical loss resulting from the missing data is
compensated for by interpolation, which leads to “blurring.”
If the amplitude cycle is too low or too high, either an
anatomy gap or an anatomy overlap may occur. The anatomy
gap is different from the anatomy loss caused by low fre-
quency respiration in that images are acquired during the
specified phase, but the mobile anatomy is not within the
collimator field of view due to the high/low amplitude cycle.
The anatomy overlap is similar to the anatomy gap, but

FIG. 1. Image artifacts due to the irregular breathing. �a� The white line
cycle-specific normalization �dashed line� and original �solid line� respirator
the normalized respiratory trace, which may cause large artifacts due to ana
caused when the mobile anatomy reappears within the colli-
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mator field of view due to the high/low amplitude cycle.
Figure 2 provides a graphical rendition. The main factors
under consideration here are the irregular respiratory cycles
and the different respiratory motion directions.

The oversampling of anatomy during the 4D acquisition
process produces image stacks from consecutive cycles with
slices that overlie each other. The number of overlying slices
depends on the pitch and the patient’s respiration frequency;
the vendor application removes slices of duplicated table po-
sitions �z�. As a result, the total length Wj of the image stack
corresponding to the respiration cycle j is always smaller
than the maximum length Wmax, which can potentially be
reconstructed from the available raw data. The total length is
typically the distance L traveled by the couch table between
the two consecutive cycles, while the maximum length Wmax

is close to the total nominal detector length D �the exact
value is slightly less and depends on the spiral interpolation
algorithm used for image reconstruction�. Therefore, the
length of each stack, Wj =pitch�D�cycle time/rot time.
Clinically, when the patient’s respiration pattern �cycle time�
varies, the value of Wj will vary but remain below Wmax as
long as lengthy pauses in respiration do not occur.

II.D. Description of the bridge stack method

The proposed method identifies artifacts between two
stacks S�i , j� and S�i , j+1� using a “bridge stack.” The bridge

w the stack locations and the arrows show the artifacts. �b� Respiratory
e. There are about 400 ms delay between the original respiratory trace and
motion.
s sho
y trac
stack comes from a different phase �i� but contains slices in
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common with both stacks S�i , j� and S�i , j+1�. The quality of
each stack’s alignment with the bridge stack is quantified by
normalized cross correlation �NCC� for each possible align-
ment position. The optimal matching positions are deter-
mined using normalized cross correlation convolution
�NCCC� and used to identify the artifacts between two
stacks. Finally, the algorithm determines the presence of an
artifact based on evaluating both the �1� proximity of the
matching positions on the bridge stack for S�i , j� and S�i , j
+1� and �2� any deviation of NCCC values from those ex-
pected. A flow diagram detailing the process is provided in
Fig. 3, while each element of the proposed method is de-
scribed below.

II.D.1. Bridge stacks to benchmark

Two consecutive stacks S�i , j� and S�i , j+1� are continu-

FIG. 2. Example of the problems due to irregular respiration during 4D-CT
anatomy gap is not imaged and the missing data is compensated by interp
motion are the same. �c� Anatomy overlap under high respiration cycle. The
under low respiration cycle. The couch and anatomy motion are the same
opposite to the anatomy motion.
imaging. �a� Anatomy gap due to low frequency respiration. In this case, the
olation. �b� Anatomy gap under high respiration cycle. The couch and anatomy
couch moving direction is opposite to the anatomy motion. �d� Anatomy overlap
. �e� Anatomy gap under low respiration cycle. The couch moving direction is
ous in terms of their couch positions, but they may have
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FIG. 3. The flow diagram for the proposed algorithm to predict the presence

of image artifacts within 4D-CT scanned images.
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artifacts �overlaps, gaps, or blurring�. To identify the pres-
ence of spatial distortions between the stacks, a single stack
that contains slices from both stacks �a bridge stack Sb� is
needed. A bridge stack Sb�k , t� is selected to connect two
stacks S�i , j� and S�i , j+1� and the bridge stack should have
overlaps with S�i , j� and S�i , j+1�. If the stack that has the
largest number of overlapping slices with both S�i , j� and
S�i , j+1� is to be selected as the bridge stack, it will occur at
half the time between j and j+1. Supposing S�i , j� is ac-
quired at time T�i , j� and S�i , j+1� is acquired at time T�i , j
+1�, we should choose the bridge stack, which is acquired
at T�i , j�+ �T�i , j+1�−T�i , j�� /2. Because human respiratory
patterns are irregular and asymmetric, the stack acquired
at the time nearest to T�i , j�+ �T�i , j+1�−T�i , j�� /2 is se-
lected. Then, let S�i , j� and S�i , j+1� come from the ith
phase, the phase k and cycle t of the bridge stack are com-

puted as

I��d� = 0 if d � l .
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�k,t� = arg min
t��j,j+1�,k

��T�k,t� − �T�i, j�

+
�T�i, j + 1� − T�i, j��

2
	�	 . �1�

II.D.2. Finding the best position on bridge stack by
normalized cross correlation

The second step of our method is to compare how well
the image slices I�x ,y� of stacks S�i , j� and S�i , j+1� match
up with those from the bridge stack Sb�k , t�, as shown con-
ceptually in Fig. 4. At each position, we compute the average
NCC value on the overlapping slices. The best position for a
stack corresponds to the one with the largest value. Since this
process is similar to the signal convolution, we call it NCCC.

The NCC value between two 2D image slices is defined

as
NCC�I,I�� =
1

N


x,y

�I�x,y� − �I��I��x,y� − �I��
��1/N�
x,y�I�x,y� − �I�2��1/N�
x,y�I��x,y� − �I��

2
, �2�
where �I= �1 /N�
x,yI�x ,y�, �I�= �1 /N�
x,yI��x ,y�, and N is
the number of pixels in I and I�. The NCC value varies
between a value of 0.0 and 1.0, where a value of 1.0 corre-
sponds to perfect image similarity.

Supposing S�i , j� consists of m 2D image slices, S�i , j
+1� consists of n 2D image slices, and Sb�k , t� consists of l
2D image slices. The NCCC between S�i , j� and Sb�k , t�
�S�i , j+1� and Sb�k , t�� is defined as the vector of length m
+ l−1 �n+ l−1�, whose pth element is computed using

NCCCS�i,j�,Sb�k,t��p�

=
1

min�p,m�
d=1

p

NCC�I�m + d − p�,I��d�� ,

where �p = 1, . . . ,m + l − 1, I � S�i, j�, I� � Sb�k,t�
I�m + d − p� = 0 if m + d − p � 1

I��d� = 0 if d � l ,

�3�

NCCCS�i,j+1�,Sb�k,t��p�

=
1

min�p,n�
d=1

p

NCC�I�n + d − p�,I��d�� ,

where �p = 1, . . . ,n + l − 1, I � S�i, j + 1�, I� � Sb�k,t�
I�n + d − p� = 0 if n + d − p � 1 �4�
The NCCC value also varies between a value of 0.0 and
1.0, where a value of 1.0 corresponds to the perfect image
similarity. The position corresponding to the largest NCCC
value is the best matching position. Since the best position
locates the last slice of S�i , j� or S�i , j+1�, we need to move
it to the first slice position for S�i , j�. The best position be-
tween S�i , j� and Sb�k , t�, S�i , j+1� and Sb�k , t� is computed
as follows:

Pos�S�i, j�,Sb�k,t�� = �arg max
p

NCCCS�i,j�,Sb�k,t��p�� + 1 − m ,

�5�

Pos�S�i, j + 1�,Sb�k,t�� = arg max
p

NCCCS�i,j+1�,Sb�k,t��p� . �6�

If the two stacks are beyond one slice of being contigu-
ous, there is a strong probability they contain an artifact, that
is,

�Pos�S�i, j�,Sb�k,t�� − Pos�S�i, j + 1�,Sb�k,t�� − 1� � 1

⇒ not contiguous. �7�

When the two stacks are contiguous �e.g., Pos�S1 ,Sb�
−Pos�S2 ,Sb�=1, as shown in Fig. 4�a��, the images are likely
artifact-free. If the two stacks overlap, then Pos�S1 ,Sb�
−Pos�S2 ,Sb��1 �as shown in Fig. 4�b��, and if there are
gaps, then Pos�S1 ,Sb�−Pos�S2 ,Sb��1 �as shown in Fig.

4�c��.
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II.D.3. Evaluate optimal NCCC value

Stacks with no artifact will produce larger NCCC values
than those with artifacts. Therefore, we utilize the NCCC
values as an additional parameter to reduce false positive
�FP� and false negative �FN� results. A true positive �TP�
event exists when there are artifacts between two stacks
S�i , j� and S�i , j+1�, while a true negative �TN� event exists
when no geometric distortions are present.

Our algorithm classifies a positive result from Eq. �7� as
either TP or FP, where a FP has larger NCCC values than a
TP due to greater similarity between the stacks. Conversely,
a negative result from Eq. �7� is classified as either TN or
FN, where a TN has higher NCCC values than a FN, again
due to the greater similarity between the stacks. Practically,
we established the NCCC cutoff between true and false by
training two parameters, �PP and �PN. One is used to classify
TP and FP and another is used to classify TN and FN.

First, 80 pairs of stacks for which ground truth had been
established �Sec. II F� were selected as training sets. For each
sections,
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pair of stacks S�i , j� and S�i , j+1�, we obtained two NCCC
values denoted as NCCC�S�i , j� ,Sb�k , t�� and NCCC�S�i , j
+1� ,Sb�k , t��, which correspond to the best positions when
matching the two stacks to the bridge stack. Second, stacks
were grouped as predicted positive �PP� or predictive nega-
tive �PN� based on the matching positions described above
�Eq. �7�, Sec. II D 2�, the mean �PP, �PN and the standard
deviation �PP, �PN were obtained from all computed NCCC
values in PP and PN groups. Finally, the parameters �PP and
�PN were selected to maximize the product of the sensitivity
and specificity based on the ground truth, where Eq. �8� was
used if S�i , j+1� and Sb�k , t� were in PP and Eq. �9� was used
if S�i , j+1� and Sb�k , t� were in PN.

For the remaining 544 stacks, we use these optimized
values of �PP and �PN in Eqs. �8� and �9� to identify the
artifacts. This way, both the matching positions and the
NCCC values are used to improve the algorithm’s
performance,

FIG. 4. The use of a bridge stack Sb to connect image
stacks S1 and S2. �a� No artifacts are present when S1 is
matched to Sb contiguous with the position where S2 is
matched to Sb. �b� Overlap between slices of S1 and S2

produces artifacts, as do �c� gaps between S1 and S2.
S�i, j� and S�i, j + 1��no artifacts if min�NCCC�S�i, j�,Sb�k,t��,NCCC�S�i, j + 1�,Sb�k,t��� − �PP � �PP · �PP

having artifacts otherwise,
� �8�

S�i, j� and S�i, j + 1��no artifacts if min�NCCC�S�i, j�,Sb�k,t��,NCCC�S�i, j + 1�,Sb�k,t��� − �PN � �PN · �PN

having artifacts otherwise.
� �9�
II.E. The method of using respiratory signal

For the purpose of comparison with our method, we
evaluated the correlation of artifacts with the amplitude of
the patient’s respiration trace. Specifically, in each respira-
tory cycle, each stack S�i , j� is assigned a respiration ampli-
tude denoted as v�i , j�, where i is the respiratory phase index
and j is the respiratory cycle index. We compute the mean
��i� and standard deviation ��i� for all the stacks from the
same respiratory phase, where i is the respiratory phase in-
dex. Then, we use Eq. �10� to identify the artifacts, where w
is a parameter to balance the sensitivity and specificity. We
compared our method to this direct method in the following
S�i, j��having artifacts if �v�i, j� − ��i�� � w��i�
no artifacts otherwise.

� �10�

II.F. Evaluation

4D-CT datasets from five patients with known image ar-
tifacts were used in our experiments. Datasets were recon-
structed for ten phases, details of the acquired data are pre-
sented in Table I. Expert observers reviewed all of the
images and identified stacks containing artifacts. The final
ground truth was determined by consensus among the three
observers and used to compute the sensitivity and specificity

of the competing methods to identify artifacts.
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III. RESULTS

III.A. Ability of NCCC to characterize 4D-CT artifacts

Figure 5 shows the behavior of the NCCC parameter be-
tween two stacks for which no artifact is present. The stacks
evaluated were from 100% inhalation phase; the NCCC val-
ues at different positions are shown in Fig. 5�a� for stack 1
and Fig. 5�b� for stack 2, where the bridge stack comes from
0% exhalation. The alignment of the adjacent stacks can be
appreciated visually in Fig. 5�c�, showing the coronal view.
The couch positions of the slices in stack 1 range from 144
to 160 mm. The couch positions of slices in stack 2 range
from 126 to 142 mm. The couch positions of slices in the
bridge stack range from 134 to 156 mm. As seen in Fig. 5,
when stack 1 is matched to the bridge stack, the best position
�highest NCCC value� is at slice 6, which corresponds to the
couch position of 144 mm. Similarly, stack 2 is matched to
the position of slice 5, which corresponds to a couch position
of 142 mm. In this case, the CT slices are 2 mm thick, so
there are no artifacts between stack 1 and stack 2 and

TABLE I. Patients’ data statistics. For each patient, the number of respiration
phases, the number of respiration cycles, the total number of stacks and the
average respiration cycle �mean� and standard deviation �std� are given.

Total No.
of respiration

phases

Total No.
of respiration

cycles
Total No.
of stacks

Respiration cycle
mean�std

�s�

Patient 1 10 10 100 4.5�1.3
Patient 2 10 20 200 4.0�2.0
Patient 3 8 18 144 3,6�0.9
Patient 4 10 11 110 4.6�0.8
Patient 5 10 7 70 9.1�2.5

FIG. 5. Without artifacts. �a� The NCCC values at each position on Sb when
each position on Sb when S2 is matched to Sb. The best position is Pos�S2 ,Sb
example, Pos�S1 ,Sb�−Pos�S2 ,Sb�=1, which indicates that there is no artifact betw
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Pos�S1 ,Sb�−Pos�S2 ,Sb�=1. For both stacks, the NCCC val-
ues increase monotonically until a clear maximum is
reached. Figure 6 shows another case where there are arti-
facts between the two stacks. Stack 1 and stack 2 come from
phase 80% inhalation and the bridge stack comes from phase
60% exhalation. The couch positions in stack 1 range from
16 to 50 mm and the couch positions in stack 2 are from �18
to 14 mm. The couch positions in the bridge stack range
from 10 to 40 mm. The NCCC values between stack 1 and
the bridge stack first increase and then decrease. However,
because of the blurring and deformations, the NCCC values
between stack 2 and the bridge stack decrease monotonously
for all overlapping positions. In this example, Pos�S1 ,Sb�
−Pos�S2 ,Sb�=4−1=3, which means there is a space between
the two stacks resulting in the blurring artifact seen in Fig.
6�c�. Figures 7 and 8 show the overlapping case and gapping
case using the same method. In Fig. 7, stack 1 is matched to
Sb and the best matching position is Pos�S1 ,Sb�=5. Stack 2 is
matched to Sb and the best matching position is Pos�S2 ,Sb�
=6. Since Pos�S1 ,Sb�−Pos�S2 ,Sb�=−1, it means that there
are overlapping artifacts. In Fig. 8, Pos�S1 ,Sb�−Pos�S2 ,Sb�
=3, which corresponds to gapping artifacts.

In Table II, we showed the results for identifying the ar-
tifacts types. We showed the numbers for no artifacts, gap-
ping artifacts, and overlapping artifacts, where gapping arti-
facts included the blurring artifacts caused by low frequency
respiration and the gapping artifacts caused by high ampli-
tude cycle or low amplitude cycle. For patient 1, the pro-
posed method identified 56 no artifacts and 44 artifacts, in
which 20 gapping artifacts and 24 overlapping artifacts. For
patient 2, the proposed method identified 162 no artifacts and
38 artifacts, in which 29 gapping artifacts and 9 overlapping
artifacts. For patient 3, the proposed method identified 109

matched to Sb. The best position is Pos�S1 ,Sb�=6. �b� The NCCC values at
�c� Stack 1 and stack 2. The dashed line shows the adjacent location. In this
S1 is
�=5.
een S1 and S2.
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no artifacts, 20 gapping artifacts, and 15 overlapping arti-
facts. For patient 4, the proposed method identified 73 no
artifacts, 21 gapping artifacts, and 16 overlapping artifacts.
Finally, the proposed method can identify 27 no artifacts, 30
gapping artifacts, and 13 overlapping for patient 5.

FIG. 6. Blurring artifacts due to gap caused by low frequency respiration. �
position is Pos�S1 ,Sb�=4. �b� The NCCC values at each position on Sb when
The dashed line shows the adjacent location. In this example, blurring occurs
occur.

FIG. 7. Overlapping artifacts. �a� The NCCC values at each position on Sb w
at each position on Sb when S2 is matched to Sb. The best position is Pos�S2 ,S

Pos�S1 ,Sb�−Pos�S2 ,Sb�=−1, it indicates that the overlapping artifacts occur.
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III.B. Results on identification 4D-CT artifacts

III.B.1. Sensitivity and specificity of the proposed
method

In Table III, we show the results using our method when
applied to all 624 stacks from ten phases acquired for five

e NCCC values at each position on Sb when S1 is matched to Sb. The best
matched to Sb. The best position is Pos�S2 ,Sb�=1. �c� Stack 1 and stack 2.

use of low frequency respiration. Pos�S1 ,Sb�−Pos�S2 ,Sb�=3 shows that gaps

1 is matched to Sb. The best position is Pos�S1 ,Sb�=5. �b� The NCCC values
. �c� Stack 1 and stack 2. The dashed line shows the adjacent location. Since
a� Th
S2 is

beca
hen S

b�=6
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patients �note that patient 3 has eight phases�. �PP and �PN

were trained on 80 pairs of stacks that were randomly se-
lected. We showed our results with three different �PP and
�PN values. The optimal �PP=0.5 and �PN=−2.9 were used in
our experiments. The corresponding average sensitivity was
0.87 and the average specificity was 0.82. The results indi-
cate that around 87% of artifacts could be correctly identified
using the proposed method, while about 82% artifact-free
stacks could be correctly identified. In Fig. 9, we showed the
statistical analysis of the NCCC values in the PP and PN
samples by only using matching positions information �see
Fig. 9�. It is evident that FP has higher NCCC values than TP
�Fig. 9�a�� and that TN has higher NCCC values than FN
�Fig. 9�b��. This proved our assumption in Sec. II D 3, i.e.,
by combining matching positions and NCCC values, perfor-
mance could be improved.

FIG. 8. Gapping artifacts. �a� The NCCC values at each position on Sb when
at each position on Sb when S2 is matched to Sb. The best position is Pos�
adjacent location, which is shown with a dashed line. Pos�S1 ,Sb�−Pos�S2 ,S

TABLE II. Results on identifying artifacts types using the proposed method.
We showed the numbers for no artifacts, gapping artifacts, and overlapping
artifacts, where gapping artifacts included the blurring artifacts caused by
low frequency respiration and the gapping artifacts caused by high ampli-
tude cycle or low amplitude cycle. The ground truth is shown in brackets.

No artifacts Gapping artifacts Overlapping artifacts

Patient 1 56 �65� 20 �16� 24 �19�
Patient 2 162 �163� 29 �28� 9 �9�
Patient 3 109 �121� 20 �13� 15 �10�
Patient 4 73 �73� 21 �20� 16 �17�
Patient 5 27�46� 30 �18� 13 �6�
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III.B.2. Comparison of the proposed method
with the method of using respiratory signal

The intuitive way to identify the 4D-CT artifacts is to
directly use the respiratory signal. Table IV displays the re-
sults of three different w values that we tested with this
method. From Eq. �10�, we know w is inversely proportional
to sensitivity and proportional to specificity. The three differ-
ent w values used were 0.5, 0.75, and 1. The average sensi-
tivity and specificity were 0.50 and 0.70 when w was set to
0.75. The results showed that simply using the amplitude of
the respiratory signal can only correctly identify about 50%
of the artifact stacks, while correctly identifying 70%
artifact-free stacks.

From Tables III and IV, we can see that the proposed
method clearly outperformed the method of using respiratory
signal in all the experiments. With all five patients’ data,
sensitivity increased from 0.50 to 0.87. Specificity increased
from 0.70 to 0.82. If we fixed the specificity around 0.8, the
sensitivity was about 0.87 using the proposed method, while
its value was about 0.3 using the method of using respiratory
signal, which is a significant improvement �Tables III and
IV�. Similarly, if we fixed sensitivity around 0.9, the speci-
ficity was about 0.80 and 0.2 using the proposed method and
the method of using respiratory signal, respectively. The
comparisons supported the validity of the proposed method.

IV. DISCUSSION

IV.A. Performance analysis

First, we discuss the characteristics of the NCCC values

s matched to Sb. The best position is Pos�S1 ,Sb�=13. �b� The NCCC values
�=10. �c� Stack 1 and stack 2. There is an obvious flat region around the
indicates that gapping artifacts occur.
S1 i
S2 ,Sb
to thoroughly analyze the performance of the proposed
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method. When computing NCCC values between S�i , j� and
Sb�k , t�, we obtain m+ l−1 NCCC values at each position on
Sb�k , t�, where m and l are the number of slices in S�i , j� and
Sb�k , t�, respectively. Plotting m+ l−1 values, we produce a
curve called the NCCC value curve. We used four main
shape types in our experiments to describe the NCCC value
curve. Type 1: The curve first increases and then decreases
with a single maximum value. Type 2: The curve first in-
creases and then decreases with several maximum values.
Type 3: The curve decreases monotonously. Type 4: The
curve increases monotonously. Our ideal case shape is type 1
and most TN belongs to this category. If there are no over-
laps, type 3 and type 4 curves may occur, which means there
may be artifacts. We found type 2 to be the most problem-
atic. The reason is that there are several maximum values

TABLE III. Results of the proposed method. For each patient, TP, TN, FP, and
values and gave the average results. The last row was computed based on t

�PP �PN TP TN F

Patient 1 0.3 �2.5 29 55 10
0.5 �2.9 32 53 12
0.8 �3.3 33 50 15

Avg 0.53 �2.9 31.3 52.7 12
Patient 2 0.3 �2.5 30 159 4

0.5 �2.9 34 159 4
0.8 �3.3 35 156 7

Avg 0.53 �2.9 33 158 5
Patient 3 0.3 �2.5 17 106 15

0.5 �2.9 19 105 16
0.8 �3.3 19 102 19

Avg 0.53 �2.9 18.3 104.3 16
Patient 4 0.3 �2.5 31 68 5

0.5 �2.9 32 68 5
0.8 �3.3 33 62 11

Avg 0.53 �2.9 32 66 7
Patient 5 0.3 �2.5 17 35 11

0.5 �2.9 20 23 23
0.8 �3.3 20 19 27

Avg 0.53 �2.9 19 25.7 20

Avg �PP=0.5 �PN=−2.9 27.4 81.6 12

FIG. 9. Statistical analysis of the NCCC values for TP, FP, TN, and FN. �a� C

and FN for all PN samples.
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which may lead to misclassification due to very similar
maximum values. We viewed 624 stacks and gave a static
distribution for the four types of curves �see Table V�. The
results showed that the number of stacks with type 2 in FN
+FP was 25+10=35 �20, 12, and 12 for types 1, 3, and 4�,
which was larger than the other three types. While using only
the matching position information may lead to errors, we
noticed that we can combine the matching positions with
NCCC values to improve performance, which has been vali-
dated in Sec. III B 1.

We also tested the proposed method by only using the
matching positions, i.e., without combining the NCCC val-
ues to show the usefulness of combing optimal NCCC
values. Let S�i , j� and S�i , j+1� be matched to Sb�k , t�
at Pos�S�i , j� ,Sb�k , t�� and Pos�S�i , j+1� ,Sb�k , t��, respec-

re given, respectively. For each patient, we tried three different �PP and �PN

sults obtained by �PP=0.5 and �PN=−2.9, which were shown in bold.

FN Sensitivity Specificity Sensitivity�specificity

6 0.83 0.85 0.71
3 0.91 0.82 0.75
2 0.94 0.77 0.72
3.7 0.89 0.81 0.72
7 0.81 0.98 0.79
3 0.92 0.98 0.90
2 0.95 0.96 0.91
4 0.89 0.97 0.86
6 0.76 0.88 0.67
4 0.83 0.87 0.72
4 0.83 0.84 0.70
4.7 0.81 0.86 0.70
6 0.84 0.93 0.78
5 0.86 0.93 0.80
4 0.89 0.85 0.76
5 0.86 0.90 0.78
7 0.71 0.76 0.54
4 0.83 0.50 0.42
4 0.83 0.42 0.35
5 0.79 0.56 0.44

3.8 0.87 0.82 0.72

risons between TP and FP for all PP samples. �b� Comparisons between TN
FN a
he re

P

.3

.7

.3
ompa
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tively. If �Pos�S�i , j� ,Sb�k , t��−Pos�S�i , j+1� ,Sb�k , t��−1�
� threshold, it is identified as a positive sample, otherwise
the sample is a negative sample. Tuning the threshold can
achieve a balance between sensitivity and specificity, i.e., a
larger threshold getting a higher specificity and a smaller
threshold getting a higher sensitivity. We investigated two
types of thresholds, threshold=0 and threshold=1. Theoreti-
cally, the threshold should be chosen as threshold=0 �de-
noted as T1� to get the best sensitivity value. Because of the
deformations, we can relax it to threshold=1 �denoted as T2�
to improve the specificity value. The results showed that by
using T2, the specificity is 0.96; however, the sensitivity was
only 0.35, which means fewer artifacts were identified. Us-
ing T1, we can achieve a balance between the two metrics on
our dataset. The average sensitivity and specificity were 0.77
and 0.80 with T1. Compared to the results in Table III, it is
clearly shown that the sensitivity was improved by 13%
�from 0.77 to 0.87� and the specificity was improved 3%

TABLE IV. Results by the method of using respiratory
�0.5, 0.75, and 1� and gave the average results. The
w=0.75, which were shown in bold.

w TP TN FP FN

Patient 1 0.5 26 30 35 9
0.75 20 41 24 15

1 17 50 15 18
Avg 0.75 21 40.3 24.7 14

Patient 2 0.5 26 123 40 11
0.75 21 149 14 16

1 18 156 7 19
Avg 0.75 21.7 142.7 20.3 15.

Patient 3 0.5 15 67 54 8
0.75 9 87 34 14

1 8 100 21 15
Avg 0.75 10.7 84.7 36.3 12.

Patient 4 0.5 25 47 26 12
0.75 13 50 23 24

1 10 56 17 27
Avg 0.75 16 51 22 21

Patient 5 0. 5 15 18 28 9
0.75 14 24 22 10

1 8 31 15 16
Avg 0.75 12.3 24.3 21.7 11.

Avg w=0.75 15.4 70.2 23.4 15.

TABLE V. The proportion of the four types of NCCC value curve shape in
TP, TN, FP, and FN. Type 1: The curve first increases and then decreases
with a single maximum value. Type 2: The curve first increases and then
decreases with several maximum values. Type 3: The curve decreases mo-
notonously. Type 4: The curve increases monotonously.

Type 1 Type 2 Type 3 Type 4

TP�total=137� 43 39 28 27
TN�total=408� 301 65 19 23
FP�total=60� 12 25 11 12
FN�total=19� 8 10 1 0
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�from 0.80 to 0.82� by combining NCCC values. Note that
the sensitivity was much improved, which meant more arti-
facts were being identified. We have used a simple search
method to find parameters to improve performance but more
research is needed to improve this technique; specifically
which method should be used to find the parameters and how
many samples should be used for training.

Second, we discuss the relations between the patients’
respiratory cycle, the stack length, and the spatial distortion
artifacts. The number of slices in one stack may vary due to
the irregular respiration cycles and helical data acquisition
method. The irregular respiration cycles lead to different
lengths of stacks and spatial distortion artifacts. The box plot
seen in Fig. 10 shows the variation in the stack length �the
number of slices in one stack� from five patients’ image

al. For each patient, we tried three different w values
ow was computed based on the results obtained by

Sensitivity Specificity Sensitivity�specificity

0.74 0.46 0.34
0.57 0.63 0.36
0.49 0.77 0.36
0.6 0.62 0.37
0.70 0.75 0.52
0.57 0.91 0.52
0.49 0.96 0.47
0.59 0.87 0.51
0.65 0.55 0.29
0.39 0.72 0.28
0.35 0.83 0.29
0.46 0.7 0.32
0.68 0.64 0.44
0.35 0.68 0.24
0.27 0.77 0.21
0.43 0.70 0.30
0.63 0.39 0.24
0.58 0.52 0.30
0.33 0.67 0.22
0.51 0.53 0.27

0.50 0.70 0.35

FIG. 10. The variation in the stack length �the number of slices in one stack�
for different patients. Large variation indicates that patients had significant
changes in their respiratory rate during the image acquisition. Therefore, the
sign
last r

3

3

7

8

patients with larger variation may have more artifacts.
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datasets. The maximum stack length for these five patients
would be 22, yet that length was rarely accomplished in any
case. More importantly, these data showed the substantial
range in stack length, indicating patients had significant
variations in their respiratory rate during image acquisition.
Patient 5 showed the largest variation, while the distribution
of stack lengths for patient 2 was far more consistent, imply-
ing they may have fewer respiration-induced spatial distor-
tion artifacts. The relatively high respiratory rate in these
patients resulted in stack lengths reconstructed by the system
being much less than the maximum amount of the slices per
stack that could be reconstructed from the acquired raw pro-
jection data.

Third, the outlier patient is of interest. During the method
evaluation study, we observed that all the patients showed
good results, except for patient 5. After analyzing the data,
we observed that the motion inside this patient was great,
which meant that the respiration of this patient was very
erratic. Consequently, the bridge stacks may not be correctly
selected due to the irregular breathing. We were able to use
the bridge stack to correctly connect the measured stacks.
One way to avoid selecting the wrong bridge stack is to
directly recover the overlapping slices from the raw data,
which is currently removed by the vendor supplied software.

Finally, the performance of the different methods is worth
discussing. The proposed methods were an improvement
over the method of using respiratory signal. One possible
reason is that the artifacts have correlations with irregular
respiration; however, there is no exact function to show the
correlations between the occurrence of the artifacts and the
shapes of the respiratory signal. Thus, simply using respira-
tory signals cannot attain satisfactory results. The proposed
method provided a fundamental solution to the identification
of 4D-CT artifacts. A good method should be easy to under-
stand and to implement in the clinical process. From this
point of view, NCCC is simple but effective and is a good
choice in our study. For the metrics we used in this paper,
sensitivity is more useful than specificity because we are
more concerned that the 4D-CT artifacts are evaluated by
sensitivity. Thus, as described in the Abstract, the increase in
sensitivity from 0.50 to 0.87 is significant.

IV.B. Comparisons of the automated method
with the manual method

The manual method has been used in the past.9 In their
study, at each position, the observers searched for the coronal
view where the artifacts are most prominent. Then, the ob-
servers scrolled all the phases to record the artifacts types,
location, and the corresponding phase information. Com-
pared to our automated method, the manual method9 only
recorded the large artifacts �larger than 4.4 mm�. Artifacts of
smaller magnitude than the minimum one found in their
analysis �i.e., 4.4 mm� almost certainly exist and were
present in the image but were not found by their method. The
possible reason is that it is difficult to identify smaller arti-
facts by the observers. This is not difficult for the automated

method. On one hand, the manual method would allow us to
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identify the types, locations, and magnitude of larger artifacts
more accurate than the automated method. On the other
hand, the automated method would allow us to identify the
artifacts more objectively than the manual method. Addition-
ally, the automated method could save more time than the
manual method. Thus, it could be used on a large dataset.

IV.C. Potential usage for improving 4D-CT
image

As we addressed in the previous sections, our method can
help improve the quality of 4D-CT image. In order to get an
artifact-reduced 4D-CT image, we can first use our method
to automatically identify the location of the artifacts. Thus,
only the problematic slices need to be reconstructed or re-
paired and not all slices have to be rejected. After we get an
artifact-reduced image, we could use the proposed method to
measure whether we have reduced the artifacts. Thus, our
method can prelocate the artifacts and validate 4D-CT image
quality. Both of these will be benefit for improving the
4D-CT image.

IV.D. Limitations and future work

One of the limitations of our method is that it requires a
bridge stack. The bridge stack should contain slices in com-
mon with both measured stacks, otherwise we cannot link
the measured stacks. Thus, if the patients have large irregular
breathing pattern, the bridge stacks may not be correctly se-
lected. Another limitation is that the NCCC cannot efficiently
differentiate the rigid and nonrigid anatomy deformation.
Both the bridge stack and the nonrigid anatomy deformation
could affect the residual uncertainties. Additionally, more ac-
curate ground truth may benefit for improving the residual
uncertainties. The future work includes �1� training the pa-
rameters on a large dataset and �2� quantitatively analyzing
the helical 4D-CT artifacts using the proposed method on a
large dataset.

V. CONCLUSION

Automatically identifying artifacts is essential to quanti-
tatively analyzing the 4D-CT images. Current clinical de-
mands in 4D-CT image guided radiation therapy show that it
can be very useful to automatically identify the artifacts, a
subject that is not well addressed in the current literature. In
this paper, we first characterized the spatial artifacts during
4D-CT imaging, summarized three types of artifact sources,
and analyzed the resulting artifacts. Based on our analysis,
we proposed a method of automatically identifying the arti-
facts between two consecutive stacks acquired using the he-
lical mode 4D-CT imaging technique; that is, using the
bridge stack to connect two consecutive stacks. The method
can also be used for any two stacks if a bridge stack can be
selected. Freed from the constraints of changing machine
configurations, the method is applicable to those clinical cen-
ters that hope to directly use the reconstruction image to

identify the artifacts.



2086 Han et al.: Characterization and identification of 4D-CT spatial artifacts 2086
ACKNOWLEDGMENT

This paper was funded in part by NIH Grant No. R01 EB
004640.

a�Electronic mail: john-bayouth@uiowa.edu; Telephone: �319� 384 6135;
Fax: �319� 356-1530.

1R. Colgan et al., “Planning lung radiotherapy using 4D CT data and a
motion model,” Phys. Med. Biol. 53, 5815–5830 �2008�.

2I. El Naqa, D. A. Low, J. O. Deasy, A. Amini, and P. M. N. Parikh,
“Automated breathing motion tracking for 4D computed tomography,”
IEEE Nuclear Science Symposium, pp. 3219–3122, 2003 �unpublished�.

3M. Endo, T. Tsunoo, S. Kandatsu, S. Tanada, H. Aradate, and Y. Saito,
“Four-dimensional computed tomography �4D CT�—Concepts and pre-
liminary development,” Radiat. Med. 21, 17–22 �2003�.

4P. Keall, “4-dimensional computed tomography imaging and treatment
planning,” Semin. Radiat. Oncol. 14, 81–90 �2004�.

5D. A. Low et al., “Novel breathing motion model for radiotherapy,” Int. J.
Radiat. Oncol., Biol., Phys. 63, 921–929 �2005�.

6E. Rietzel, T. Pan, and G. T. Chen, “Four-dimensional computed tomog-
raphy: Image formation and clinical protocol,” Med. Phys. 32, 874–889
�2005�.

7G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato, “Prediction of
respiratory tumour motion for real-time image-guided radiotherapy,”
Phys. Med. Biol. 49, 425–440 �2004�.

8S. Webb, “Motion effects in �intensity modulated� radiation therapy: A
review,” Phys. Med. Biol. 51, R403–R425 �2006�.

9T. Yamamoto, U. Langner, B. W. Loo, Jr., J. Shen, and P. J. Keall, “Ret-
rospective analysis of artifacts in four-dimensional CT images of 50 ab-
dominal and thoracic radiotherapy patients,” Int. J. Radiat. Oncol., Biol.,
Phys. 72, 1250–1258 �2008�.

10V. Boldea, G. C. Sharp, S. B. Jiang, and D. Sarrut, “4D-CT lung motion
estimation with deformable registration: Quantification of motion nonlin-
earity and hysteresis,” Med. Phys. 35, 1008–1018 �2008�.

11G. Carnes, S. Gaede, E. Yu, J. Van Dyk, J. Battista, and T. Y. Lee, “A
fully automated non-external marker 4D-CT sorting algorithm using a
serial cine scanning protocol,” Phys. Med. Biol. 54, 2049–2066 �2009�.

12J. W. Wolthaus et al., “Mid-ventilation CT scan construction from four-
dimensional respiration-correlated CT scans for radiotherapy planning of
lung cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. 65, 1560–1571
�2006�.

13D. Yang, W. Lu, D. A. Low, J. O. Deasy, A. J. Hope, and I. El Naqa,
“4D-CT motion estimation using deformable image registration and 5D
respiratory motion modeling,” Med. Phys. 35, 4577–4590 �2008�.

14P. J. Keall, S. Joshi, S. S. Vedam, J. V. Siebers, V. R. Kini, and R. Mohan,
“Four-dimensional radiotherapy planning for DMLC-based respiratory
motion tracking,” Med. Phys. 32, 942–951 �2005�.

15Y. Liang, H. Xu, J. Yao, Z. Li, and W. Chen, “Four-dimensional intensity-
modulated radiotherapy planning for dynamic multileaf collimator track-
ing radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 74, 266–274 �2009�.

16S. A. Nehmeh et al., “Four-dimensional �4D� PET/CT imaging of the
thorax,” Med. Phys. 31, 3179–3186 �2004�.

17W. Lu et al., “Quantitation of the reconstruction quality of a four-
dimensional computed tomography process for lung cancer patients,”
Med. Phys. 32, 890–901 �2005�.

18M. Defrise and G. T. Gullberg, “Image reconstruction,” Phys. Med. Biol.
51, R139–R154 �2006�.

19W. A. Kalender, “X-ray computed tomography,” Phys. Med. Biol. 51,
R29–R43 �2006�.

20D. A. Low et al., “A method for the reconstruction of four-dimensional
synchronized CT scans acquired during free breathing,” Med. Phys. 30,
1254–1263 �2003�.

21T. Pan, “Comparison of helical and cine acquisitions for 4D-CT imaging
with multislice CT,” Med. Phys. 32, 627–634 �2005�.

22S. Tazawa, Y. Gotoh, S. Takahashi, M. Zuguchi, and S. Maruoka, “Cine
viewing of abdominal CT,” Comput. Methods Programs Biomed. 66,
105–110 �2001�.

23J. Dinkel et al., “Four-dimensional multislice helical CT of the lung:
Qualitative comparison of retrospectively gated and static images in an

ex-vivo system,” Radiother. Oncol. 85, 215–222 �2007�.

Medical Physics, Vol. 38, No. 4, April 2011
24E. C. Ford, G. S. Mageras, E. Yorke, and C. C. Ling, “Respiration-
correlated spiral CT: A method of measuring respiratory-induced ana-
tomic motion for radiation treatment planning,” Med. Phys. 30, 88–97
�2003�.

25H. Hu, “Multi-slice helical CT: Scan and reconstruction,” Med. Phys. 26,
5–18 �1999�.

26S. S. Vedam, P. J. Keall, V. R. Kini, H. Mostafavi, H. P. Shukla, and R.
Mohan, “Acquiring a four-dimensional computed tomography dataset us-
ing an external respiratory signal,” Phys. Med. Biol. 48, 45–62 �2003�.

27G. Wang and M. W. Vannier, “The effect of pitch in multislice spiral/
helical CT,” Med. Phys. 26, 2648–2653 �1999�.

28T. Pan, T. Y. Lee, E. Rietzel, and G. T. Chen, “4D-CT imaging of a
volume influenced by respiratory motion on multi-slice CT,” Med. Phys.
31, 333–340 �2004�.

29N. Wink, C. Panknin, and T. D. Solberg, “Phase versus amplitude sorting
of 4D-CT data,” J. Appl. Clin. Med. Phys. 7, 77–85 �2006�.

30G. S. Mageras et al., “Fluoroscopic evaluation of diaphragmatic motion
reduction with a respiratory gated radiotherapy system,” J. Appl. Clin.
Med. Phys. 2, 191–200 �2001�.

31G. S. Mageras et al., “Measurement of lung tumor motion using
respiration-correlated CT,” Int. J. Radiat. Oncol., Biol., Phys. 60, 933–
941 �2004�.

32M. J. Fitzpatrick et al., “Displacement-based binning of time-dependent
computed tomography image data sets,” Med. Phys. 33, 235–246 �2006�.

33W. Lu, P. J. Parikh, J. P. Hubenschmidt, J. D. Bradley, and D. A. Low, “A
comparison between amplitude sorting and phase-angle sorting using ex-
ternal respiratory measurement for 4D CT,” Med. Phys. 33, 2964–2974
�2006�.

34J. Wang, J. Byrne, J. Franquiz, and A. McGoron, “Evaluation of
amplitude-based sorting algorithm to reduce lung tumor blurring in PET
images using 4D NCAT phantom,” Comput. Methods Programs Biomed.
87, 112–122 �2007�.

35R. George et al., “Audio-visual biofeedback for respiratory-gated radio-
therapy: Impact of audio instruction and audio-visual biofeedback on
respiratory-gated radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 65,
924–933 �2006�.

36T. Neicu, R. Berbeco, J. Wolfgang, and S. B. Jiang, “Synchronized mov-
ing aperture radiation therapy �SMART�: Improvement of breathing pat-
tern reproducibility using respiratory coaching,” Phys. Med. Biol. 51,
617–636 �2006�.

37R. B. Venkat, A. Sawant, Y. L. Suh, R. George, and P. J. Keall, “Devel-
opment and preliminary evaluation of a prototype audiovisual biofeed-
back device incorporating a patient-specific guiding waveform,” Phys.
Med. Biol. 53, N197–N208 �2008�.

38E. Rietzel and G. T. Chen, “Improving retrospective sorting of 4D com-
puted tomography data,” Med. Phys. 33, 377–379 �2006�.

39Y. D. Mutaf, J. A. Antolak, and D. H. Brinkmann, “The impact of tem-
poral inaccuracies on 4DCT image quality,” Med. Phys. 34, 1615–1622
�2007�.

40T. Pan, X. Sun, and D. Luo, “Improvement of the cine-CT based 4D-CT
imaging,” Med. Phys. 34, 4499–4503 �2007�.

41A. F. Abdelnour et al., “Phase and amplitude binning for 4D-CT imag-
ing,” Phys. Med. Biol. 52, 3515–3529 �2007�.

42R. Zeng, J. A. Fessler, J. M. Balter, and P. A. Balter, “Iterative sorting for
four-dimensional CT images based on internal anatomy motion,” Med.
Phys. 35, 917–926 �2008�.

43R. Li, J. H. Lewis, L. I. Cervino, and S. B. Jiang, “4D CT sorting based
on patient internal anatomy,” Phys. Med. Biol. 54, 4821–4833 �2009�.

44E. Schreibmann, G. T. Y. Chen, and L. Xing, “Image interpolation in 4D
CT using a BSpline deformable registration model,” Int. J. Radiat. Oncol.,
Biol., Phys. 64, 1537–1550 �2006�.

45E. Schreibmann, Y. Yang, A. Boyer, T. Li, and L. Xing, “SU-FF-J-21:
Image interpolation in 4D CT using a BSpline deformable registration
model,” Med. Phys. 32, 1924 �2005�.

46J. Ehrhardt et al., “An optical flow based method for improved recon-
struction of 4D CT data sets acquired during free breathing,” Med. Phys.
34, 711–721 �2007�.

47M. Georg, R. Souvenir, A. J. Hope, and R. Pless, “Manifold learning for
4D CT reconstruction of the lung,” IEEE Computer Society Workshop on
Mathematical Methods in Biomedical Image Analysis �MMBIA, CVPR
Workshop�, pp. 1–8, 2008 �unpublished�.

48
R. Werner et al., “Motion artifact reducing reconstruction of 4D CT

http://dx.doi.org/10.1088/0031-9155/53/20/017
http://dx.doi.org/10.1053/j.semradonc.2003.10.006
http://dx.doi.org/10.1016/j.ijrobp.2005.03.070
http://dx.doi.org/10.1016/j.ijrobp.2005.03.070
http://dx.doi.org/10.1118/1.1869852
http://dx.doi.org/10.1088/0031-9155/49/3/006
http://dx.doi.org/10.1088/0031-9155/51/13/R23
http://dx.doi.org/10.1016/j.ijrobp.2008.06.1937
http://dx.doi.org/10.1016/j.ijrobp.2008.06.1937
http://dx.doi.org/10.1118/1.2839103
http://dx.doi.org/10.1088/0031-9155/54/7/013
http://dx.doi.org/10.1016/j.ijrobp.2006.04.031
http://dx.doi.org/10.1118/1.2977828
http://dx.doi.org/10.1118/1.1879152
http://dx.doi.org/10.1016/j.ijrobp.2008.10.088
http://dx.doi.org/10.1118/1.1809778
http://dx.doi.org/10.1118/1.1870152
http://dx.doi.org/10.1088/0031-9155/51/13/R09
http://dx.doi.org/10.1088/0031-9155/51/13/R03
http://dx.doi.org/10.1118/1.1576230
http://dx.doi.org/10.1118/1.1855013
http://dx.doi.org/10.1016/S0169-2607(01)00143-2
http://dx.doi.org/10.1016/j.radonc.2007.09.003
http://dx.doi.org/10.1118/1.1531177
http://dx.doi.org/10.1118/1.598470
http://dx.doi.org/10.1088/0031-9155/48/1/304
http://dx.doi.org/10.1118/1.598804
http://dx.doi.org/10.1118/1.1639993
http://dx.doi.org/10.1120/jacmp.2027.25373
http://dx.doi.org/10.1120/1.1409235
http://dx.doi.org/10.1120/1.1409235
http://dx.doi.org/10.1016/j.ijrobp.2004.06.021
http://dx.doi.org/10.1118/1.2044427
http://dx.doi.org/10.1118/1.2219772
http://dx.doi.org/10.1016/j.cmpb.2007.05.004
http://dx.doi.org/10.1016/j.ijrobp.2006.02.035
http://dx.doi.org/10.1088/0031-9155/51/3/010
http://dx.doi.org/10.1088/0031-9155/53/11/N01
http://dx.doi.org/10.1088/0031-9155/53/11/N01
http://dx.doi.org/10.1118/1.2150780
http://dx.doi.org/10.1118/1.2717404
http://dx.doi.org/10.1118/1.2794225
http://dx.doi.org/10.1088/0031-9155/52/12/012
http://dx.doi.org/10.1118/1.2837286
http://dx.doi.org/10.1118/1.2837286
http://dx.doi.org/10.1088/0031-9155/54/15/012
http://dx.doi.org/10.1016/j.ijrobp.2005.11.018
http://dx.doi.org/10.1016/j.ijrobp.2005.11.018
http://dx.doi.org/10.1118/1.1997567
http://dx.doi.org/10.1118/1.2431245


2087 Han et al.: Characterization and identification of 4D-CT spatial artifacts 2087
image data for the analysis of respiratory dynamics,” Methods Inf. Med.
46, 254–260 �2007�.

49D. Han, J. Bayouth, S. Bhatia, M. Sonka, and X. Wu, “Motion artifact

reduction in 4D helical CT: Graph-based structure alignment,” in Medical

Medical Physics, Vol. 38, No. 4, April 2011
Computer Vision: Recognition Techniques and Applications in Medical
Imaging. Proceedings of MICCAI MCV 2010, Beijing, China, Lecture
Notes in Computer Science Vol. 6533, edited by B. H. L. G. Menze, Z.

Tu, and A. Criminisi �Springer, Heidelberg, 2010�.


