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Analytical treatment of biased diffusion in tubes with periodic dead ends
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Effective mobility and diffusion coefficient of a particle in a tube with identical periodic dead ends
characterize the motion on large time scale, when the particle displacement significantly exceeds the
tube period. We derive formulas that show how these transport coefficients depend on the driving
force and the geometric parameters of the system. Numerical tests show that values of the trans-
port coefficients obtained from Brownian dynamics simulations are in excellent agreement with our
theoretical predictions. [doi:10.1063/1.3567187]

I. INTRODUCTION

Effect of dead ends on diffusive transport has been
discussed in different contexts. Examples include transport
in dendrites,1 extra-cellular diffusion in brain tissue,2 intra-
tissue diffusion of water and other substances in muscles,3

diffusive transport in soil,4 and linear porous media.5–7 The
present paper deals with biased diffusion in tubes with peri-
odic dead ends schematically shown in Fig. 1. Because of the
complex geometry of the tube, the problem is too complicated
to be solved by conventional methods of the mathematical
physics.6 In the present paper we suggest a new approach that
allows us to overcome the difficulties and to derive approxi-
mate formulas for the effective mobility and diffusion coef-
ficient of a point particle, Eqs. (2.2) and (2.3). The formulas
show how these transport coefficients depend on the driving
force and geometric parameters of the tube. To test the ac-
curacy of our approximate theory we compare its predictions
with the results obtained from Brownian dynamics simula-
tions finding excellent agreement between the two. This study
is an extension of our recent works on unbiased diffusion in
tubes with periodic dead ends.7

Such tubes represent a special case of linear porous
media with periodically varying geometry. Transport in such
systems has been actively studied for the last few years.6–13

Varying geometry of the system creates periodic entropy
potential along the tube axis. This potential can be smooth or
change abruptly as shown in Fig. 2. The entropy potentials
created by periodic dead ends can be considered as a periodic
set of entropy traps since a particle entering a dead end
interrupts its motion along the tube axis (Fig. 1).

When developing a theory of transport in such systems,
the key step is to reformulate the problem in terms of a one-
dimensional description. Such a description depends on the
type of the system. For example, unbiased diffusion in tubes
of smoothly varying geometry can be analyzed using the re-
duction to the generalized Fick-Jacobs equation14–17 and suc-
cessive application of the Lifson–Jackson formula18 for the
effective diffusion coefficient. This approach fails when the
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tube geometry changes abruptly such as in the tube shown
in Fig. 2(b). Here one can use a different one-dimensional
description. In this description a contact of two segments of
the tube, which have different radii, is considered as a par-
tially absorbing boundary.19, 20 The effective trapping rate for
such a boundary can be found by means of boundary homoge-
nization. Based on this description, one can find the effective
diffusion coefficient in a tube of alternating diameter in the
absence of the driving force.

An alternative approach is required to analyze unbiased
diffusion in tubes with periodic dead ends.7 In this approach
the focus is on the particle lifetime in the tube between its
successive trappings by the dead ends, and on the particle res-
idence time in the dead end. Here we generalize this approach
and use it to derive the formulas for the effective mobility
and diffusion coefficient in the presence of an external driving
force acting on the particle, Eqs. (2.2) and (2.3). The outline
of the present paper is as follows. In Sec. II we (i) discuss the
model, (ii) give the formulas for μeff(F) and Deff(F), and (iii)
present the results of the numerical tests. Derivations of the
formulas are given in Sec. III. Section IV contains concluding
remarks.

II. MODEL, RESULTS, NUMERICAL TESTS

Consider a point Brownian particle in a tube of radius
R with identical periodic dead ends separated by period l,
schematically shown in Fig. 1. In our model the dead end is
formed by a cavity of volume Vcav that is connected to the
tube by a cylindrical channel of radius a and length L . It is as-
sumed that a � R, l, while L and Vcav can be arbitrary. The
particle motion in such a system in the presence of an exter-
nal driving force F can be characterized by effective drift ve-
locity, veff(F), or effective mobility, μeff(F) = veff(F)/F , and
effective diffusion coefficient, Deff(F). The goal of the theory
is to find these functions. Diffusion coefficient and mobility
of the particle in the absence of constraints are denoted by
D0 and μ0, μ0 = βD0, where β = 1/(kB T ) with the standard
notations kB and T for the Boltzmann constant and absolute
temperature.
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FIG. 1. A tube with identical periodic dead ends [panel (a)] and its one-
dimensional model [panel (b)].

A. Results

The effective diffusion coefficient of the particle in the
absence of the driving force, Deff(0), is given by a simple
formula7

Deff(0) = D0
Vtube

Vtube + Vde
, (2.1)

where Vtube and Vde are the volumes of the cylindrical part
of the tube of length l and the dead end, Vtube = π R2l, Vde

= Vch + Vcav, and Vch = πa2L is the volume of the connect-
ing channel. One can use Deff(0) to find μeff(0) by the Einstein
relation, μeff(0) = βDeff(0).

As shown in Sec. III, the effective mobility is indepen-
dent of the driving force. Thus, we have

μeff(F) = μeff(0) = βDeff(0) = μ0
Vtube

Vtube + Vde
. (2.2)

β 
U(

x)
β 

U(
x)

(a)

(b)

FIG. 2. Tubes of periodically varying geometry and corresponding entropy
potentials. Variations of the geometry can be smooth [panel (a)] or abrupt
[panel (b)].

The formula for Deff(F) is more complex. In Sec. III, we de-
rive the following formula for the ratio Deff(F)/Deff(0),

Deff(F)

Deff(0)
= 1 + V 2

de

(Vtube + Vde)2

[
F̃/2

tanh
(
F̃/2

) − 1

+ π R2
〈
τ 2

de

〉
8al〈τde〉2

F̃2

]
, (2.3)

where F̃ = βFl, while 〈τde〉 and 〈τ 2
de〉 are the first and second

moments of the particle lifetime in the dead end. These mo-
ments have been found in Ref. 7, where it is shown that the
ratio 〈τ 2

de〉/〈τde〉2 entering into Eq. (2.3) can be expressed in
terms of the geometric parameters of the dead end,〈
τ 2

de

〉
2〈τde〉2

= 1 +
(

Vcav

Vde

)2

+ 4L

πa

[
Vcav

Vde
+ 1

3

(
Vch

Vde

)2
]
. (2.4)

While μeff(F) is independent of F , Deff(F) monotonically in-
creases with the driving force approaching its large-F asymp-
totic behavior, Deff(F) ∝ F2 as F → ∞.

Formulas for the effective mobility and diffusion coef-
ficient, Eqs. (2.2) and (2.3), are main results of the present
paper.

B. Numerical tests

To check the accuracy of our results, Eqs. (2.2)
and (2.3), we compare theoretically predicted effective
drift velocity, veff(F) = μeff(F)F , and diffusion coefficient,
Deff(F), with those obtained from Brownian dynamics sim-
ulations. The comparison is made assuming that there are
no connecting channels, i.e., L = 0. In this case the ratio
〈τ 2

de〉/〈τde〉2, Eq. (2.4), is equal to four, and Eq. (2.3) takes
the form

Deff(F)

Deff(0)
= 1 + V 2

de

(Vtube + Vde)2

[
F̃/2

tanh
(
F̃/2

) − 1 + π R2

2al
F̃2

]
.

(2.5)

In Fig. 3 we show veff(F) and Deff(F) obtained numeri-
cally by circles while solid lines show theoretically predicted
dependences.

According to Eq. (2.2), the effective mobility is indepen-
dent of the driving force. As a consequence, the effective drift
velocity is proportional to the driving force (Ohm’s law) and
given by

veff(F) = μ0
Vtube

Vtube + Vde
F. (2.6)

We will assume that the dead end cavities are spheres
of radius Rcav connected to the cylindrical part of the tube
by small apertures of radius a, a � Rcav. Thus, the system
geometry is characterized by four-dimensional parameters: R,
l, a, and Rcav, and, hence, three-dimensionless parameters:
l/R, a/R, and Rcav/R.

Panel (a) in Fig. 3 shows veff(F) and Deff(F) at differ-
ent values of the tube period, l/R = 0.5, 1.0, and 2.0, at
a/R = 0.05 and Rcav/R = 1.0. Panel (b) shows the results at
different sizes of the connecting aperture, a/R = 0.03, 0.05,
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FIG. 3. Dependences veff(F) and Deff(F) at different values of the geometric parameters of the tube: l/R = 0.5, 1.0, 2.0, a/R = 0.05, and Rcav/R = 1.0 in
panel (a); l/R = 1.0, a/R = 0.03, 0.05, 0.07, and Rcav/R = 1.0 in panel (b); l/R = 1.0, a/R = 0.05, and Rcav/R = 0.5, 1.0, 2.0 in panel (c). Solid lines are
drawn using the theoretical predictions, Eqs. (2.5) and (2.6); symbols represent results obtained from Brownian dynamics simulations.

and 0.07, at l/R = Rcav/R = 1.0. Panel (c) shows the results
at different values of the cavity radius, Rcav/R = 0.5, 1.0,
and 2.0, at l/R = 1.0 and a/R = 0.05. One can see excel-
lent agreement between the theoretically predicted and nu-
merically obtained results.

III. DERIVATION

In this section we derive the formulas for the effective
mobility and diffusion coefficient. First, we map the particle
motion onto a random walk. Then we find the random walk
propagator and use it to obtain the desired results.
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FIG. 4. Random walk equivalent to the particle motion in a tube with
identical periodic dead ends.

A. Random walk

Let us label each dead end with number n, n
= 0,±1,±2, .... These numbers enumerate the sites of the
random walk, each site of which contains mobile and immo-
bile states (Fig. 4). Consider a particle that starts from the
tube cross section containing the entrance to the dead end
with n = 0. We will assume that the random walk is in the
discrete mobile state of the site with n = 0 until the particle
enters the dead end or touches for the first time one of the
cross sections containing entrances into the neighboring dead
ends with n = ±1. We consider the particle entrance into the
dead end as a transition of the random walk from the mobile
to immobile state of the same site. The first particle touch of
one of the cross sections containing entrances into neighbor-
ing dead ends, we consider as a transition of the random walk
between mobile states of the neighboring sites. Repeating this
procedure we can map the particle motion onto the random
walk as shown in Fig. 4. The random walk can jump between
neighboring sites only when it is in a mobile state, from which
it can also jump to the immobile state of the same site.

The random walk is described by a two-component prop-
agator, Pn,α(t), α = m, im, which is the probability of find-
ing the random walk on site n in state α at time t . The com-
ponents of the propagator satisfy,

Pn,α(t) =
∫ t

0
Sα(t − t ′)Jn,α(t ′)dt ′, (3.1)

where Sα(t) is the survival probability of the random walk
in state α for time t , and Jn,α(t) is the probability flux en-
tering the state (n, α) at time t . Transitions among the states
(Fig. 5) are described by splitting probabilities W± and W0,
W+ + W− + W0 = 1, and probability densities of the wait-
ing time distributions ϕ±(t), ϕ0(t), and ϕim(t), normalized to
unity. The splitting probabilities W± and W0 are probabilities
that the random walk starting from state (n, m) makes a step

w w+
m

im

w0 im

FIG. 5. Possible transitions of the random walk.

to states (n ± 1, m) and (n, im), respectively. Introducing the
probability fluxes escaping from the mobile state of a site at
time t on condition that the random walk enters this state at
t = 0, w±(t) = W±ϕ±(t) and w0(t) = W0ϕ0(t), we can write
the survival probability in this state as

Sm(t) = 1 −
∫ t

0

[
w+(t ′) + w−(t ′) + w0(t ′)

]
dt ′. (3.2)

Respectively, the survival probability in the immobile state is

Sim(t) = 1 −
∫ t

0
ϕim(t ′)dt ′. (3.3)

The fluxes Jn,α(t) satisfy balance equations,

Jn,m(t) = δn,0δ(t) +
∫ t

0

[
w+(t − t ′)Jn−1,m(t ′)

+w−(t − t ′)Jn+1,m(t) + ϕim(t − t ′)Jn,im(t ′)
]

dt ′,

(3.4)

Jn,im(t) =
∫ t

0
w0(t − t ′)Jn,m(t ′)dt ′, (3.5)

where the first term on the right-hand side of Eq. (3.4) is due
to the initial condition according to which the random walk
starts from the mobile state of the site with n = 0 at t = 0.

The Laplace transforms of the probability fluxes w±(t)
and w0(t) as well as the splitting probabilities W± and W0 are
derived in Appendix A. The results are (the Laplace transform
of function f (t) is defined by f̂ (s) = ∫ ∞

0 e−st f (t)dt),

W± =
1

2
exp

(
±βFl

2

)

cosh

(
βFl

2

)
+ κ

βF D0
sinh

(
βFl

2

) , (3.6)

W0 = 1

1 + βF D0

κ
coth

(
βFl

2

) , (3.7)

ŵ+(s) =

√
s

D0
+

(
βF

2

)2

exp

(
βFl

2

)

κ

D0
sinh

⎛
⎝l

√
s

D0
+

(
βF

2

)2
⎞
⎠ + 2

√
s

D0
+

(
βF

2

)2

cosh

⎛
⎝l

√
s

D0
+

(
βF

2

)2
⎞
⎠

, (3.8)
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ŵ−(s) = exp (−βFl) ŵ+(s), (3.9)

ŵ0(s) = 1

1 + 2D0

κ

√
s

D0
+

(
βF

2

)2

coth

⎛
⎝l

√
s

D0
+

(
βF

2

)2
⎞
⎠

,

(3.10)

where κ is given by κ = 4D0a/(π R2). The expressions above
show that the ratio of probabilities W+ and W−, W−/W+
= exp(βFl), is independent of the presence of the dead ends

since it depends only on the tube period l. One can also
find the Laplace transforms of the probability densities ϕ±(t),
ϕ̂±(s) = ŵ±(s)/W±. Then one can check that these Laplace
transforms are identical ϕ̂+(s) = ϕ̂−(s) and, hence, ϕ+(t)
= ϕ−(t). Although these might seem unexpected, in fact, they
are straightforward consequences of the results obtained in
Ref. 21.

In addition, we will use the Laplace transform of the
probability density of the particle lifetime in the dead end,
ϕim(t), which can be found in Ref. 7,

ϕ̂im(s) =
(s + kcav) cosh

(
L

√
s

D0

)
+ κch

√
s

D0
sinh

(
L

√
s

D0

)

(2s + kcav) cosh

(
L

√
s

D0

)
+

(
κch

√
s

D0
+

√
s D0

κch
(s + kcav)

)
sinh

(
L

√
s

D0

) , (3.11)

where kcav and κch are kcav = 4D0a/Vcav and κch =
4D0/(πa).

B. Solution for the propagator

After the Laplace transformation, Eqs. (3.4) and (3.5)
take the form:

Ĵn,m(s) = δn,0 + ŵ+(s) Ĵn−1,m(s)

+ŵ−(s) Ĵn+1,m(s) + ϕ̂im(s) Ĵn,im(s), (3.12)

Ĵn,im(s) = ŵ0(s) Ĵn,m(s). (3.13)

Substituting Ĵn,im(s) in Eq. (3.13) into Eq. (3.12) and intro-
ducing the notation,

û±(s) = ŵ±(s)

1 − ŵ0(s)ϕ̂im(s)
. (3.14)

we can write a closed-form equation for the Laplace trans-
forms of Ĵn,m(s),

Ĵn,m(s) = 1

1 − ŵ0(s)ϕ̂im(s)
δn,0

+û+ Ĵn−1,m(s) + û− Ĵn+1,m(s). (3.15)

This equation can be solved by means of the generating func-
tions. The solution obtained in Appendix B has the form

Ĵn,m(s) = 1

1 − ŵ0(s)ϕ̂im(s)

(
û+(s)

û−(s)

)n/2

× 1

K̂ (s) − 1

(
2
√

û+(s)û−(s)

K̂ (s)

)|n|
, (3.16)

where K̂ (s) is K̂ (s) = 1 + √
1 − 4û+(s)û−(s). Respectively,

according to Eq. (3.13) Ĵn,im(s) is given by

Ĵn,im(s) = ŵ0(s) Ĵn,m(s). (3.17)

Next we can find the Laplace transforms of the two com-
ponents of the propagator. According to Eqs. (3.1)–(3.3) they
are given by

P̂n,m(s) = Ŝm(s) Ĵn,m(s)

= 1 − ŵ+(s) − ŵ−(s) − ŵ0(s)

s
Ĵn,m(s) (3.18)

and

P̂n,im(s) = Ŝim(s) Ĵn,im(s)

= ŵ0(s) (1 − ϕ̂im(s))

s
Ĵn,m(s). (3.19)

The ratio P̂n,α(s)/P̂−n,α(s) is independent of α and given by

P̂n,α(s)

P̂−n,α(s)
= Ĵn,m(s)

Ĵ−n,m(s)
=

(
û+(s)

û−(s)

)n

=
(

W+ϕ̂+(s)

W−ϕ̂−(s)

)n

.

(3.20)

As has been mentioned above, ϕ̂+(s) = ϕ̂−(s) and
W− = W+ exp(−βFl). As a consequence, we arrive at
the relation,

P̂n,α(s)

P̂−n,α(s)
= Pn,α(t)

P−n,α(t)
= exp (nβFl) , (3.21)

that is the fluctuation theorem for biased diffusion in tubes
with periodic dead ends.

C. Effective mobility

Having in hand the two-component propagator, we can
find the long-time asymptotic behavior of the mean particle
displacement along the tube axis, 〈	x(t)〉 = 〈x(t)〉 − x(0),
where x(t) is the particle coordinate along this axis at time
t . Then we can find the effective drift velocity,

veff(F) = lim
t→∞

d〈	x(t)〉
dt

, (3.22)
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and the effective mobility, μeff(F) = veff(F)/F . For this pur-
pose we define Pn(t) as a sum of the components of the prop-
agator,

Pn(t) = Pn,m(t) + Pn,im(t). (3.23)

Evidently Pn(t) satisfies the normalization condition:

∞∑
n=−∞

Pn(t) = 1. (3.24)

Using Pn(t) we can find the mean displacement of the random
walk in time t ,

〈n(t)〉 =
∞∑

n=−∞
n Pn(t). (3.25)

Since at large t 〈	x(t)〉 = l〈n(t)〉, we can write veff (F) as

veff (F) = l lim
t→∞

d〈n(t)〉
dt

. (3.26)

To find the long-time asymptotic behavior of 〈n(t)〉 we
use the small-s expansion of the Laplace transform of this
function. This Laplace transform, 〈n̂(s)〉, can be found using
the relations in Eqs. (3.16), (3.18), and (3.19). The result is

〈n̂(s)〉 = ŵ+(s) − ŵ−(s)

s (1 − ŵ+(s) − ŵ−(s) − ŵ0(s)ϕ̂im(s))
. (3.27)

Using the relations in Eqs. (3.8)–(3.11) we find that as s → 0,

〈n̂(s)〉 → π R2 D0βF

s2 (Vtube + Vde)
. (3.28)

This implies that the large-t asymptotic behavior of the mean
displacement of the random walk is given by

〈n(t)〉 = π R2 D0βF

(Vtube + Vde)
t. (3.29)

Substituting this into Eq. (3.26) and dividing the result by
F we arrive at the expression for the effective mobility in
Eq. (2.2).

The expression in Eq. (2.2) can be alternatively obtained
from consideration of the probabilities of finding the particle
in mobile and immobile states at time t . These probabilities
are defined as

Pα(t) =
∞∑

n=−∞
Pn,α(t) , α = m, im. (3.30)

Using the relations in Eqs. (3.16), (3.18), and (3.19) we find
that the ratio of the Laplace transforms of Pα(t) is given by

P̂m(s)

P̂im(s)
= 1 − ŵ+(s) − ŵ−(s) − ŵ0(s)

ŵ0(s) (1 − ϕ̂im(s))
. (3.31)

As s → 0 this ratio tends to a constant,

lim
s→0

P̂m(s)

P̂im(s)
= Vtube

Vde
. (3.32)

This implies that time spent in the mobile state by the
particle observed for sufficiently long time t is equal to
tVtube/(Vtube + Vde). During this time particle’s mobility is
μ0, so that its displacement is given by μ0 FtVtube/(Vtube

+ Vde). The fact that this displacement must be identical to
veff(F)t leads to the expression for the effective mobility in
Eq. (2.2).

The second derivation shed some light on the reason why
the effective mobility in tubes with periodic dead ends is in-
dependent of the driving force. This independence is a con-
sequence of the fact that the fractions of time spent by the
particle in the cylindrical part of the tube and in the dead
ends are independent of the driving force. As follows from
Eq. (3.32) these fractions, respectively, are Vtube/(Vtube + Vde)
and Vde/(Vtube + Vde).

D. Effective diffusion coefficient

The effective diffusion coefficient is defined as

Deff(F) = 1

2
lim

t→∞
d

dt

[〈	x(t)2〉 − 〈	x(t)〉2] , (3.33)

where 〈	x(t)2〉 is the mean squared displacement of the par-
ticle in time t . At large t 〈	x(t)2〉 is simply related to the
second moment of the displacement of the random walk,
〈	x(t)2〉 = l2〈n2(t)〉. Since at large t 〈	x(t)〉 = l〈n(t)〉, we
have

Deff(F) = l2

2
lim

t→∞
d

dt

[〈n2(t)〉 − 〈n(t)〉2] . (3.34)

The long-time behavior of 〈n(t)〉 can be found from the small-
s expansion of 〈n̂(s)〉 in Eq. (3.27). To find the long-time be-
havior of 〈n2(t)〉 we first find the Laplace transform 〈n̂2(s)〉
and then obtain the desired asymptotic behavior using the
small-s expansion of 〈n̂2(s)〉.

The mean squared displacement of the random walk is
defined as

〈n2(t)〉 =
∞∑

n=−∞
n2 Pn(t). (3.35)

Its Laplace transform,

〈n̂2(s)〉 =
∞∑

n=−∞
n2 P̂n(s), (3.36)

can be found using the relations in Eqs. (3.16), (3.18),
and (3.19). The result is

〈n̂2(s)〉 = (ŵ+(s) + ŵ−(s)) (1 − ŵ0(s)ϕ̂im(s)) + ŵ+(s)2 + ŵ−(s)2 − 6ŵ+(s)ŵ−(s)

s (1 − ŵ+(s) − ŵ−(s) − ŵ0(s)ϕ̂im(s))2 . (3.37)
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One can find the small-s expansions of 〈n̂(s)〉 and 〈n̂2(s)〉 us-
ing the relations in Eqs. (3.8)–(3.11). Inverting these expan-
sions one can find the leading terms of the large-t behavior of
〈n(t)〉 and 〈n2(t)〉, and then Deff(F) by means of Eq. (3.34).
Eventually, this leads to the formula for Deff(F) given in
Eq. (2.3).

IV. CONCLUDING REMARKS

While unbiased diffusion in linear systems of period-
ically varying geometry has been studied both analytically
and numerically, biased diffusion has been studied mainly
numerically. The focus of such studies is on the depen-
dences of the effective mobility, μeff(F), and diffusion co-
efficient, Deff(F), on the driving force, F , and the system
geometry. It has been found that in systems of different
types these dependences are qualitatively different. In sys-
tems of smoothly varying geometry μeff(F) monotonically in-
creases from μeff(0) � μ0 to μeff(∞) = μ0. When the geom-
etry changes abruptly μeff(F) monotonically decreases from
μeff(0) � μ0 to μeff(∞) < μeff(0). Effective diffusion coef-
ficient at finite F is larger than its value at F = 0, Deff(0)
< Deff(F), in both cases. When the tube geometry changes
abruptly Deff(F) monotonically increases with the driving
force. Its large-F asymptotic behavior is given by Deff(F) ∝
F2. In the case of smoothly changing geometry dependence
Deff(F) is nonmonotonic: Deff(F) first increases with F ,
reaches its maximum, and then decreases approaching its
asymptotic value Deff(F) = D0.

Tubes with periodic dead ends have a specific feature,
namely, in such tubes it is possible to develop an analytical
theory of biased diffusion. This is done in the present pa-
per, in which we derive approximate formulas for μeff(F) and
Deff(F), Eqs. (2.2) and (2.3). The theory predicts that the par-
ticle effective mobility is independent of the driving force and
given by μeff(F) = μeff(0) = βDeff(0). The independence of
the effective mobility of the driving force is sharply in contrast
with the dependences μeff(F) mentioned above. At the same
time, dependence Deff(F) in tubes with periodic dead ends
is similar to that in periodic systems with abruptly chang-
ing geometry: the effective diffusion coefficient monotoni-
cally increases with the driving force approaching its asymp-
totic behavior Deff(F) ∝ F2 as F → ∞. The theoretically
predicted dependences μeff(F) and Deff(F) are in excellent
agreement with the results obtained from Brownian dynamics
simulations.
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APPENDIX A: LAPLACE TRANSFORMS OF FLUXES
w±(t), w0(t) AND SPLITTING PROBABILITIES W±, W0

To find the Laplace transforms of fluxes w±(t) and w0(t),
ŵ±(s) and ŵ0(s), as well as splitting probabilities W±, W0, we
describe the particle motion in the tube as one-dimensional
biased diffusion along the tube axis on the interval of length
2l terminated by absorbing end points at x = ±l. The particle
starts from the tube cross section located at x = 0 (center of
the interval) that contains the entrance into the dead end with
n = 0. We describe the particle entrance into the dead end as
trapping by a δ-function sink of strength κ located at x = 0.
Justification for this can be found in Ref. 7. The sink strength
is determined by the particle diffusion coefficient, the tube
radius, and the radius of the aperture, κ = 4D0a/(π R2).

Let G(x, t) be the particle propagator or the Green func-
tion that satisfies

∂G

∂t
= D0

∂

∂x

{
eβFx ∂

∂x

[
e−βFx G

]} − κδ(x)G ,−l < x < l,

(A.1)

with the initial condition G(x, 0) = δ(x) and boundary condi-
tions G(−l, t) = G(l, t) = 0. After the Laplace transforma-
tion, the equation takes the form

sĜ = D0
d

dx

{
eβFx d

dx

[
e−βFx Ĝ

]} + (
1 − κĜ

)
δ(x) ,

−l < x < l, (A.2)

where Ĝ(x, s) is the Laplace transform of the propaga-
tor. Solving this equation with the boundary conditions
Ĝ(−l, s) = Ĝ(l, s) = 0 we obtain

Ĝ(x, s) = eβFx/2 A{sinh [σ (l + x)] H (−x)

+ sinh [σ (l − x)] H (x)} , −l < x < l,

(A.3)

where H (x) is the Heaviside step function, σ 2 = s/D0

+ (βF/2)2, and

A = 1

κ sinh(σ l) + 2D0σ cosh(σ l)
. (A.4)

Flux w0(t) from the mobile to immobile state of the site
is defined as w0(t) = κG(0, t). Using the solution for the
Laplace transform of the propagator, Eq. (A.3), we obtain
the expression for the Laplace transform of w0(t) given in
Eq. (3.10). The probability W0 of the particle entrance into
the dead end is given by

W0 =
∫ ∞

0
w0(t)dt = ŵ0(0). (A.5)

Using this relation we obtain W0 in Eq. (3.7) from ŵ0(s) in
Eq. (3.10).

Flux w+(t) is defined as w+(t) = −D0∂G(x, t)/∂x |x=l .
Respectively, the Laplace transform of this flux is given by
ŵ+(s) = −D0dĜ(x, s)/dx |x=l . Substituting here the Laplace
transform of the propagator, Eq. (A.3), we obtain the
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expression for ŵ+(s) given in Eq. (3.8). The probability W+
is given by

W+ =
∫ ∞

0
w+(t)dt = ŵ+(0). (A.6)

Using this relation we obtain W+ in Eq. (3.6) from ŵ+(s) in
Eq. (3.8).

Flux w−(t) is defined as w−(t) = D0∂G(x, t)/∂x |x=−l .
Respectively, the Laplace transform of this flux is given by
ŵ−(s) = −D0dĜ(x, s)/dx |x=−l . Using Eq. (A.3) we find that
the Laplace transforms ŵ+(s) and ŵ−(s) satisfy the relation

ŵ−(s) = ŵ+(s) exp(−βFl). (A.7)

As a consequence, similar relation is fulfilled for the fluxes
w+(t) and w−(t):

w−(t) = w+(t) exp(−βFl). (A.8)

The probability W− is given by

W− =
∫ ∞

0
w−(t)dt = ŵ−(0). (A.9)

As a consequence of Eqs. (A.7) and (A.8), probabilities W+
and W− also satisfy similar relation:

W− = W+ exp(−βFl), (A.10)

from which it follows that the probability W− is given by
Eq. (3.6).

APPENDIX B: SOLUTION TO EQ. (3.15)

Let F(θ ) be the generating function defined as

F(θ ) =
∞∑

n=−∞
einθ Ĵn,m(s). (B.1)

Using Eq. (3.15) we find that F(θ ) satisfies

F(θ ) = 1

1 − ŵ0(s)ϕ̂im(s)

+ (
û+(s)eiθ + û−(s)e−iθ

)
F(θ ). (B.2)

Solving this equation we obtain

F(θ ) = 1

(1 − ŵ0(s)ϕ̂im(s))(1 − û+(s)eiθ − û−(s)e−iθ )
.

(B.3)

We use this solution for the generating function to find
Ĵn,m(s),

Ĵn,m(s) = 1

2π

∫ π

−π

e−inθ F(θ )dθ. (B.4)

Carrying out the integration we arrive at the formula for
Ĵn,m(s) given in Eq. (3.16).
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