View full-text article in PMC J Chem Phys. 2011 Mar 24;134(12):125105. doi: 10.1063/1.3564920 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information Copyright © 2011 American Institute of Physics PMC Copyright notice Table 1. Definitions of the operators used in the diagonalization of the CE Hamiltonian [Eqs. 30, 42, 47]. Reference Definition Subspace Equation 30 SΣz=12(S1z+S2z),SΣx=12(S1+S2++S1−S2−),SΣy=12i(S1+S2+−S1−S2−), |1〉, |4〉, |5〉, |8〉 Equation 42 ESΣ=4SΣz2,SΣα=12ESΣ+SΣz,SΣβ=12ESΣ−SΣz,SΣ+=SΣx+iSΣy,SΣ−=SΣx−iSΣy Figure 5 SΔz=12(S1z−S2z),SΔx=12(S1+S2−+S1−S2+),SΔy=12i(S1+S2−−S1−S2+), |2〉, |3〉, |6〉, |7〉 ESΔ=4SΔz2,SΔα=12ESΔ+SΔz,SΔβ=12ESΔ−SΔz,SΔ+=SΔx+iSΔy,SΔ−=SΔx−iSΔy Equation 47 MΣz=12(SΔz+ESΔIz),MΣx=12(SΔ+I++SΔ−I−),MΣy=12i(SΔ+I+−SΔ−I−), |2˜⟩,|7˜⟩ Figure 6 EMΣ=4MΣz2,MΣα=12EMΣ+MΣz,MΣβ=12EMΣ−MΣz MΔz=12(SΔz−ESΔIz),MΔx=12(SΔ+I−+SΔ−I+),MΔy=12i(SΔ+I−−SΔ−I+),EMΔ=4MΔz2,MΔα=12EMΔ+MΔz,MΔβ=12EMΔ−MΔz |3˜⟩,|6˜⟩