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Abstract
A hallmark event in neurodegenerative diseases is the accumulation in the brain of misfolded
aggregated proteins, leading to neuronal dysfunction and disease. Compelling evidences suggest
that misfolded proteins damage cells by inducing endoplasmic reticulum stress and alterations in
calcium homeostasis. Changes in cytoplasmic calcium concentration lead to unbalances on several
signaling pathways. Recent data suggest that calcium-mediated hyperactivation of calcineurin, a
key phosphatase in the brain, trigers synaptic dysfunction and neuronal death, the two central
events responsible for brain degeneration in neurodegenerative diseases. Therefore, blocking
calcineurin activation might be a promising therapeutic strategy to prevent brain damage in
neurodegenerative diseases.

Introduction
Neurodegenerative diseases are some of the most devastating disorders, affecting distinctive
qualities of human beings, including abstract thinking, skilled movements, emotional
feelings, cognition, memory, etc. This diverse group of diseases includes Alzheimer’s
Disease (AD), Parkinson’s Disease (PD), Huntington’s Disease (HD) (and related poly-
glutamine disorders including several forms of Spinocerebellar Ataxia), Transmissible
Spongiform Encephalopathies (TSEs) and Amyotrophic Lateral Sclerosis (ALS) [1].
Compelling evidence suggests that cerebral accumulation of misfolded and aggregated
proteins is a common and typical feature of these diseases and the most likely initiator of the
pathogenesis [1,2]. Accumulation of misfolded proteins might lead to synaptic abnormalities
and neuronal death, which ultimately produce brain dysfunction and disease [1]. Currently,
there is no efficient therapy or pre-symptomatic diagnosis for any of these diseases. To
identify novel strategies for intervention, it is essential to understand the mechanism of
protein misfolding and the pathways by which misfolded aggregates induce neuronal death
and synaptic alterations.
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Endoplasmic Reticulum Stress and Calcium Alterations : A Common
Pathway in Neurodegenerative Diseases

Recent evidences suggest that an early event following protein misfolding is a sustained
endoplasmic reticulum (ER) stress, leading to alterations in the protein folding and clearance
machinery, perturbations in calcium homeostasis, and activation of various intra-cellular
signaling pathways [3–6].

Disruption of calcium homeostasis in the cell is probably the most adverse and immediate
effect caused by ER stress produced by chronic accumulation of misfolded proteins [4].
Alterations in calcium homeostasis have been reported in different neurodegenerative
disorders associated with accumulation of misfolded aggregates, including AD, PD, HD,
ALS and TSE [3,4]. Compared to other types of cells, the effect becomes even more
deleterious to neurons, because of the significant role of calcium waves in neuronal activity.
Ca2+ plays an important role as a second messenger in different cellular signaling pathways,
where the final outcome is control led by cellular calcium concentration [7]. For this reason,
maintaining a specific Ca2+concentration in the cytoplasm is critical for normal neuronal
biology. Cell utilizes different Ca2+ channels and ATP driven Ca2+ pumps to maintain a
Ca2+ gradient and to stabilize the calcium homeostasis inside the cytoplasm [7]. ER
functions as an intra-cellular Ca2+ storage. Ca2+ uptake into the ER from cytoplasm is
guided by sarcoplasmic/ER Ca2+ ATPase (SERCA) and released via inositol 1,4,5-t
riphosphate receptor (IP3R) or Raynodine receptor (RyR) [8]. Several studies have
suggested increase of cytoplasmic Ca2+ due to ER stress in presence of misfolded proteins in
various neurodegenerative diseases [3,4]. Previous work from our lab and others have
reported the release of calcium from the ER to the cytoplasm when cells are exposed to
misfolded prion protein [9]. Indeed, Ca2+ release appears to be one of the first adverse effect
s after prion infect ion in cells. Recent evidences strongly suggest that at least a major source
of elevated Ca2+ in the cytoplasm of prion infected cells is leakage from the ER [10].

Among the consequences of protein misfolding mediated through ER stress and alterations
in calcium homeostasis are changes on the activity of various kinases and phosphatases that
play a critical role in maintaining cellular functioning. In this review we will focus on the
role of one particular brain phosphatase, called calcineurin (CaN), activated by ER stress
during formation of misfolded aggregates.

Calcineurin Biology
CaN is a Ca2+/Calmodulin dependent serine/threonine phosphatase highly abundant in
mammalian brain tissue [11]. Insensitivity of CaN towards heat stable inhibitor proteins and
its ability to preferentially dephosphorylate the α-subunit of phosphorylase kinase
distinguish CaN from phosphatase type 1 and classify it under phosphatase type 2 (PP2).
Ca2+ dependency of CaN sub-classify this enzyme under phosphatase type 2B (PP2B) and
distinguish it from spontaneously active PP2A or Mg2+ -dependent PP2C [12–14]. Since the
identification of CaN in late 1970s and ground-breaking discovery that it is the target of
immunosuppressive drugs cyclosporine A and FK506 [15–17], extensive studies have been
done to determine the structure and function of CaN. There are a large number of
comprehensive review articles available describing the function of this protein [18,19].
Therefore, in the current article we will not go into details of the structure and function of
CaN, instead we will focus on its potential role in neurodegeneration induced by misfolded
proteins.

CaN is a heterodimer composed of a 60 KDa catalytic subunit (calcineurin A; CnA) and an
18 KDa regulatory subunit (calcineurin B; CnB) [18]. Al though the amino acid sequence of
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the catalytic domain is homologous to other serine/threonine protein phosphatases, the
presence of three other regulatory domains in the carboxy-terminal of the subunit A
distinguish CaN from others [14]. These domains are the CnB binding domain, the
calmodulin-binding domain and the auto-inhibitory domain (CnAI) that binds to the active
site in the absence of Ca2+/Calmodulin, inhibiting the enzyme activity. Ca2+/Calmodul in
complex binds to subunit A with very high affinity followed by release of the auto-
inhibitory domain from the active site, leading to enzymatic activation [20,21]. Kinetic
studies revealed that there is roughly 15-times increase in the enzyme activity in presence of
Ca2+/Calmodulin complex (Fig. 1) [22]. CaN can be phosphorylated in the calmodulin-
binding region. However, calmodul in can still bind and activate CaN in the phosphorylated
state [23].

The mature CnB subunit is missing the initiator methionine, and the α-amino group of
glycine at position 2 is modified by acylated myristric acid [18]. This post-translational
modification is conserved throughout evolution suggesting a crucial physiological role.
However non-myristoylated CaN displays similar biological function [18].

Besides activation by calcium, CaN might be activated at least in two other ways involving
proteolysis (Fig. 1). The first one implicates caspases. Caspase-mediated cleavage of the
CaN auto-inhibitory domain and the calmodulin-binding domain renders the enzyme
constitutively active and insensitive to Ca2+/Calmodulin [24]. However, due to the fact that
activation of caspases is a downstream process during apoptosis, the biological significance
of this cleavage is questionable. Another, seemingly more relevant, way of constitutive CaN
activation is partial proteolysis by Ca2+-dependent cysteine protease called calpain (Fig. 1)
[25]. In vi tro MALDI-TOF analysis has identified three different carboxy-terminal
truncated forms of CaN after calpain cleavage corresponding to 45, 48 and 57 kDa
fragments [25]. Among them the 45 kDa fragment does not contain either the calmodulin-
binding domain or the auto-inhibitory domain leading to a Ca2+/Calmodulin insensitive,
constitutively active enzyme [26]. Samples from human Alzheimer’s brain showed the
presence of the 57 kDa fragment, missing only the auto-inhibitory domain [27]. This
fragment is still Ca2+/Calmodulin sensitive. However, the truncation remarkably enhances
the enzyme activity [27].

Calcineurin role in Neuronal Homeostasis
CaN is abundant in the cytosol, pre- and post-synaptic terminals in neurons [28]. The fact
that CaN is the only Ca2+ -dependent phosphate present in neurons suggest that it might play
a crucial role in maintenance of cellular homeostasis under Ca2+ oscillations. In fact, the
putative role of CaN in neuronal activity has been studied extensively [19,28].

Ca2+ influx in the neuronal cytosol activates a bunch of proteins to initiate the downstream
signaling mechanism. Due to very high affinity (0.1–1nM) for Ca2+/CaM and co-
localization with N-methyl-D-aspartate receptor, CaN activates promptly after cytoplasmic
Ca2+ influx [21,29]. Upon activation, CaN contributes to inhibit further Ca2+ influx into the
cytosol. CaN performs this task in multiple ways. It slows down the Ca2+ influx from
plasma membrane by weakening voltage-gated Ca2+ channels as well as regulates Ca2+-
induced Ca2+ release from the ER by negatively controlling IP3 and RyR through
dephosphorylation [30–33].

The importance of CaN is not restricted to the regulation of Ca2+ influx into the cytosol, but
it has also been shown that CaN plays an important role in modulating gene expression. In
neurons one of the major transcription factor s working under the control of CaN is cAMP–
response element binding protein (CREB) [18,29,34]. CREB is phosphorylated by Ca2+-
dependent and independent protein kinases and translocate into the nucleus followed by
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CREB dependent gene expression [34]. CaN works like a switch that shuts off this gene
expression process by dephosphorylating CREB [19,28,34]. Another important transcription
factor regulated by CaN is Nuclear Factor of Activated T-Cell (NFAT). Dephosphorylated
by CaN, NFAT4 translocate into the nucleus and induces the expression of neutrophilin and
netrin dependent gene expression required for axonal outgrowth [35,36]. Transcript ion
factor Myocyte Enhancer Factor 2 (MEF2) has also been shown to be modulated by CaN
[37,38]. Dephosphorylated by CaN, MEF2 switches from a sumoylated to an acetylated
form, which activates the transcription factor. As a result, several genes, including arc and
synGAP, are activated followed by inhibition of dendritic claw development during neural
morphogenesis [37,38]. However, CaN mediated dephosphorylation of MEF2 is required for
it sprosurvival signaling. Infact, phosphorylation of MEF2 at the CaN target site (Ser408) is
implicated in neurotoxin induced cell death [39].

Calcineurin and Neurodegeneration
Over-activated CaN is implicated in a reversible (operated by post-translational
modifications) neuronal apoptotic pathway involving Bcl-2 family proteins [7,40]. Hyper-
activation of CaN due to chronic increase of cytoplasmic Ca2+, reduces the phosphorylation
of pro-apoptic BAD [41–43], which in the normal phosphorylated state is associated with
scaffolding protein 14-3-3 (Fig. 2). However, dephosphorylated BAD disassociate from
14-3-3 and interact with Bcl-x and other Bcl2 family proteins located in the mitochondrial
membrane [41,42,44]. Interaction of Bcl-x with BAD weakens its normal anti-apoptotic
activity rendering the cells predisposed to apoptosis (Fig. 2) [44]. Various studies have
shown low level phosphorylated BAD in cells treated with different misfolded proteins and
in the brains of mouse models of several neurodegenerative disorders [45,46]. We have
shown that basal level of BAD phosphorylation can be recovered by pharmacological
normalization of CaN activity in a mouse model of prion disease, using the well-established
CaN inhibitor tacrolimus or FK506 [47]. In fact, our data strongly suggest that normalization
of CaN activity can significantly prevent neuronal loss, leading to increased survival in
prion infected mice [47].

A recent report suggested that CaN might also be involved in neurodegeneration through
NFAT (nuclear factor of activated T-cell) signaling (Fig. 2). This pathway was proposed to
operate in Aβ mediated cell death in AD [48]. NFAT complex is a transcription factor
consisting of at least two different components [49]. The inducible component, called
NFATn, is always in the nucleus. The other component, called NFATc, is present in the
cytoplasm in its native phosphorylated state. Dephosphorylated by activated CaN, NFATc
translocate into the nucleus, complexes with NFATn and induces target gene expression
(Fig. 2). Chronically activated CaN in presence of Aβ induces an aberrant activation of
NFATc4 (the neuronal isoform of NFAT) [48]. Consistent presence of activated NFAT in
the nucleus is sufficient to induce morphological neurodegenerative abnormalities, including
dystrophic neurites, dendrite simplification and dendritic spine loss [48].

Recently, CaN was suggested as an important therapeutic target for Huntington’s Disease
(HD) (Fig. 2) [50]. Huntingtin protein, in its normal phosphorylated state positively
regulates vesicular transport, particularly of neurotrophins such as Brain Derived Neuronal
Growth Factor (BDNF). This function is compromised in HD patients causing a decrease in
the neurotrophic support and subsequently followed by neuronal death [51]. Hyperactivated
CaN has been implicated in aberrant dephosphorylation of Huntingtin resulting in
deregulation of BDNF transport causing neurodegeneration [50,52]. In fact, genetic and
pharmacological inhibition of CaN activity has been shown to restore neuronal death in cells
derived from a HD mouse model [50]. Further studies showed that over expression of a
negative regulator of CaN can also protects mutant huntingtin toxicity [53].
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Calcineurin and Synaptic Dysfunction
Although, neuronal death is the final step responsible for the fatal outcome of
neurodegenerative disorders, the pathological cascade and clinical symptoms begin with
synaptic de-regulation well before neuronal death is observed [54–56]. In regular
physiological conditions CaN plays a very important role in maintaining synaptic function
under the Ca2+ spikes in neurons [19]. CaN is abundant in both the pre-synaptic and post-
synaptic terminals. In the pre-synaptic terminals it plays a major role in neuro-transmitter
release by regulating endo- and exo-cytosis (Fig. 3) [28]. On the other hand, in the post-
synaptic terminals CaN regulates ion channels [30,57]. Therefore, it is not difficult to
imagine that aberrant CaN activity will de-regulate the synaptic mechanism as a whole.
Indeed, several studies using CaN transgenic and knock out animal models have shown that
CaN plays a key role in long term potentiation (LTP) and memory formation [58–60].

It has been suggested that CaN-mediated endocytocis of AMPA (α-
amino-3hydroxy-5methyl-4-isoxazolepropionic acid) receptor is involved in Aβ induced
synaptic disruption [61], which subsequently inhibit LTP and induce memory loss. In this
model, Aβ oligomers bind to dendritic spines that express surface AMPA receptors. CaN
mediates an endocytotic process that is responsible for the rapid internalization of Aβ
oligomers bound to surface AMPA receptor subunits [61], which then colocalize with cpg2,
a molecule located specifically at the postsynaptic endocytic zone of excitatory synapses
that plays an important role in activity-dependent glutamate receptor endocytosis.
Importantly, CaN inhibitors prevent oligomer-induced surface AMPA receptors and spine
loss. An independent study also showed that soluble Aβ mediated dendritic spine loss
correlated with chronic activation of CaN [62]. Strikingly, acute inhibition of CaN reversed
the intermediate and long term recognition memory deficits in an AD mouse model [63].

CaN not only regulates synaptic function by post-translation modification of target proteins,
it also plays a major role in controlling gene expression required for synaptic plasticity. As
described before, an important CaN target is the transcription factor CREB (Fig. 3). CREB-
induced gene expression is required for different proteins involved in neuronal growth and
survival, including BDNF and its receptor tropomyosin related kinase B (trkB) [64–68].
Phosphorylated CREB translocates into the nucleus and exert its transcription factor activity
(Fig. 3). However, chronically activated CaN has been shown to dephosphorylate and
inactivate CREB, subsequently shutting down the CREB-dependent gene expression [34],
leading to loss of synaptic plasticity. This effect has been reported to occur in the presence
of misfolded Aβ and prions [45–47,69]. Even in wild type mouse, CaN inhibition has been
shown to increase dendritic branching and spine density [70]. Our own data suggest that
rescue of optimum CREB phosphorylation, by CaN inhibition is able to slow down
behavioral impairment of prion infected animals even at the clinical stage of the disease
[47]. However it is important to remember that basal level of CaN activity is important for
CREB dependent gene expression [71,72]. Focal bead-like swelling in dendrites and axons
is one of the major features of synaptic pathology in neurodegenerative disorders.
Interestingly, CaN inhibition has been shown to reverse these neuritic beading and rescue
structural disruption of neuronal network in presence of Aβ [73]. In addition, as described
earlier CaN regulates different proteins involved in neurotransmitter release, including
synapsin, synaptotagmin, rabphilin2A, synaptobrevin and dephosphins [74]. Among them
synapsin I is of major importance because of its role in vesicle trafficking (Fig. 3). In resting
conditions, synapsin I attaches the vesicle to the actin based cytoskeleton. During excitation,
phosphorylated by different kinases, it detaches from the vesicles facilitating
neurotransmitter release [75]. CaN and PP2A reverse this process by dephosphorylation,
contributing to maintain a proper balance [76].
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To summarize, CaN is involved in the maintenance of synaptic structure and function in
various ways. Therefore any abnormality in the CaN function is expected to be amplified as
an overall deregulation of synaptic activity. Thus, restricting CaN activity to an optimum
level can be a potential therapeutic approach to prevent synaptic dysfunction, which appears
to be an early event in different neurodegenerative disorders.

Concluding Remarks
Understanding the pathways by which misfolded proteins cause neurodegeneration and
disease is essential to develop much needed efficient treatments for neurodegenerative
disorders. The available evidence indicates that accumulation of misfolded proteins causes
ER stress and alterations in calcium homeostasis [3–6]. In response to the damage, cells
engage the unfolded protein response to attempt correcting the negative consequences of ER
stress [77,78]. Sustained stress leads to neurodegeneration in the form of synaptic
dysfunction and neuronal apoptosis. A particularly negative outcome of ER stress is the
release of calcium to the cytoplasm, leading to a drastic disbalance of essential signaling
pathways. Among the many proteins affected by alterations in calcium homeostasis is CaN,
a key phosphatase in the brain. Recent exciting data in various neurodegenerative disease
have implicated changes on CaN activity in the cellular pathways leading to synaptic loss
and neuronal death. More importantly, administration of CaN inhibitors to various mice
models of neurodegenerative disease appear to have therapeutic benefit [47,50,52,61,63,69].
Additional research in this area may contribute to increase our understanding of the
molecular basis of neurodegeneration and the development of much needed therapeutic
strategies for neurodegenerative diseases.
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Figure 1. Reversible and Irreversible activation of calcineurin
CaN can be activated reversibly in presence of Ca2+/CaM up to 15 times. This seems to
happen during chronic elevation of Ca2+ in the cytoplasm resulting from ER stress after
exposure to misfoled proteins. CaN can also be activated irreversibly by proteolytic cleavage
of the CnAI and CaM binding domains. This cleaved form of the enzyme is no longer
sensitive to Ca2+/CaM and thus constitutively active.
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Figure 2. Role of chronically activated CaN in neuronal death
Chronically activated CaN has been implicated in neuronal death at least in three major
ways: (1) Dephosphorylation of BAD, releasing it from the scaffolding protein 14-3-3,
leading to apoptotic activity; (2) Aberrant dephosphorylation of the cytoplasmic subunit of
NFAT (NFATc) induces its translocation to the nucleus where interact with NFATn, leading
to chronic induction of NFAT regulated genes; (3) Dephosphorylation of Hunt ingtin result
in a partial loss of function of this protein leading to impaired vesicular transport, especially
of various growth factors, including BDNF.
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Figure 3. Role of chronically activated CaN in synaptic dysfunction
CaN has been implicated in synaptic abnormalities during neurodegenerative disorders at
least in three different ways: (1) Activated CaN dephosphorylates CREB inhibiting its
translocation to the nucleus, resulting in the abnormal shut off of CREB regulated gene
expression required for neuronal growth and synaptic plasticity; (2) CaN mediates the
internalization of AMPA receptor bound to misfolded proteins (particularly Aβ oligomers)
inducing synaptic disruption and inhibition of long term potentiation; (3) Inhibition of
neurotransmitter release by abrogating synaptic vesicle transport through dephosphorylaton
of synapsin I.
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