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Abstract: Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of 
regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated 
the feasibility of  transplanting MSCs, which  generates new prospects in cellular therapy.  Recently, injection 
of  MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD). This review 
summarizes the knowledge and  possible future clinical uses of MSCs. 
Key Words: mesenchymal stem cells, plasticity, immunomodulation, cancer, gene therapy. 
Abbreviations: BM: Bone Marrow; GVHD: graft-versus-host disease; HSC: hematopoietic stem cells; PMNC: peripheral 

mononuclear cells; MSCs: mesenchymal  stem cells; NOD/SCID: nondiabetic severe combined immune 
deficiency; OI: osteogenesis imperfecta 

 
Introduction 

Isolation of bone marrow (BM)  cells that  could 
form new bone when transplanted to an ectopic 
site was demonstrated using the guinea pig model  
[1,2]. These derived stromal cells, named 
mesenchymal stem cells (MSCs), were expanded  
from  adherent stromal cells in bone marrow 
culture. The results were confirmed later in both 
rabbit and rat bone marrow cells [2-4]. 

MSCs are adult clonal multipotential stem cells 
localized in the medullary stroma [5-7]. The human 
body contains many stem cells, i.e. hematopoietic 
(HSC) [8], neural [9], epithelial [10,11] and 
embryonic stem cells [12].  MSCs do not fulfill all 
true stem cell criteria. In contrast to HSC, single 
MSCs cannot regenerate a whole tissue 
compartment, and they do not have indefinite self 
renewal capacity.  

MSC cells represent 1/10,000 to 1/100,000 of all 
mononuclear cells in the BM, and they can be 
expanded 500-fold through as many as 50 
generations to produce billions of cells [13-16]. 
Colonies derived from a single MSC vary to some 
extent in differentiation capacity and expansion 
potential [17-20].  Entry of MSC into senescence is 
almost undetectable, and they lose their stem cell 
characteristics and differentiation potential from 
the sixth passage onwards [21]. 

Haynesworth et al developed a reliable in vivo 
bone-forming assay and were able to isolate and 
expand  human MSCs for  therapeutic purposes 
[22].  

The ability to expand MSCs in vitro for clinical 
applications  has recently facilitated the 
development of clinical trials designed to assess 
the safety, feasibility, and efficacy of transplanting 
MSCs for a variety of diseases [14]. Neither 
toxicity nor malignancy was associated with 
infusion of expanded autologus MSCs into patients 
with advanced breast cancer, with Hurler 
syndrome, or with metachromatic leukodystrophy 
[23-25].  
In this review we will discuss the following: 

1- Characterstics of MSCs 
2- MSCs isolation and culture expansion 
3- Transplantibility and engrafment of MSCs 

4- Role of MSCs in support of hematopoiesis 
5- MSCs plasticity, differentiation, possible uses 

in regenerative medicine and treatment of 
various diseases 

6- Role of MSCs in immunomodulation 
7- MSCs and solid organ graft 
8- Role of MSCs in irradiation injuries or burns 
9- MSCs in gene therapy 
10- MSCs in cancer 
 

Characteristics of MSCs  
MSCs are unspecialized cells that lack tissue-

specific characteristics and can maintain their 
undifferentiated phenotype. Under the influence of 
specific biological signals, MSCs can differentiate 
into specialized cells with a phenotype that is 
fully distinct from that of the precursor. 

MSCs express neither the hematopoietic 
markers CD34, CD45, CD14, CD11 (7,26), nor the 
co-stimulatory molecules CD 80, CD 86, CD40, 
CD 40 ligand  and CD 154 (27). MSCs are positive 
for CD73, CD105 and CD90 (28). MSCs express 
adhesion molecules, including VCAM (CD 106), 
ICAM (CD54), and LFA-3 (29). It has been 
demonstrated that human MSC MHC (HLA-DR) is 
localized in the submembranous space near the 
nucleolus (30), but cell surface expression of class 
I and class II MHC requires activation by 
interferon-γ  (IFN-γ) (27, 31).   

MSCs secrete respectively Interleukin-6 (IL-6), 
IL-7, IL-11, IL-12, IL-14, IL-15, leukemia inhibitory 
factor (LIF), macrophage colony-stimulating factor 
(M-CSF),  stem cell factor (SCF), and flt-3 ligand 
[32]. 

Minimal criteria for defining multipotent 
mesenchymal stromal cells according to the 
International Society for Cellular Therapy are the 
ability to regenerate and differentiate into tissues 
of mesodermal origin (osteocytes, adipocytes and 
chondrocytes), and the absence of expression of 
haemopoietic molecules [28]. 

 
MSC isolation and culture expansion  
MSCs have been isolated from adipose tissue, 

fetal liver, blood, lung, postnatal marrow, cord 
blood, brain, spleen, kidney, bone marrow, 
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muscle, thymus, pancreas, and from human 
peripheral blood mobilized with Granulocyte-
Colony stimulating factor (G-CSF) [33-36]. 
However, long-term cultures of MSCs can be 
generated only from blood vessels [37].  

Human MSCs are isolated from the total 
nucleated cell population in a BM aspirate, which 
is often harvested from the superior iliac crest of 
the pelvis, after separation by discontinuous 
density gradient centrifugation [6,38,39]. 
Mononuclear cells (MNC) are then cultured in a 
medium, such as Dulbecco’s modified Eagle’s 
medium (DMEM), or alpha MEM (α-MEM) 
supplemented with 10% fetal calf serum (FCS), 
platelet-rich plasma (PRP), or a commercial 
substitute of human serum [15,40,41]. 

In culture, the non-adherent MNC are washed 
away to leave behind small, adherent fibroblast-
like cells. Cultures have an initial lag phase of 
three to five days [42], followed by rapid 
proliferation with an average initial doubling time 
ranging from 12 to 24 h and varying from one 
donor to another [15]. MSCs have a spindle shape 
(Figure1), and they can be expanded for about 
three weeks. At confluence, MSCs enter a 
stationary phase [15]. They are then detached  by 
trypsinization and subcultured for many passages, 
giving long-term cultures. Using this method, 
comparable and reproducible populations of MSCs 
have been generated in many laboratories 
[4,7,26,37]. 

 

 
Figure 1: Mesenchymal stem cells in culture. 

 
Transplantability and engraftment of MSCs. 

Numerous studies have demonstrated migration 
and multiorgan engraftment of MSCs both in 
animal models and in human clinical trials [43-48]. 

Direct injection of human marrow stromal cells 
into the corpus striatum of rat brain showed 
engraftment of 20% of the infused cells [48]. 

Injection of MSCs into the lateral ventricle of 
neonatal mice migrated throughout the forebrain 
and cerebellum [44]. Rat bone marrow stromal 
cells infused distally into areas of occluded 
ascending aorta migrated after eight weeks into 
the scar and periscar tissue [47]. 

MSCs injected intravenously into irradiated 
primates could engraft in different injured tissues, 
such as bone marrow, skin, digestive tract, and 
muscle [49,50]. MSCs infused into mice homed 
into thymus [46]. 

In rat models, rat MSC have been engrafted in 
multiple organs, such as lung, liver, kidney and 
spleen.  However, homing of labeled MSCs to the 
marrow of long bones was significantly increased 
by pre-treatment with vasodilators [51]. 

Human MSCs engrafted into sheep [52,53] or 
mouse [54-56] show site-specific differentiation. 
The ability of MSC to engraft was  influenced 
neither by the route of adminstration nor by the 
difference in conditioning protocols [57]. 

Both autologous and allogeneic MSCs have 
been given to  patients [25,58,59]. Allogeneic 
HLA-mismatched male foetal cells injected into 
HLA-incompatible female fetal cells with 
osteogenesis imperfecta (OI) engrafted and 
differentiated into bone [60]. Haploidentical MSCs 
had a low level of engraftment in a patient with 
aplastic anemia, but there was a partial restoration 
of the bone marrow microenvironment [61]. In 
contrast, infused allogeneic MSCs did not expand 
substantially in patients.   [59,62]. 

 
Role of MSCs in support  of hematopoiesis 

MSCs support medullary hematopoiesis 
structurally and functionally by providing growth 
factors and extracellular matrix [63-67, 42]. 

Co-transplantation of HSCs along with MSCs 
ameliorated hematopoietic reconstitution 
[25,68,69]. MSCs maintain the expansion of 
lineage, specific colony-forming units of marrow 
CD34+ HSC. MSCs enhance engraftment of dose 
limited allogeneic and umbilical cord-derived HSC 
in NOD/SCID and in fetal sheep [70-72]. This 
promoting effect of MSCs was present  even 
though MSCs were not detected in the BM of the 
host [73]. 

Co-transplantation of human MSCs enhances 
human myelopoiesis and megakaryocytopoiesis in 
NOD/SCID mice [72] and increases the  functional 
hematopoietic microenvironment [74]. In humans, 
rapid hematopoietic recovery was demonstrated 
after co-infusion of autologous-blood stem cells 
and culture-expanded MSCs in advanced breast 
cancer patients receiving high-dose chemotherapy 
[23]. 
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Co-transplantation of HLA-identical (sibling) 
culture-expanded MSCs with an HLA-identical 
(sibling) HSC transplant induced hematopoietic 
recovery on peripheral mononuclear cells (PMNC) 
and platelets [24,75]. 

 
MSC plasticity, differentiation, and 

prospective use in regenerative medicine and 
treatment of various diseases 

Human MSCs are multipotent and easily 
expanded.  They represent potential clinical tools 
for tissue repair and gene therapy.  

MSCs have a plastic potential. Plasticity means 
the ability of cells to convert from one type to 
another, which is also known as horizontal 
progression (synonomous to differentiation). In 
vitro and in vivo studies have indicated the ability 
of MSCs to differentiate into muscle, neural 
precursors, myocardial tissues, cardiomyocytes, 
bone, tendon, cartilage, and possibly other cell 
types (Figure 2). MSCs also produce appreciable 
amounts of lysosomal enzyme activity, which could 
correct metabolic derangements when given to 
enzyme-deficient patients with lysosomal storage 
diseases and other neurometabolic illnesses [76]. 

Here we will outline briefly the results of several 
studies demonstrating the ability of MSC to 
differentiate into different tissues. 

 
Muscle and heart 

Repeated endomyocardial transplantation of 
high doses of  allogeneic MSCs appeared safe in 
Yorkshire swine models [77]. Adult human MSCs 
showed persistent engraftment into infarcted rat 
myocardium [78]. MSCs enhanced the survival of 
existing myocytes in mice through paracrine 
mechanisms [79]. In murine models, single 
clonally purified MSCs seem to be more beneficial 
than unpurified transplantated MSCs in cardiac 
repair [80]. 

Transplantation of MSC combined with 
treatment with erythropoietin in rat models of acute 
myocardial infarction leads to enhancement of 
capillary density, and reduction of infarct size and 
fibrotic areas, as compared to groups that received 
only MSCs [81]. Transplantation of genetically 
engineered MSCs expressing an anti-apoptotic 
and angiogenic peptide improved cardiac function 
after myocardial infarction significantly more than 
MSCs alone [82]. MSCs implanted in a rat 
myocardial infarct heart improved cardiac structure 
and function through the combined effect of 
myogenesis and angiogenesis [83]. Fischer rats 
transplanted with MSCs transduced with an 
adenovirus expressing the Ang-1 and Akt genes 
were more resistant to anoxia and restored global 
cardiac function [84]. However, MSC proliferation 

in vitro was inhibited by aspirin, which is used 
extensively to treat cardiovascular diseases [85]. 

MSCs can differentiate into smooth muscles in 
rat models [86] and skeletal muscles in rat and 
mouse models, respectively [87,88].  Human fetal 
MSCs transplanted into the uterus of mice with 
Duchenne muscular dystrophy distributed widely 
and differentiated into muscle cells. However, this 
did not cure the disease [89]. 

 
Nervous and renal system 

Implantation of MSCs into injured spinal cords of 
rhesus monkeys elicited de novo neurogenesis 
and promoted functional recovery, as determined 
by tests of cortical somatosensory-evoked 
potential (CSEP) and motor-evoked potential 
(MEP). This also led to nearly normal sensory 
responses three months after transplantation [90]. 
Following spinal cord injury (SCI), MSCs had a 
positive effect on behavioural outcomes and 
histopathological assessments. They induced 
better recovery of hind limb sensitivity and 
increased the spared white matter in rat models 
[91]. In mice, transdifferentiated MSCs implanted 
into devitalised muscle grafts could support 
peripheral nerve regeneration to some extent [92]. 
Intrastriatal transplantation of MSCs promoted 
functional improvement on the rotarod test in 
murine models of Parkinson's disease [93]. 
Addition of MSCs to degenerative disc cells with 
anulus fibrosis (AF) in vitro resulted in changes in 
extracellular matrix biosynthesis with an up-
regulation of proteoglycan synthesis [94]. 

In murine models of experimental autoimmune 
encephalomyelitis, administration of MSCs at 
onset and at the peak of disease decreased 
inflammatory infiltrates and demyelination in the 
central nervous system [95]. In rhesus monkeys, 
implantation of a cellular allogenic nerve grafts 
and autologous MSCs repaired extended 
peripheral nerve lesions [96]. 

In humans, MSCs transdifferentiated into neural 
stem cells and improved the electrical and 
functional recovery of two patients with chronic 
spinal injury [97]. MSC  infusion into patients 
suffering from metachromatic leukodystrophy and 
Hurler Syndrome was associated with significant 
improvement in nerve conduction velocities [25]. 

Transplanted MSCs accelerated glomerular 
healing in experimental rat models with 
glomerulonephritis [98]. In mice, MSCs reduced 
interstitial fibrosis, but did not delay progression of 
chronic kidney disease [99]. MSCs may protect 
against acute renal injury and promote the 
recovery of morphological and functional 
alterations of tubular epithelial cells [54]. In murine 
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models, MSCs improved tissue damage triggered 
by renal ischemia and reperfusion injury [100]. 

 
Skin and related tissue 

Human MSCs derived from the early human 
embryo can transform into epidermal cells in vitro 
and in vivo [101]. Injection of autologous biograft 
composed of autologous skin fibroblasts on 
biodegradable collagen membrane (Coladerm) in 
combination with autologous MSCs into the edges 
of the wound decreased wound size and increased 
the vascularity of the dermis of diabetic foot 
wounds [102].  Infusion of MSCs promoted the 
survival of allogeneic skin grafts in mice [103] and 
baboons [104]. 

 
Injection of human MSCs derived from umbilical 

cord blood into four men with Buerger's disease 
relieved ischemic rest pain in their affected 
extremities, led to healing of necrotic skin lesions 
within four weeks, and improved peripheral 
circulation [105]. 

 
Bone, cartilage and tendons 

MSCs expanded in an osteoconductive carrier 
regenerated a critical segmental defect in the 
femur of dogs as effectively as autogenous 
cancellous bone. Mismatched allogeneic stem 
cells  regenerated  bone without eliciting an 
immunologic response. This finding raised the 
possibility of establishing allogeneic MSC banks 
for bone regeneration [106]. MSCs were able to 
reconstitute  different layers in the femoral condyle 
[107]. In a canine model, transplantation of MSCs 
with partially demineralized bone matrix restored 
bone defects and enhanced bone growth [108]. In 
a rabbit model, MSCs regenerated full-thickness 
defects of articular cartilage defects, repaired 
Achilles tendon [107,109], and helped to 
strengthen osteoporotic bone [110]. Implantation 
of  rat demineralised bone matrices (DBM) with 
MSCs led  to the formation of bone [111]. MSCs 
engrafted in mice with OI led to a significant 
increase in bone collagen and mineral content 
[112]. In an ovine model, spraying autologous 
MSCs onto grooved hydroxyapatite-coated collars 
of segmental bone tumor implants increased bone 
growth [113]. However, naive MSCs injected in 
mouse knee joints could not differentiate  to 
restore cartilage tissue [114]. In addition, MSCs 
transplanted to ectopic sites in mice underwent 
alterations related to endochondral ossification 
rather than adopting a stable chondrogenic 
phenotype [115]. 

Use of MSCs in five children with OI disease 
lead to a signifincat increase in the total body 
mineral content and increased growth velocity 

[116,117]. Three-dimensional tissue scaffolds 
promoted MSC ectopic bone formation [118]. 
MSCs that were used to fill bone defects during 
revision total joint replacement survived normal 
impact force during this procedure [119]. 

 
Retina tissues, liver and teeth 

MSCs formed structures similar to the 
photoreceptor layer and expressed a 
photoreceptor-specific marker in rats [120], and 
could provide a beneficial effect in retinitis 
pigmentosa [121]. Murine MSCs integrated into 
retinal pigment displayed neuronal and glial 
morphologies and preserved photoreceptor cells 
in the rhodopsin knockout mouse [121]. 

Human MSCs grown in vitro gain the 
characteristic morphology and function of 
hepatocytes after transplantation into livers of 
immunodeficient mice; they engrafted and 
retained function of hepatocytes [122]. 

In vitro and in vivo studies demonstrated that 
MSCs can differentiate into functional odontoblast-
like cells [123]. New populations of stem cells 
isolated from the root papilla of human teeth 
transplanted with periodontal ligament stem cells 
(PDLSCs) generated a root/periodontal complex 
capable of supporting a porcelain crown and 
resulting in normal tooth strength and appearance 
[124]. 

 
Role of MSCs in immunomodulation 

Coculture of MSCs with allogeneic lymphocytes 
failed to stimulate their proliferation, indicating that 
these cells are innately not immunogeneic 
[125,126,104].  Recent reports suggest that MSCs 
have immunomodulatory properties and can inhibit 
lymphocyte antigen presenting cells, natural killer 
cells, and cytotoxic lymphocyte proliferation in 
mixed-lymphocyte reactions (MLR) 
[27,30,70,104,125-128]. 

MSCs inhibit CD2, CD4 and CD8 subsets of T 
lymphocytes [127,128]. Despite the expression of 
HLA by MSCs, they were well tolerated without 
side effects in allogeneic hosts [27,61,104,129].  

Reports on the underlying mechanisms of MSC-
mediated inhibitory effects are contradictory. 
Soluble inhibitory factors, such as hepatocyte 
growth factor [127], transforming growth factor-B 
[127], indoleamine oxidase [130],  human 
leukocyte antigen-G [131] and interleukin-10 [132] 
have been implicated as mediators of the MSC 
inhibtory effect. However, the implication of TGF-
B, interleukin-10 and indoleamine oxidase has not 
been demonstrated by others [27]. 

The importance of cellular contact between 
MSCs and lymphocytes in enhancement of MSCs 
inhibtory effect is contradictory [127,132,133].  
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Co-transplantation of MSCs may prevent lethal 
graft-versus-host disease (GVHD) in MHC-
mismatched murine HSC transplantation [129]. In 
a baboon model, MSC injection led to prolonged 
skin allograft survival [104]. Intravenous 
administration of MSCs prolonged the survival of 
transplanted hearts [134]. 

In humans, MSCs were used to treat severe 
acute GVHD [135].  MSCs derived from 
autoimmune disease (AD) patients exhibited 
extensive anti-proliferative properties against 
lymphocytes in vitro. This could be investigated as 
a form of immunomodulatory cellular therapy for 
AD patients [136].  

In contrast, allogeneic and transgeneic MSCs 
were  rejected by mismatched recipient mice 
[137,138]. In addition, concurrent treatment with 
low-dose cyclosporine A and MSCs accelerated 
allograft rejection [139]. MSCs failed to prevent 
acute  GVHD in mice [140]. 

 
MSCs and solid organ graft 

MSCs revitalized cryopreserved allogeneic 
grafts used to repair large musculoskeletal defects 
[141]. They incorporated within the tissue sheath 
around the tendon, and adopted the characteristic 
spindle-shaped morphology of tenocyte-like cells 
[141]. 

MSC transplantation into heart enhanced cell 
survival, improved angiomyogenesis, and restored 
global cardiac function [84]. The vascular 
protheses,  the inner surfaces of which are 
covered with MSCs that overexpress nitric oxide 
synthase,  may have  longer graft patency and 
vasculoprotective effects [142]. Injection of MSC 
enhanced xenochimerism in murine models, 
thereby showing promise as a strategy to achieve 
whole organ xenograft tolerance  [143]. 

 
Role of MSCs in irradiation injury and in burns 

Exposure of living cells to irradiation induces 
DNA damage and results in immediate tissue 
aplasia, or long term secondary effects resulting in 
induction of cancer [144,145]. Acute radiation 
syndrome affects hematopoietic, gastrointestinal, 
neurovascular and cutanous systems [146]. 
Therapeutic irradiation can induce a significant 
decrease of both  mature and immature 
progenitors in human BM and peripheral blood 
immediately after low-dose total body irradiation 
(TBI) (147).  A dose of 2-8 Gy causes the 
hematopoietic component of the acute radiation 
syndrome in humans [148-150]. It has been 
demonstrated that growth of irradiated CD34+ 
cells was enhanced by co-culture with MSCs  
[151]. Injection of MSCs could help in the 
management of therapeutic irradiation side effects. 

Radiation enteritis is a functional disorder of the 
intestine that can occur during or after a course of 
radiotherapy of the abdomen, pelvis or rectum.  

Radiation enteritis can present either as an 
acute or a chronic form, both of which have life 
threatening sequelae. The increasing use of 
radiotherapy in the treatment of solid organ 
malignancies in the abdomen and pelvis is likely to 
increase the incidence of radiation enteropathy in 
the future [152]. Moreover, it can damage normal 
tissues during the course of therapy for a few 
weeks after therapy, or even  for months or years 
[153]. 

The first challenge in therapeutic MSC 
transplantation is how to efficiently deliver it to the 
sites of intended action. TBI increased human 
MSC engrafment in BM and muscle and further 
led to engraftment in brain, heart and liver [50]. 
Local irradiation in addition to TBI induces homing 
of human MSCs to exposed sites and promotes 
widespread engraftment to multiple organs in 
murine models [50]. It seems that inflammation 
and tissue injury due to irradiation activate 
molecular pathways that increase the release of 
tissue chemokines. This attracts MSCs to injured 
tissue, where they engraft and differentiate into 
different tissues to replace the injured areas and 
repair damage. MSCs accelerate structural 
recovery and favour healing of irradiated tissues 
[154]. Human MSCs were shown to support the 
structural regeneration of the small intestine in 
NOD/SCID mice after abdominal irradiation [154]. 
Amazingly, MSCs are resistant to irradiation [155]. 
Cells expressing the MSC phenotype were more 
prevalent in the peripheral blood of burn patients 
than in healthy donors. The percentage of MSCs 
correlated with the size and severity of burns, and 
with patient age [156]. Human MSCs favour 
healing of cutaneous radiation syndrome in a 
xenogenic transplant model [157]. 

 
MSCs in gene therapy 

Transplantation of interleukin-7 (IL-7) gene-
engineered MSCs into lethally irradiated mice led 
to a significant increase in thymopoiesis and 
homeostatic expansion of peripheral T 
lymphocytes.  It also protected the host from 
GVHD and enhanced immune reconstitution [158]. 

In  a murine model, MSCs transfected ex vivo 
with the hepatocyte growth factor gene were more 
therapeutically efficient than MSCs alone in 
protecting brain tissues from acute ischemic 
damage in the midcerebral artery occlusion [159]. 

Transduction with the brain-derived neurotrophic 
factor gene further enhanced the protective 
efficacy against  ischemic damage [160]. 
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Hypoxia-regulated HO-1 vector modification of 
MSCs enhanced the tolerance of engrafted MSCs 
to hypoxia-reoxygen injury in vitro and improved 
their viability in ischemic hearts [161]. 

 
MSCs in cancer 

MSCs possess excellent migratory ability and 
exert inhibitory effects on the proliferation of 
glioma cells [162]. Modification of MSCs by gene 
therapy with therapeutic cytokines augments the 
anti-tumor effect and prolongs the survival of 
tumor-bearing animals [163]. MSCs transfected 
with the epidermal growth factor receptor exhibit 
enhanced therapeutic potential against murine 
brain tumors [164]. 

In a model of Kaposi's sarcoma, human MSCs 
injected intravenously homed to sites of 
tumorigenesis and potently inhibited tumor growth 
[165]. In a murine model, MSCs adenovirally-
engineered to secrete interleukin-12 prevented 
revival and recurrence of tumor cells, which had 
escaped from conventional treatment [166]. 

MSC-engineered hydroxyapatite used to fill the 
patient's bone cavity after tumor curettage 
demonstrated healing potential without adverse 
reactions [167]. 

Genetically modified MSCs expressing the 
vascular endothelial growth factor receptor (tsFlk-
1)  gene can inhibit growth of Burkitt's lymphoma 
in a murine model [168]. MSCs can target tumour 
cells [162] and have been suggested as a possible 
approach for the delivery of therapeutic agents 
[169]. MSCs transduced with an adenoviral 
expression vector carrying the human IFN-beta 
gene suppressed the growth of pulmonary 
metastases, presumably through the local 
production of IFN-beta in the tumor 
microenvironment [170]. 

By contrast, it has been demonstrated that 
MSCs could favour tumour growth in murine 
models [126,171], but they do not interfere with the 
kinetics of tumor development [171]. MSCs recruit 
primary follicular lymphoma (FL) cells and trigger 
their differentiation into fibroblastic reticular cells, 
making them able to support malignant B-cell 
survival [172]. 

MSCs target microscopic tumors and contribute 
to the formation of a significant portion of tumor 
stroma development in vivo [173]. 

Tumor cells, when mixed with MSCs and 
transplanted subcutaneously, exhibited increased 
capability of proliferation and angiogenesis in 
tumour tissues and highly metastatic ability. When 
human marrow-derived MSCs were injected into 
tail veins of SCID mice bearing human malignant 
melanoma, human cells incorporated into tumor 
vessels and participated in angiogenesis [174]. 

Interaction of Multiple Myeloma cells with MSCs 
resulted in the formation and persistence of 
osteolytic bone lesions. However, 6-
bromoindirubin-3'-monoxime treatment reduces 
the MSCs-stimulated proliferation of Multiple 
Myeloma cells and may enable MSCs to repair 
existing osteolytic lesions [175]. 

These results are contradictory, and further 
experimental and clinical studies are needed to 
evaluate the benificial effects of MSCs in cancer 
therapy. 
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Figure 2 Different possible cells that could be obtained 
from MSCs 
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MSCs. 

 
Conclusion 

MSCs have a multipotent capacity.  They 
support hematopoiesis and have 
immunomodulatory activity. Experimental and 
clinical studies have implicated MSCs in tissue 
repair. These characteristics make MSCs 
particularly attractive for therapeutic exploitation, 
such as regeneration of various tissues, induction 
of tolerance in solid organ graft, and BM 
transplantation. Figure 3 summarizes the possible 
therapeutic applications of MSCs. However, the 
beneficial versus  deleterious effects of MSCs 
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remain controversial. For instance, some studies 
showed the tolerogeneic effect of MSCs in 
recipients, while others showed that MSCs tended 
to promote rejection. Some reports demonstrated 
that MSCs had favourable effects on tumour 
growth, while others found that MSCs reduced the 
delay for tumour occurrence.  

MSCs could provide opportunities for future 
clinical use in cellular therapy. However, more 
studies are needed on engraftment capacity, 
differentiation, and possible adverse effects in 
vivo. 
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