
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Hum Hered 2009;67:183–192 

 DOI: 10.1159/000181157 

 Exploring the Performance of Multifactor 
Dimensionality Reduction in Large Scale 
SNP Studies and in the Presence of Genetic 
Heterogeneity among Epistatic Disease Models 

 Todd L. Edwards    Kenneth Lewis    Digna R. Velez    Scott Dudek    

Marylyn D. Ritchie 

 Center for Human Genetics Research, Vanderbilt University Medical Center,  Nashville, Tenn. , USA 

heritability estimates is sampled predisposes the MDR study 

to success more than a larger ascertainment in a population 

with smaller estimates.  Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 Detecting statistically epistatic relationships between 
genes or between genes and environmental factors re-
quires a search through a very large space relative to that 
encountered when looking for main effects. Exhaustive 
searches through such spaces using traditional paramet-
ric methods encounter considerable multiple testing 
problems  [1, 2] . The statistical corrections for such large 
numbers of tests are extreme and many nested non-inde-
pendent models are examined. An impossible compro-
mise must be struck between low statistical power due to 
conservative correction for many non-independent tests 
and burying a real signal in type I errors. In contrast, only 
testing models for which hypotheses exist a priori may 
fail to find real models with novel biological interpreta-
tions, of which there may be many.

  Statistical epistasis describes an effect exceeding the 
combined individual effects of each genetic factor; this is 
due to the simultaneous presence of particular levels of 
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 Abstract 

  Background/Aims:  In genetic studies of complex disease a 

consideration for the investigator is detection of joint ef-

fects. The Multifactor Dimensionality Reduction (MDR) algo-

rithm searches for these effects with an exhaustive approach. 

Previously unknown aspects of MDR performance were the 

power to detect interactive effects given large numbers of 

non-model loci or varying degrees of heterogeneity among 

multiple epistatic disease models.  Methods:  To address the 

performance with many non-model loci, datasets of 500 cas-

es and 500 controls with 100 to 10,000 SNPs were simulated 

for two-locus models, and one hundred 500-case/500-con-

trol datasets with 100 and 500 SNPs were simulated for 

three-locus models. Multiple levels of locus heterogeneity 

were simulated in several sample sizes.  Results:  These re-

sults show MDR is robust to locus heterogeneity when the 

definition of power is not as conservative as in previous sim-

ulation studies where all model loci were required to be 

found by the method. The results also indicate that MDR per-

formance is related more strongly to broad-sense heritabil-

ity than sample size and is not greatly affected by non-mod-

el loci.  Conclusions:  A study in which a population with high 
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two or more factors within individuals in a population 
 [3] . These factors that participate in the departure from 
linear additivity  [4]  do not necessarily have a direct rela-
tionship biologically. Such genes might not physically in-
teract; likewise an environmental effect may not directly 
influence the expression or otherwise perturb a gene 
product. The value of this discovery may thereby only be 
relevant to prediction of the trait, and not helpful to the 
biologist investigating a cryptic mechanism.

  This is in contrast to biological epistasis  [5] , where 
variants of biomolecules physically interact in pathways 
to yield phenotypes in individuals. In an era of ever-
growing candidate gene and whole genome association 
studies such epistatic models are of growing importance, 
with many reports in the literature of interactions and the 
development of methods to overcome the limitations of 
parametric methods to detect them.

  Multifactor Dimensionality Reduction (MDR) finds 
models by scanning through all possible combinations of 
factors up to an order of interaction specified by the user 
 [6–11] . The MDR methodology has been successfully ap-
plied to detecting gene-environment and gene-gene in-
teractions for several clinical phenotypes, including: Alz-
heimer disease  [12] , asthma  [13, 14] , atrial fibrillation  [9,
15] , myocardial infarction  [16, 17] , autism  [18, 19] , blad-
der cancer  [20] , familial amyloid polyneuropathy  [21] , 
hypertension  [22, 23] , multiple sclerosis  [24] , prostate 
cancer  [25] , schizophrenia  [26] , sporadic breast cancer 
 [10] , and type II diabetes  [27] .

  MDR provides a means to find hypotheses for further 
testing for epistatic interactions in case-control data, us-
ing a permutation testing approach to adjust the signifi-
cance level for the entire exhaustive search of the epistat-
ic space. Previous reports from simulation studies have 
characterized the method’s performance in the presence 
of missing data, phenocopy, 50% locus heterogeneity, 
various sample sizes, several epistatic models including 
two-locus through five-locus interactions  [11] , and mul-
tiple levels of class imbalance (in terms of the number of 
cases and controls in the dataset)  [28] . In addition, the 
algorithm has been refined and improved with the addi-
tion of the balanced accuracy  [28] , NMI fitness metrics 
 [29] , cross-validation optimization  [30] , continuous out-
comes [31] , and extensions to family data with the devel-
opment of the MDR Pedigree Disequilibrium Test (MDR-
PDT)  [12] .

  Locus heterogeneity or model heterogeneity, where 
multiple independent epistatic models may predispose an 
individual to become a case, has been demonstrated to be 
difficult for MDR and other methods  [11] . However, re-

cent innovations in interpretation of MDR results have 
improved MDR performance in this regard  [32] . Best 
models from an MDR analysis are the largest, most con-
sistent signals observed in the data. Since no explicit test 
of effect modification is conducted in the MDR algo-
rithm, this signal may be due to main effects, main effects 
and interactions, pure interactions, noise, or any combi-
nation. As a result, MDR may find some but not all loci 
contributing to prevalence in complex diseases. We con-
sidered this to also be a success of the method, since these 
results contain some true positive results, and some false 
positives, as with any statistical procedure; and so we 
have modified the scoring of power to account for the 
correct discovery of either epistatic model or any locus 
from either epistatic model.

  The goal of this work is to further characterize the per-
formance of MDR given large-scale datasets or locus het-
erogeneity. To investigate MDR performance in the pres-
ence of genetic heterogeneity, we examine two purely ep-
istatic models acting on various proportions of cases 
within a population in case-control data and across three 
levels of genetic heterogeneity. This is an expansion of the 
heterogeneity study from  [11]  and  [32] . These heterogene-
ity investigations survey all combinations of ten genetic 
models where minor allele frequency, broad-sense heri-
tability, prevalence among cases, and effect size are var-
ied.

  This study also characterizes the performance of MDR 
when analyzing large datasets of up to 10,000 SNPs. The 
large-scale data experiments survey 28 genetic models 
where number of loci, minor allele frequency, broad-
sense heritability, effect size, and the number of indepen-
dent noise loci are varied. Results suggest that while MDR 
may not solve the intractable issue of heterogeneity con-
fronting genetic epidemiology, it does have some power 
and is a valuable tool for approaching epidemiological 
problems involving complex genetic architectures.

  Materials and Methods 

 Multifactor Dimensionality Reduction 
 The MDR algorithm has been described in detail   . 

Briefly, the steps of MDR follow:
  (1) MDR randomly splits the data into k portions, for use in k-fold 

cross-validation. Cross validation (CV) functions optimally 
between 5 and 10 intervals, with lower values of k optimized 
for computation time. 

 (2) In k – 1/k of the data, the ratios of cases/controls at all multi-
locus genotypes within a combination of loci are established. 

 (3) The multilocus genotype combinations are combined to form 
one binary variable summarizing risk for each multilocus 
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comparison; such that all high risk genotypes are one group 
and low risk genotypes form the second group. Balanced Ac-
curacy (BA) or (sensitivity + specificity)/2, where sensitivity is 
true positives/total sample size and specificity is true nega-
tives/total sample size, is computed and used to select models 
from each order of comparison, or number of loci, for testing. 
The model with the highest BA is tested in the remaining 1/k 
of the data to determine the model’s ability to predict out-
comes in independent datasets. For k CV intervals, k models 
will be tested in test sets. 

 (4) This procedure is repeated k times. Maximized average pre-
dicted BA and maximized cross-validation consistency over 
the k-fold cross-validation procedure are used to select the fi-
nal model. Among all models with the highest observed CV 
consistency, the highest BA is the tiebreaker. If these two crite-
ria support different models, then the model with fewest loci is 
selected, according to the principle of statistical parsi mony. 
 To estimate the statistical significance of the result, permuta-

tion testing is employed. To obtain an estimate of the empirical 
null distribution of results, affection status is randomized accord-
ing to the original proportions in the dataset. This disrupts asso-
ciations that may exist between predictor and outcome variables. 
The MDR procedure is performed as above on the permuted data. 
This procedure of generating permuted data and subsequent 
analysis is repeated at least 1,000 times. The actual result is com-
pared to the distribution of ordered results from the permutations 
to determine significance. A significant result suggests a main or 
joint effect on risk of genotypes at tested loci. The type I error rate 
of this procedure is always nominal, as long as the search per-
formed for each permutated dataset is the same size as the search 
performed in the original data (unpublished results). For the ex-
periments in this study, a C++ version of the MDR algorithm was 
used. However, a Java MDR software package with a graphical 
user interface and many additional features for data analysis is 
freely available for download and use from www.epistasis.org.

  Genetic Data Simulation 
 Simulation Software 
 The simulation software packages genomeSIM  [33]  and sim-

pen [modified from  34]  were used to generate genetic models and 
simulate data. Genetic models were generated by simpen, a soft-
ware package that uses a genetic algorithm to evolve purely epi-
static penetrance models using a multiobjective fitness function 
specifying a target number of model loci, minor allele frequency 
(MAF), marginal penetrance variance, odds ratio, and heritabil-
ity. The odds ratio in this case is the average ratio of odds of dis-
ease given an exposure to a high-risk genotype relative to expo-
sure to a low-risk genotype, assuming no loss of cases to follow-up 
due to death or other causes. To calculate this quantity, the prod-
uct of the penetrance of each multilocus genotype and the fre-
quency of that genotype are found, estimating the expected prev-
alence of cases in the population for each genotype. Each geno-
type prevalence is then divided by the sum of the prevalence 
values for all multilocus genotypes for the model, providing the 
proportion of cases expected under random sampling at each 
multilocus genotype. This procedure is also conducted for 1 mi-
nus each penetrance, providing the expected proportion of con-
trols per genotype. Where the expected proportion of cases equals 
or exceeds that of controls, a genotype is denoted high risk; oth-
erwise it is low risk. High risk cells are those genotypes for which 

the penetrance equals or exceeds the model prevalence. Thus the 
expected number of high risk cases, low risk cases, high risk con-
trols and low risk controls are found and this is used to calculate 
the odds ratio for the interaction from a 2 ! 2 table. All 28 pen-
etrance models for this study were purely epistatic and contained 
no main effects larger than relative risk 1.001. The parameters for 
each simulation are detailed in  table 1 . All loci in the simulations 
were independent to provide conservative estimates of power due 
to increased data noise. It is expected that data with extensive cor-
relation (linkage disequilibrium) among non-model loci would 
provide fewer spurious signals relative to independent loci since 
correlated loci would tend to behave similarly to one another, 
thereby effectively reducing the number of independent non-
model variables. This is analogous to the principles underlying 
the multiple testing correction method of Nyholt  [35] . If MDR 
model loci are in strong LD with nearby loci, mapping fidelity is 
decreased, as the signals may arise at the correlated non-model 
locus, but the genomic region is mapped with similar power (un-
published results).

  Large-Scale Simulations 
 One objective was to characterize the performance of MDR as 

the search space grows across several genetic scenarios. Two and 

Table 1. Simulation parameters for MDR power studies

Model Loci Minor allele
frequency

Heritability Odds ratio

1 2 0.2 0.005 1.10
2 2 0.2 0.010 1.26
3 2 0.2 0.050 1.79
4 2 0.2 0.100 3.00
5 2 0.2 0.150 4.50
6 2 0.2 0.200 6.00
7 2 0.2 0.250 7.00
8 2 0.4 0.005 1.15
9 2 0.4 0.010 1.28

10 2 0.4 0.050 1.79
11 2 0.4 0.100 2.85
12 2 0.4 0.150 3.49
13 2 0.4 0.200 6.00
14 2 0.4 0.250 7.00
15 3 0.2 0.005 1.14
16 3 0.2 0.010 1.30
17 3 0.2 0.050 1.78
18 3 0.2 0.100 2.55
19 3 0.2 0.150 4.20
20 3 0.2 0.20 6.00
21 3 0.2 0.250 7.00
22 3 0.4 0.005 1.12
23 3 0.4 0.010 1.21
24 3 0.4 0.050 1.83
25 3 0.4 0.100 3.27
26 3 0.4 0.150 4.35
27 3 0.4 0.200 6.00
28 3 0.4 0.250 7.00
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three locus epistatic models were simulated in datasets of various 
sizes ( table 1 ). MDR was then run on all datasets and the propor-
tion of the time that the correct best model was found by MDR is 
reported as the power. Permutation tests were not performed here 
due to computational infeasibility to evaluate hundreds of large 
datasets. Datasets with 500 cases and 500 controls and 100, 500, 
1,000, 5,000, and 10,000 markers were simulated for two-locus 
models and 500 cases and 500 controls with 100 and 500 markers 

were simulated for three-locus models. Fewer markers were simu-
lated for the 3-locus models due to the much longer computation 
times necessary to exhaustively search for such models. This is 
due to the property of exhaustive searches where for a 2-locus 
search in 500 loci, 1.25  !  10 5  models must be examined, while a 
3-locus search in 500 loci consists of 2.07  !  10 7  models. Com-
paratively, for a 2-locus search in 10,000 loci, 4.99  !  10 7  models 
are evaluated, while in a 3-locus search in 1,000 loci, 1.66  !  10 8  
models are evaluated, and in 10,000 loci there are 1.67  !  10 11  3-
locus models. With regard to whole-genome association studies, 
in 500,000 markers 1.26  !  10 11  2- locus models are searched. A 
single whole-genome 2-locus search with MDR takes approxi-
mately 4 days to complete using 160 2-gigahertz processors with 
at least 2 gigabytes of RAM each. Smaller searches scale linearly 
with the size of the analysis.

  Genetic Heterogeneity Simulations 
 To model genetic heterogeneity, all possible non-redundant 

two-way combinations of ten selected two-locus models (a subset 
of the 14 two-locus models in  table 1 ) were considered ( table 2 ; 
 fig. 1 ). These models were the most subtle effects from our large-
scale simulations, as we anticipated looking at power in large sam-
ple sizes. Also, some subset of models had to be selected for com-
putational feasibility. Our approach for simulating multiple pure-
ly epistatic disease models was similar to that taken in previous 
studies  [11] . Three levels of genetic heterogeneity were examined, 
where a two-locus model specified the risk profile of a proportion 
of cases and another model specified the rest of the cases. The ra-
tios of models simulated in cases were 9:   1 (i.e. 9/10 cases had one 
model and 1/10 of the cases had another model), 3:   1, and 1:   1. 
There were 90 unique combinations of two-locus models in vari-
ous proportions for each of the 9:   1 and 3:   1 levels of heterogeneity, 
and 45 unique combinations of models for the 1:   1 level, for a total 
of 225 unique simulations, each with 100 datasets ( fig. 1 ). This is 
because for the 1:   1 ratio of models, the combination model 1: 
model 2 is equivalent to the combination model 2:model 1, where-
as for a 3:   1 or 9:   1 ratio of models, model 1:model 2 is not equiva-

Table 2. Simulation II: simulation parameters for heterogeneity 
MDR power study for two epistatic loci

Model Minor
allele
frequency

Herita-
bility

Heteroeneity
combinations

Proportion of
cases with a
given model

1 0.2 0.005

all non-redundant
pairwise
combinations
of the 10 models

0.10/0.90
0.25/0.75
0.50/0.50

2 0.2 0.01
3 0.2 0.05
4 0.2 0.1
5 0.2 0.15
8 0.4 0.005
9 0.4 0.01

10 0.4 0.05
11 0.4 0.1
12 0.4 0.15

A total of 2,700 sets of parameters were simulated. 225 groups 
of 100 datasets were simulated for all possible non-redundant 
combinations of ten two-locus models at the three levels of het-
erogeneity. This was repeated in four sample sizes and three levels 
of data imbalance. In addition, three scoring schemes were ap-
plied (any correct locus, either correct two-locus model, both 
two-locus models), for a total of 8,100 power results on 100 data-
sets each.

Heterogeneity

level

Model 1 2 3 4

250 cases/controls

5 8 9 101112 1 2 3 4

500 cases/controls

5 8 9 101112 1 2 3 4

1,000 cases/controls

5 8 9 101112 1 2 3 4

2,000 cases/controls

5 8 9 101112

9:1

1
2
3
4
5
8
9

10
11
12

3:1

1
2
3
4
5
8
9

10
11
12

100 datasets Not simulated

1:1

1
2
3
4
5
8
9

10
11
12

  Fig. 1.  Design for Simulation II. Nonre-
dundant combinations of models 1–5 and 
8–12 were simulated for three levels of het-
erogeneity. To obtain average power for a 
heterogeneity scenario for a particular 
model against the other nine models, the 
average power of a row or column is calcu-
lated within the 9:   1 or 3:   1 levels of hetero-
geneity, for 900 total datasets. For the 1:   1 
level the transpose of the upper diagonal 
matrix is copied into the lower diagonal 
and averages are calculated in the same 
way. This design was also performed with 
1:   2 and 1:   4 case:control ratios (see online 
supplementary materials). 
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lent to model 2:model 1. All datasets for the heterogeneity study 
contained 20 total SNPs (16 independent noise markers with ran-
dom MAF and two 2-locus epistatic models). This number of 
markers was selected based on the observations from the large 
scale simulation which indicated that noise markers do not have 
a strong effect on the sensitivity of MDR ( table 3 ). Four sample 
sizes for all 225 scenarios were simulated with 250, 500, 1,000, and 
2,000 cases and controls. The effect of unequal numbers of cases 
and controls on performance was also considered as in  [28] . For 
each heterogeneity scenario, data were also simulated with two 
and four times the controls as there were cases (online supplemen-
tary materials, www.karger.com/doi/10.1159/000181157). This 
approach yielded 225 scenarios in 4 sample sizes and 3 levels of 
data imbalance, for a total of 2,700 simulations of 100 datasets 
each.

  Model Evaluations 
 Power was calculated for each set of 100 datasets generated in 

each of the models. Power was estimated as the number of times 
MDR correctly identified the functional loci from each set of 100 
datasets for each of three criteria: (1) finding any functional locus; 
(2) either two-locus model, or (3) both two-locus models (data not 
shown). The results for the strictest definition of power (3 above) 
were very low values with no scenario exceeding 10% power. Av-
erage power across nine simulations of 100 datasets each where a 
given model was simulated as one proportion of the cases and the 
other nine models were the remainder was calculated for each 
model for each level of heterogeneity. Groups of models with high 
and low broad-sense heritabilities were also averaged in this 
way.

  Results 

 Large-Scale Dataset Simulations 
 The results of the power studies in large-scale data in-

dicated that in studies with thousands of markers, two-
locus searches with MDR are a powerful means of find-
ing epistatic effects ( table 3 ). Where effect sizes are small, 
MDR lacks power due to the dimensionality and subtlety 
of signals. Here, MDR has no power to correctly select the 
correct two loci as the best model when the odds ratio of 
the interactive effect was 1.3 or less. This most likely 
would gradually be remedied by much larger samples. 
Two-locus models with odds ratios larger than 1.75 and 
broad-sense heritability of 0.1 or larger had very good 
power with estimates ranging from 94 to 100% for mod-
el 10. The rest of the two-locus models simulated either 
had 0% power or 100% power at all levels of noise. There 
was not a strong trend of power loss when independent 
markers were added to the data.

  For three-locus models, the power was less than that 
for two-locus models; although high power was observed 
for some of the models. This set of three-locus models 
was only investigated in 100- and 500-locus datasets due 

to computational restrictions. Models 17 and 19 showed 
some attenuation of power as noise loci were added to the 
data. The power for model 17 with 100 markers in the 
data was 85%, and with 500 markers was 62%. The pow-
er for model 19 with 100 markers was 96% and with 500 
markers was 85%.

  Genetic Heterogeneity Simulations 
 The results of the heterogeneity studies varied depend-

ing on the different definition of power used to score the 
MDR analysis outcomes. The most conservative defini-
tion where all 4 loci from both models must be found had 
almost no power for any combination of models or level of 
heterogeneity (online supplementary materials). However, 
when the definition of power was more liberal, allowing 
the correct discovery of either epistatic model or any locus 

Table 3. Simulation I results

Model Number of loci

100 500 1,000 5,000 10,000

MDR power with large scale datasets for two-locus models
1 0 0 0 0 0
2 0 0 0 0 0
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 0 0 0 0 0
9 1 0 0 0 0

10 100 98 98 95 94
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 100 100 100
14 100 100 100 100 100

MDR power with large-scale datasets for three-locus models
15 0 0
16 0 0
17 85 62
18 100 100
19 96 85
20 100 100
21 100 100
22 0 0
23 0 0
24 100 99
25 100 99
26 100 100
27 100 100
28 100 100
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  Fig. 2.  Power in the presence of heterogeneity.  a  MDR power to 
detect any correct locus from either two-locus model.  b  MDR 
power to detect either correct two-locus model. The x-axis repre-
sents the proportion of cases simulated with the labeled model. 
The y-axis represents the average power of 9 independent simula-
tions of 100 datasets each where the labeled model is the propor-

tion of cases on the x-axis and [1 – proportion of cases] are simu-
lated with the other 9 models. When x = 0 or 1, there is no hetero-
geneity. Thus, each point represents the average rate of success in 
900 total datasets. a The ability of MDR to find any correct mod-
el locus from either two-locus model. b The ability of MDR to find 
either two-locus model, but not both. 
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from any epistatic model, large increases in power were 
observed. This phenomenon had been previously explored 
in  [32] , where the data from  [11]  was revisited using these 
new definitions of power. However, those simulations 
were based on a 1:   1 ratio of cases to controls simulated 
with pairs of 6 purely epistatic models simulated without 
regard to the model odds ratio. These results also showed 
that the presence of a model with high broad sense herita-
bility greatly enhanced the power of the analysis beyond 
that observed when the sample size was large.

  For these results, the average power was calculated for 
each model at each heterogeneity ratio and at each sample 
size ( fig. 2 a, b). Here it is apparent that as low heritability 
models become predominant, power decreases. The pow-
er under these simulation parameters is also not extreme-
ly sensitive to sample size at the extremes of heterogene-
ity, while in models that are simulated at a ratio of 1:   1, 
sample size is most influential. An exception to that is 
model 10, where large differences in performance across 
sample sizes are observed at the 9:   1 level of heterogeneity, 
where 90% of cases are simulated on model 10.

  Also explored was the average power when weak mod-
els are plotted versus strong models ( fig. 3 a, b). These re-
sults show that the power of MDR is more related to the 
signal from the data than the sample size collected. For 
instance, at the 1:   1 level of heterogeneity, all but the 250 
cases/250 controls sample had more than 80% power for 
the high heritability models for both definitions of power, 
while for the low heritability models, even the 2,000 cas-
es/2,000 controls data did not reach 80% average power. 
The slightly lower average power at the 1:   9 level of hetero-
geneity of the strong models from these figures can be 
attributed to the majority of the signal being due to the 
average performance of all other models, where the low 
heritability models determine most of the cases.

  Also simulated were 1:   2 and 1:   4 levels of data imbal-
ance across all parameters presented here. Those results 
resembled the results presented here and are presented in 
online supplementary materials.
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  Fig. 3.  Extreme ranges of heritability.  a  MDR power to detect any 
correct locus from either two-locus model for high and low broad-
sense heritability and allele frequencies.  b  MDR power to detect 
either correct two-locus model for high and low broad-sense her-
itabilities and allele frequencies. Models 4 and 5 (0.2 minor allele 
frequency) and 11 and 12 (0.4 minor allele frequency) have broad-
sense heritabilities of 0.1 and 0.15 respectively (high heritability), 
while models 1, 2 and 3 (0.2 minor allele frequency) and models 
8, 9 and 10 (0.4 minor allele frequency) have heritabilities of 0.005, 
0.01 and 0.05 respectively (low heritability). The x-axis represents 
the proportion of cases simulated with the labeled models. When 

x = 0 or 1, there is no heterogeneity. The y-axis represents the av-
erage power of 18 (high heritability) or 27 (low heritability) inde-
pendent simulations of 100 datasets each where the labeled mod-
el is the proportion of cases on the x-axis and [1 – proportion of 
cases] are simulated with the other 8 (high heritability) or 7 (low 
heritability) models. Each point represents the average rate of suc-
cess in 1,800 datasets (2  !  900) for the left two graphs (high her-
itability) and 2,700 datasets (3  !  900) for the right two graphs 
(low heritability). a The ability of MDR to find any correct model 
locus from either two-locus model. b The ability of MDR to find 
either two-locus model, but not both. 
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  Discussion 

 The results of these experiments show that MDR can 
find epistatic models in the presence of many non-model 
loci. The number of markers present in the data will how-
ever affect the type of analysis performed. Due to the 
computation time of about 15,000 h to perform a single 
2-locus search in a dataset containing 500,000 markers, 
while the analysis of one dataset is feasible, the permuta-
tion testing is infeasible, as this would take 15,000,000 h 
for 1,000 permutations and 1.5  !  10 10  h for 1 million per-
mutations. Instead, for very large searches, we recom-
mend a 2-way split of the data, where one half of the sam-
ples are used for searching for 2-locus epistatic models 
with MDR and the other half is used for independent hy-
pothesis tests for a few top models with logistic regres-
sion. Bonferroni corrections for significance should be 
applied to the results of such regression tests. Otherwise 
where feasible given the user’s access to computer power, 
the permutation test can be performed.

  Heterogeneity can negatively impact MDR perfor-
mance, especially when power is judged as the ability to 
detect all model loci in two epistatic models functioning 
independently. Here we focused on relatively small data-
sets with 20 markers in light of our observations in the 
large-scale dataset study above and considering the large 
number of scenarios we wanted to investigate. However, 
we observed that under these circumstances, MDR per-
forms well when used to detect either of two susceptibil-
ity models, or a single locus from any of the models. These 
studies show that the results from  [11]  may lead to undue 
pessimism with regard to the use of MDR as a tool to de-
tect true associations in data collected for complex traits. 
This topic was revisited in  [32]  using the scoring rules we 
apply here. Here we have simulated many more scenarios 
than those presented previously by varying heterogeneity 
level, sample size and case:control ratio. This approach 
has provided detailed observations about MDR perfor-
mance in complicated analysis situations. In addition, 
MDR has also been compared to some other methods for 
searching for interactions in genetic data  [36] . In that 
manuscript, the authors show that MDR can have supe-
rior sensitivity compared to some machine learning 
methods and regression-based methods that condition 
analyses of interactions on main effects. This behavior is 
thought to be due to the exhaustive search performed by 
MDR, and is more pronounced in higher order epistatic 
models.

  The results of the current study illustrate a property of 
MDR that is similar to what has been seen elsewhere for 

parametric statistics. This is that effect size influences 
performance more than sample size. Heritability esti-
mates can vary across populations for a trait. Thus, the 
selection of a study population where the heritability es-
timates for a trait are high will certainly predispose the 
study to success more than a vigorous and successful as-
certainment  [37] . While the overall effect size may range 
within a given trait heritability, in purely epistatic mod-
els, these quantities are related, where higher heritability 
corresponds with higher odds ratios, and so the analogy 
with parametric statistics holds  [38] . Here, we have simu-
lated various heritabilities in our data, but this could em-
ulate the choice an investigator might make; whether to 
pursue a more convenient ascertainment in a population 
with a lower estimate of heritability, where environment 
explains more trait variance, or go in search of a study 
population where the trait is more genetic, and heritabil-
ity estimates are higher.

  For example, the power to detect a mutation at a single 
locus with an odds ratio of 1.25 at an � = 0.05 with a �2 
test where 30% of controls are exposed with 500 cases and 
500 controls are completely genotyped is 38%. The power 
to detect the same mutation in 1,000 cases and 1,000 con-
trols is 65%. The power to detect a mutation with an odds 
ratio of 1.5 in 500 cases and 500 controls with an expo-
sure frequency of 30% in controls is 99%. While not a 
novel concept in statistics, this property of MDR has not 
previously been demonstrated. The heterogeneity exper-
iment results show that the average power with a strong 
primary model is larger than the power with a relatively 
weak primary model with higher sample sizes.

  Additionally, the performance of MDR is not extreme-
ly attenuated by noise encountered in larger searches with 
larger datasets. This is encouraging in the whole genome 
association era, and although these experiments are not 
on the scale of whole-genome association studies, these 
results show that MDR use is appropriate for very large 
candidate gene studies where epistasis models might be 
encountered (and even two-locus searches in whole ge-
nome association data).

  The approach to interpreting multi-locus models from 
MDR has been under recent development. MDR screens 
a search space and ranks the signals according to the fit-
ness metric employed. Here we applied balanced accu-
racy, but any fitness function could be used. Since this 
procedure does not explicitly look at effect modification 
across genotypes, some other method, such as regression, 
must be employed post hoc to determine the nature of the 
multi-locus model. Recent experiments investigating the 
Type I error of regression after a search through all pos-
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sible interactions suggest that this procedure is not valid, 
and that the means used to look at effect modification 
must be inherently corrected for the search conducted to 
find the model to conduct a valid test. Extensions to MDR 
and MDR-PDT are in development that will allow this to 
be accomplished. However, in general it is our opinion 
that a multilocus model may contain real signals and 
noise markers due to the manner in which MDR exam-
ines data searching for the largest signal. For example, 
when a large main effect, such as APOE in Alzheimer’s 
disease, is present in the data, all multilocus models con-
taining APOE might be significant by the permutation 

test. Therefore, we advocate considering nested models 
from the MDR output as the source of the signal. Replica-
tion datasets should be designed with this in mind, and 
significant MDR results should not be interpreted liter-
ally as effect modification across several loci.

  In summary, MDR is statistically efficient in data with 
many variables. Each variable from an MDR model 
should be considered a potential association or member 
of an interaction. Most importantly, MDR performance 
is more sensitive to effect size and the selection of study 
populations with high heritability estimates than the 
sample size collected. 
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