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Neurons respond to sensory stimuli by altering the rate and
temporal pattern of action potentials. These spike trains both
encode and propagate information that guides behavior. Local
inhibitory networks can affect the information encoded and
propagated by neurons by altering correlations between different
spike trains. Correlations introduce redundancy that can reduce
encoding but also facilitate propagation of activity to downstream
targets. Given this trade-off, how can networks maximize both
encoding andpropagation efficacy?Here,we examine this problem
by measuring the effects of olfactory bulb inhibition on the
pairwise statistics of mitral cell spiking. We evoked spiking activity
in the olfactory bulb in vitro and measured how lateral inhibition
shapes correlations across timescales. We show that inhibitory
circuits simultaneously increase fast correlation (i.e., synchrony
increases) and decrease slow correlation (i.e., firing rates become
less similar). Further, we use computational models to show the
benefits of fast correlation/slow decorrelation in the context of
odor coding. Olfactory bulb inhibition enhances population-level
discrimination of similar inputs, while improving propagation of
mitral cell activity to cortex. Ourfindings represent a targeted strat-
egy bywhich a network can optimize the correlation structure of its
output in a dynamic, activity-dependent manner. This trade-off is
not specific to the olfactory system, but rather our work highlights
mechanisms by which neurons can simultaneously accomplish mul-
tiple, and sometimes competing, aspects of sensory processing.

Neurons respond to stimuli by emitting action potentials. These
action potentials are the sole means of both encoding in-

formation and propagating activity to downstream neurons.
Inhibitory circuits shape stimulus-evoked activity and facilitate
sensory-guided behavior in many systems (1–5), including the ol-
factory system (6–8). These circuits alter the patterns and rates of
postsynaptic action potentials, including the correlation of spiking
across neurons (9). Lateral inhibition can promote competition
between neurons (10), resulting in decorrelation of spike trains
(11) or stimulus-evoked patterns (12, 13). In other situations,
inhibition correlates spiking across pairs of neurons (14–19). In-
hibitory inputs can change rates and correlations differentially,
suggesting that some circuits may be capable of encoding stimulus
information at multiple timescales (20–24). Thus, inhibition can
influence population activity in a variety of ways according to the
details of the circuitry and the patterns of population activity.
The relationship between changes in correlation and sensory

processing remains controversial. Correlation may be helpful or
harmful depending on stimulus statistics, noise statistics, pop-
ulation size, and decoding mechanisms (25–31). Here we focus
on how correlations influence two primary functions of spike
trains: encoding information and propagating activity to down-
stream neurons. Imagine hearing a group of people talking si-
multaneously. A trade-off arises between the quality and the
quantity of communicated messages; a single phrase chanted in
unison is loud, but simple. Conversely, each person saying a dif-
ferent phrase is informative, but no single message is loud
enough to be understood. Neurons face a conceptually similar
problem. Correlated spiking facilitates propagation (30, 32–34).
However, these correlations reduce the available repertoire of
population activity patterns (31, 35, 36), thereby potentially im-
pairing sensory discriminations (27). Because correlations can

impact propagation and encoding in opposing ways, how do
networks structure their correlations? And how should they? We
investigate this problem here in the specific case of inhibitory
circuits of the olfactory bulb.
Themouse olfactory bulb provides an excellent model system to

study the effects of inhibitory circuits on pairwise properties of
spike trains. Mitral (and the related tufted) cells receive direct
input from sensory neurons and provide the only output projec-
tions from the olfactory bulb (37). Because they function as an
obligatory processing stage, the ∼100,000 mitral cells must effec-
tively propagate activity to millions of neurons in areas such as
cortex and amygdala. Moreover, mitral cell odor coding must
minimize redundancy because these cells are few in number
compared with the number of sensory neurons that provide their
inputs (∼10 million/mouse) (37). Connections between mitral
cells are dominated by disynaptic inhibition mediated by a granule
cells—a large population of local circuit GABAergic interneurons
(37). Olfactory bulb inhibition improves the discriminability of
structurally and psychophysically similar odors (6, 7). Therefore,
inhibition-evoked changes to mitral cell correlations are an at-
tractive model for studying the effects of correlations on propa-
gation and encoding, but also represent a behaviorally relevant
component of stimulus processing in this circuit.
Here we use paired whole-cell recordings of mitral cells to

examine the effects of inhibition on spike train correlations and
on stimulus-evoked population activity patterns. We measured
correlations at small and large time windows and explored how
the observed changes affected propagation and encoding. Using
experimental and computational approaches, we show that
minimal activation of inhibitory circuits in the olfactory bulb
mediates simultaneous fast correlation (i.e., synchrony increases)
and slow decorrelation (i.e., firing rates become less similar). We
argue that the combination of fast correlation and slow decor-
relation enhances population level discrimination of similar
inputs, while promoting propagation of mitral cell activity to
cortex. Thus, inhibition in olfactory circuits is structured to take
advantage of the encoding and propagation benefits that corre-
lation can confer, while mitigating the deleterious aspects of the
propagation/encoding trade-off.

Results
Timescale-Dependent Correlation Changes in Pairs of Active Mitral
Cells. We first directly measured how the inhibition recruited by
two active mitral cells changed correlations between the two
mitral cell spike trains. We performed simultaneous whole-cell
voltage recordings from pairs of nearby mitral cells in slices of
mouse olfactory bulb (SI Materials and Methods). Firing was
evoked via somatic direct current (DC) injection. We first ex-
amined pairs of spike trains that were recorded simultaneously
(Fig. 1 A and B, orange box). We hypothesized that the recruited
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inhibition would influence both cells in the pair, altering pairwise
correlations. Notably, we expect these interactions to be nearly
exclusively inhibitory as mitral cells are disynaptically coupled via
interneurons and lack direct excitatory connections [although
excitatory coupling has been observed in homotypic mitral cells
(mitral cells terminating in the same glomerulus)] (38–41). Be-
cause we recorded mitral cells terminating in different glomeruli,
we do not expect excitatory interactions due to gap junction
coupling or glutamate spillover (Fig. S1).
Correlations in simultaneously recorded spike trains arise from

several sources. We wanted to isolate changes in correlation that
arise due to trial-to-trial shared synaptic input. To eliminate trial-
locked sources of correlation (e.g., those that that arise from the

transients induced by somatic current injection or repeated input
patterns) we compared the correlations of simultaneously
recorded spike trains to those produced by cells recorded on in-
terleaved trials (i.e., cell 1, sweep 1 is compared with cell 2, sweep
2; Fig. 1 A and B, purple box). This comparison provides a useful
internal control because all traces include the same sources of
spurious, trial-locked correlations (transients and repeated input
patterns; Fig. S2) whereas only the cells recorded simultaneously
receive the shared inputs that are of interest to us.
To quantify spike train correlation (ρ) across timescales, we

constructed histograms of each cell’s activity for bin sizes ranging
from 1 to 1,000 ms (Fig. S3A) and calculated Pearson’s corre-
lation coefficient (Fig. 1C). Thus, for each bin size we calculate
spike count correlation with and without shared inhibition,
allowing us to measure the effects of the simplest lateral in-
hibitory circuit at a variety of timescales. We observed modest
but significant timescale-dependent changes in correlation in the
simultaneously recorded spike trains (Fig. 1F; P < 0.05 in bins
marked with bars, n = 12 mitral cell pairs, nine animals).
When the trials were shuffled (Fig. 1F, dotted line), fast corre-

lation was abolished (P < 0.05 bins < 100 ms) whereas slow
decorrelation was largely preserved (Δρslow = −0.07 ± 0.005, P <
0.05 all bins ≥ 100 ms). Thus, the specific timing of correlating
inhibition was variable from trial to trial, whereas decorrelation
was replicable across trials. Mechanistically, this result suggests
that slow timescale decorrelation relies on a competitive mecha-
nism. Consistent with this result, the difference in firing rate be-
tween the pair increased in the together condition (Fig. 1D). Firing
rate reduction is consistently larger for one cell in a pair (Fig. 1G; P
< 0.05), suggesting that there is a “winner” and a “loser” with re-
spect to firing rate. The fact that the identity of the winner is
conserved across trials suggests that slow competition relies on
features of the circuit that are conserved across trials (for example,
differences in connectivity that determine a cell’s ability to recruit
lateral inhibition). Whereas the observed slow decorrelation is
significant, average firing rate changes were quite small (3.1%).
The bin size of maximum correlation changes varies across

pairs, because each pair is influenced by a unique inhibitory
network. Given this variability, averaging inhibition-induced
changes across pairs (as shown in Fig. 1F) shows smaller peak
changes than are achieved by individual pairs. For this reason,
peak correlation changes were identified in each pair for small
(bin size <30 ms, average Δρfast = 0.016 ± 0.005; P < 0.05) and
large bin sizes (bin size >100 ms, average Δρslow = −0.14 ± 0.03;
P < 0.05; Fig. 1E).

Timescale-Dependent Correlation Changes Require Fast, Shared,
Activity-Dependent Inhibition. Given our experimental results, we
sought a mechanistic understanding of timescale-dependent
correlation changes. Which features of inhibition were re-
sponsible for fast and slow timescale changes, respectively? First,
we hypothesized that fast correlation arose from shared in-
hibition with rapid kinetics (14, 15). Such inputs have been ob-
served from GABAergic granule cells (6, 16, 18) and may
synchronize mitral cell firing via a mechanism dubbed “stochastic
synchronization” (14). Second, we hypothesized that slow
decorrelation arose from long latency, competitive recruitment
of these same granule cells (11, 12, 42, 43), giving rise to lateral
inhibition whereby more active cells suppress firing of less active
cells (11). We predicted that our experimental results might be
explained by these known features of olfactory bulb inhibition.
To understand the requisite features of inhibition, we con-

structed a highly simplified model consisting of two leaky in-
tegrate-and-fire (LIF) neurons (simulated mitral cells) that
received inhibitory inputs (Fig. 2A2). Each cell received shared
inhibition as well as inhibition independent to each cell. In-
hibitory firing was generated using an inhomogeneous Poisson
process driven by excitatory firing (SI Materials and Methods).
We selected this simplified representation of the olfactory circuit
because it allowed us to isolate the features of inhibition that are
necessary and sufficient to mediate cross-timescale correlation
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Fig. 1. Physiological recruitment of inhibition results in fast timescale cor-
relation and slow timescale decorrelation. (A) Experimental setup: Pairs of
mitral cells were depolarized via DC current injection. Pairwise correlation
was measured in the presence (recorded together; orange) and absence
(recorded on separate trials; purple) of shared inhibition. (B) Example voltage
traces for the no shared inhibition (purple) and shared inhibition (orange)
conditions. (Scale bar, 50 mV, 500 ms.) Synchronous spikes are denoted with
asterisks. (C) Pearson correlation was calculated across fast and slow time-
scales (bin sizes, 1–1,000 ms) for pairs recorded in the separate (purple) and
together (orange) conditions. (D) Firing rate difference between the two cells
in each recording condition. (E) Average peak fast correlation and peak slow
decorrelation. (F) Shared inhibition-induced change in correlation across
timescales (solid black line). Bars, above, mark bins with significant correla-
tion change. Shuffled data are shown by a dotted black line. (G) Inhibition-
induced rate change for the less reduced and the more reduced cell for each
recorded pair. (n = 13 pairs for C–E, error bars indicate SE.)
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changes between a single pair of neurons. We generated pairs
of model spike trains and calculated correlation across time-
scales as described above. For comparison, we generated spike
trains with inhibition removed from the model (Fig. 2A1).
Shared, activity-dependent inhibition reduced firing rate (ΔFR =
−27.8 ± 0.03%, P < 0.05; Fig. 2B). Further, synchrony increased
(Δρbin size=10 ms = 0.07 ± 0.01) whereas slow timescale corre-
lation decreased (Δρbin size=1,000 ms = −0.04 ± 0.015; Fig. 2C;
P < 0.05 for all points). Thus, this simple circuit is sufficient to
generate the simultaneous fast correlation and slow decorre-
lation observed in slice experiments.
We next manipulated the kinetics, correlation, and activity de-

pendence of evoked inhibition in our model to observe the con-
tribution of each in timescale-dependent changes. We first altered
the kinetics of inhibition by varying the parameter τα [which con-
trols the rise and decay times of individual inhibitory postsynaptic
currents (IPSCs).] For very fast inhibition (τα = 1), the zero-
crossing point (timescale at which inhibition shifts from being
correlating to decorrelating, shown by arrowheads in Fig. 2D, In-
set) occurred at small bin sizes (Fig. 2D). As inhibition became
slower (τα = 6), the zero-crossing point shifted to larger bin sizes,
suggesting that IPSC kinetics determine the upper range of cor-
relating timescales (Fig. S4).
Next, we varied the fraction of shared inhibition (c) to alter

the portion of shared inhibitory inputs while keeping the total
amount of inhibition constant. As c increases, fast correlation
increases (P < 0.05) and slow correlation decreases (Fig. 2E; P <

0.05 for c> 0.3).Notably, timescale-dependent correlation changes
were observed when 100% of inhibition was shared, indicating
that a single inhibitory population is capable of mediating corre-
lation changes at both timescales.
Finally, we eliminated the activity dependence of recruited

inhibition and instead generated IPSCs with a fixed Poisson rate.
Increasing c in this condition increased correlation (due to in-
creased coincident inputs; Fig. 2F). However, this increase ex-
tended into long timescales, with no slow decorrelation observed
as seen in the activity-dependent case. Thus, when inhibition was
evoked by an external source rather than the local circuit,
common inputs were correlating at all timescales because there
was no asymmetry of one cell recruiting inhibition more effec-
tively. Taken together, these results indicate that rapid, shared,
activity-dependent inhibition provides a simple and biologically
plausible mechanism of timescale-dependent correlation changes.

Timescale-Dependent Correlation Changes Improve Both Propagation
and Encoding. Two kinds of correlations are often considered in
analyzing sensory processing (13): channel correlations (within-
trial correlations between pairs of neurons) and pattern correla-
tions (across-trial correlations between the population activity
evoked by different stimuli). Above, we considered channel corre-
lations between pairs of mitral cell spike trains. Because changes to
channel correlationsmay contribute to pattern decorrelation in the
olfactory system, we developed an expanded model to investigate
these changes at the network level. We constructed an olfactory
bulb model with 100 excitatory cells reciprocally connected to 800
inhibitory interneurons (SI Materials and Methods). This model
allowed us to ask two important questions related to our experi-
mental results. First, do inhibitory circuits enact timescale-de-
pendent correlation changes in this network model? And second,
how do changes in correlation influence the propagation/encoding
trade-off during a simulated detection/discrimination task?
To answer the first question, we activated inputs to all excitatory

cells in the network and recorded their spike trains. For compar-
ison, we removed all synaptic coupling and again recorded spike
trains from excitatory cells. We measured cross-timescale corre-
lation for all pairwise combinations of excitatory cells in both
conditions. This model olfactory bulb network replicates the
timescale-dependent correlation changes observed experimen-
tally (Fig. 3A;Δρfast= 0.10± 0.01,Δρslow=−0.10± 0.02,P< 0.05).
Olfactory bulb inhibition is important for behavioral discrim-

inations, particularly between highly similar stimuli that elicit
overlapping patterns of activity (6, 7, 12, 44) (for example, two
mixtures containing the same odorants at slightly different ra-
tios). A mixture containing 55% odor A and 45% odor B might
activate one glomerulus at a higher intensity and a second glo-
merulus at a lower intensity whereas a 45/55% mixture would do
the opposite (44). To implement this olfaction-inspired scenario
in our model, excitatory cells were randomly divided into two
groups shown schematically in Fig. 3B: group A (stimulated at
a particular intensity; Upper, light gray) and group B (stimulated
at an intensity ∼10% less than group A; Upper, dark gray). To
generate a second, highly similar stimulus, we simply reversed
the stimulation intensities applied to groups A and B (Fig. 3B,
Lower). Thus, a particular cell stimulated at higher intensity for
stimulus 1 received lower-intensity stimulation for stimulus 2.
We evaluated our model’s propagation efficacy and stimulus

discriminability, with and without inhibitory coupling. To test
propagation efficacy, we created a second layer of decoding neu-
rons, each of which received input from 20 layer 1 mitral cells.
Thresholds were set so that activation of layer 2 cells required
roughly 12 coincident inputs. We calculated the portion of layer 1
spikes that elicited a postsynaptic spike in layer 2. In the network
with coupling absent, 0.17 ± 0.01% of layer 1 spikes are success-
fully propagated to layer 2 (Fig. 3C,P< 0.05). In the olfactory bulb-
like model, propagation is increased to 0.23 ± 0.03% (P < 0.05).
These results suggest that timescale-dependent correlation
changes canmaintain propagation even when average firing rate is
reduced (Fig. 4C; ΔFR = −19 ± 3%, P < 0.05).
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Next, we measured discriminability in layer 1 by measuring the
correlation between the two stimulus-evoked patterns. To obtain
a simple quantification of the network’s output patterns, we
randomly divided excitatory cells into two observation groups
(Fig. 3B, group 1, black outlines; group 2, no outlines; see Fig. S5
for alternate analysis). For each stimulus, we compared the av-
erage firing rate in groups 1 and 2. We applied stimulus 1 to the
no-coupling network 150 times, giving us an estimate of the
mean and variance of the stimulus 1-evoked pattern (Fig. 3E,
center and spread of red representation). Next, we again moni-
tored the evoked mean and distribution of the pattern evoked
by stimulus 2 (Fig. 3E, shown in blue). For nonoverlapping
stimulus-evoked distributions, it is clear which stimulus was
presented for any single observation of evoked firing patterns.
However, when two distributions overlap (as in Fig. 3E), there is
a range of observed patterns for which the presented stimulus is
ambiguous to a downstream decoder. Encoding performance
was quantified using a 2D linear discriminant analysis, using a
receiver operator characteristic. Without interneuron-mediated
coupling, pattern overlap is sizable [d = 0.6, where d is pro-
portional to area under the receiver–operator characteristic
(ROC); SI Materials and Methods and Fig. 3D]. The two stimuli
were next applied to the olfactory bulb model, which greatly
reduced pattern overlap (Fig. 3F; d = 0.97). Mechanistically,
excitatory cells cooperatively recruit inhibitory interneurons,
resulting in competitive interactions between the two excitatory
neurons of the pair. Like the electrophysiological results shown
in Fig. 1D, this competition causes a separation of the firing
rates between subpopulations. At the population level, compe-
tition alters average firing rates such that that overlap in the
stimulus-evoked patterns is reduced. Thus, inhibition-mediated
timescale-dependent changes in channel correlation persist at
the network level, and these changes improve both the propa-
gation efficacy and discriminability of applied stimuli.

Fast Correlation and Slow Decorrelation Contribute Synergistically to
Avoid Propagation/Encoding Trade-Off. Thus far, we have seen that
interneuron coupling can achieve simultaneous fast correlation
and slow decorrelation, which can benefit both propagation and
encoding. We wondered whether the observed improvements to
propagation and encoding were truly specific to a timescale-
dependent correlation strategy (observed in the olfactory bulb), or
whether they could be achieved via correlation changes at a single
timescale. Our two-cell model shown in Fig. 2 suggests that shared,
competitively recruited input is required for fast correlation/slow
decorrelation. Because these mechanistic components can be iso-
lated in our network model, we manipulated properties governing
inhibitory synapses to investigate how fast correlation and slow
decorrelation independently affect encoding and propagation.
To isolate fast correlation changes, we modified interneuron

polarity so that interneuron output had equal probability of being
excitatory or inhibitory [sync(±) model]. Although not biologically
realistic, this simple manipulation preserved shared fast fluctua-
tions while eliminating slower inhibitory influences on firing rate
(Fig. 4 C andD, black). The opposing model variant isolated slow
decorrelation by disrupting the timing of GABAergic inhibition
(Fig. 4C, async(−), gray). This disruption was accomplished by
introducing a random lag (0–50 ms) before each postsynaptic cell
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each model variant. Error bars denote SE.
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received inhibitory current, keeping the total amount of inhibition
constant and activity dependent, while eliminating shared fast
fluctuations. These manipulations effectively isolated correlation
changes at the timescales of interest (Fig. 4D, sync(±) Δρ= 0.12 ±
0.02; async(−) Δρ = −0.15 ± 0.01, P < 0.05) while matching firing
rates to the no-coupling and olfactory bulb variants (Fig. S6).
In the sync(±) variant, propagation is increased to 0.34± 0.05%.

However, discriminability is severely hindered in this case because
increased spike covariance stretches response patterns along the
diagonal axis (Fig. 4 A and F, d= 0.2). Conversely, in the async(−)
variant, pattern overlap is reduced because the more active group
suppresses firing rate in the less active group, stretching the two
distributions along the antidiagonal (Fig. 4 B and F, d = 0.82).
However, the decrease in firing rate reduces propagation to 0.03±
0.004%. Notably, even though the olfactory-like model combines
the timescale-specific correlation changes represented in the
sync(±) and async(−) variants, it outperforms the propagation and
encoding predicted by the mean of these models. These models
further highlight the benefits of the olfactory bulb-like inhibition
with respect to the propagation/encoding trade-off. Without any
interneuron-mediated coupling, the model performs poorly with
respect to both propagation and encoding (Fig. 4E, purple). Al-
though the sync(±) (Fig. 4E, black) and async(−) (Fig. 4E, gray)
variants improve one aspect of processing, they do so at the ex-
pense of the other function. Only the olfactory-like timescale-
dependent correlation model (Fig. 4E, orange) improves both
propagation and encoding simultaneously.

Discussion
Our results show that interneuron-mediated coupling between
pairs of active principal neurons canmodulate pairwise spike train
correlations in a timescale-dependent manner. Simultaneous fast
and slow correlation changes depend on two general features of
interneuron recruitment. First, granule cells provide GABAA in-
hibition to subsets ofmitral cells that synchronize spike timing (14–
16, 18, 20). Second, inhibition is recruited competitively, resulting
in slow decorrelation between mitral cells (11, 12, 45). That is,
more active mitral cells are more effective at recruiting lateral
inhibition that suppresses the firing rate of less-active mitral cells.
Downstream neurons may be sensitive to coincident inputs due to
short membrane time constants, high firing thresholds, or feed-
back inhibition. For these neurons (e.g., pyramidal cells in olfac-
tory cortex) (46, 47) increased correlation of input spike trains
increases propagation efficacy.
Like the recently described “synchrony by competition” (20)

mechanism, timescale-dependent correlation changes rely on
competitively recruited synchronizing inhibition. Our study pro-
vides a unique perspective on correlation by considering effects on
correlation at multiple timescales and directly assessing their
impact on both propagation and encoding. Although the impact
of correlation changes on sensory coding has been extensively
discussed (18, 27, 32–35, 48–50), few studies have measured spike
train correlation across timescales (51). Our work shows that
influencing spike train correlations at different timescales in op-
posing directions facilitates improvements to both activity prop-
agation and stimulus encoding. Our report of timescale-
dependent correlation changes in a real biological circuit dem-
onstrates not only that this effect arises naturally from re-
cruitment of local inhibitory circuits, but also that it can be
accomplished in a minimal circuit (two excitatory cells and the
shared inhibitory interneurons) to study pairwise correlation.
These measurements of the effects of such minimal and well-
defined circuits provide valuable data for understanding the cir-
cuit mechanisms that generate spike train correlations.
Whereas the increase in fast timescale correlation is highly sig-

nificant, the magnitude of this change observed betweenmitral cell
pairs in slice is small, due both to physiological and to analytic
causes. Physiologically, we expect this change to be small because it
is induced by the inhibitory circuits recruited by a single pair of
mitral cells. Because odor stimuli recruit tens to hundreds of neu-
rons in vivo, this observed change likely represents a small fraction

of the changes that would be seen in vivo. Analytically, spike count
correlation will always approach zero as bin size is reduced (52).
Given these limitations, we found it quite striking that significant
changes in correlation were observed in these experiments.
Numerous studies have investigated the role of olfactory bulb

inhibition in shaping behavior. In honey bees, selective disrup-
tion of inhibition-induced synchrony impairs behavioral perfor-
mance only for difficult olfactory discriminations (6). Similar
effects have also been observed in mice whose GABAergic sig-
naling has been reduced genetically (7). Conversely, genetic
enhancement of GABAergic transmission improves performance
on difficult olfactory discrimination tasks (7, 53). Despite the
clear behavioral improvements conferred by olfactory inhibition,
their relationship to correlating (14, 15, 18) or decorrelating (11–
13, 54) inhibition has remained unclear. Our results suggest that
a single mechanism can account for increases and decreases in
correlation and that these changes result in improvements in
signal propagation and encoding.
Given that several features of inhibition discussed here are

unique to the olfactory bulb, inhibition-mediated timescale-
dependent correlation changes may be particularly well suited for
this system. Unlike purely center-surround lateral inhibitory cir-
cuits (such as the retina) (55), olfactory bulb lateral inhibition is
less topographically confined (11, 56, 57) and mitral cells can
laterally influence distant cells (37, 58–60). Further, the reciprocal
nature of dendrodendritic synapses in the olfactory bulb may fa-
cilitate the generation and activation of shared inputs. However,
inhibition-mediated cross-timescale correlation changes can in
principle be accomplished without these specific anatomical fea-
tures (51). As discussed in Fig. 2, timescale-dependent correlation
changes require inhibition that is fast, shared, and activity de-
pendent, features that are quite general to neural circuits. Further,
timescale-dependent correlation changes were observed over
a broad range of parameter changes as long as these requisite
features remained intact. We believe that our described mecha-
nism could be efficacious for a wide variety of networks and tasks,
given that population coding and incomplete propagation (i.e.,
<100%) are general features of many circuits. For example, at-
tention can result in frequency-dependent changes in coherence
between local field potentials and spikes (61–63) that might be
explained by a related mechanism.
We present a unique perspective of lateral inhibition within the

context of sensory coding. Examining correlations across different
timescales reveals that inhibition shapes spike train correlations
between principal cells in a highly specialized fashion. This
mechanism integrates the traditional view of lateral inhibition
(pattern decorrelation) (55, 64) with more recent studies detailing
fast-timescale correlation changes (6, 14, 15, 18, 53). This per-
spective views spike timing and rate information not as opposing
coding strategies, but rather as features that can be modulated
semi-independently. This view represents a targeted strategy by
which a network can optimize the correlation structure of its
output in a dynamic, activity-dependent manner. For example,
networks may have an optimal correlation structure, given their
inputs and processing demands (65). Thus, timescales of increased
and decreased correlation may be shaped by biological features
such as time constants of downstream neurons, kinetics of neu-
rotransmitter release, or particular stimulus statistics.

Materials and Methods
A detailed description of the methods is provided in SI Materials and
Methods. Briefly, slices were obtained from P13–P20 mouse olfactory bulb.
We performed whole-cell current-clamp recordings of mitral cells during
somatic current injection. Granule cell excitability was increased either by
reducing Mg2+ concentration in solution or by adding the mGluR agonist (S)-
3,5-dihydroxyphenylglycine (DHPG). Spiking activity was recorded over 2-s
stimulus epochs repeated 20–80 times. All P values noted were calculated
using a t test. Cross-timescale correlation was calculated by binning spike
times and calculating Pearson’s correlation coefficient:
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All simulations were performed inMatlab. Both the two-cell and the network
models consisted of leaky integrate-and-fire neurons with inhibitory cou-
pling. Voltages were calculated using a standard Euler integration scheme.
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