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Large conformational transitions play an essential role in the func-
tion of many proteins, but experiments do not provide the atomic
details of the path followed in going from one end structure to the
other. For the hemoglobin tetramer, the transition path between
the unliganded (T) and tetraoxygenated (R) structures is not
known, which limits our understanding of the cooperative
mechanism in this classic allosteric system, where both tertiary
and quaternary changes are involved. The conjugate peak refine-
ment algorithm is used to compute an unbiased minimum energy
path at atomic detail between the two end states. Although the
results confirm some of the proposals of Perutz [Perutz MF (1970)
Stereochemistry of cooperative effects in haemoglobin. Nature
228:726–734], the subunit motions do not follow the textbook
description of a simple rotation of one αβ-dimer relative to the
other. Instead, the path consists of two sequential quaternary
rotations, each involving different subdomains and axes. The qua-
ternary transitions are preceded and followed by phases of tertiary
structural changes. The results explain the recent photodissociation
measurements, which suggest that the quaternary transition has
a fast (2 μs) as well as a slow (20 μs) component and provide a
testable model for single molecule FRET experiments.

conformational change ∣ cooperativity ∣ domain motion ∣ protein hinges

Many proteins undergo large conformational transitions that
are essential for their functions (1–3). The transitions can

occur in monomers such as the myosin molecular motor (4–6), in
multisubunit complexes such as the chaperone GroEL (7), and in
systems such as the flagellar motor of bacteria, which is composed
of several hundred proteins (8). Probably the most studied exam-
ple is the T (tense) to R (relaxed) transition in the vertebrate
hemoglobin tetramer (Hb) (9–11), for which the conformational
transition increases the efficiency of oxygen transport. Hemoglo-
bin, which is composed of two identical α- and two identical
β-subunits, is the paradigm for the development of models of
cooperativity and allosteric regulation in proteins (9–13). Phe-
nomenologically, the positive cooperativity involves the increase
in the affinity for oxygen of unliganded subunits upon the succes-
sive binding of oxygen to other subunits. This is achieved by struc-
tural changes within subunits (tertiary changes) and between
subunits (quaternary changes). Based on the superposition of
the crystallographic structures for the deoxy unliganded T state
and the fully liganded R state of the protein, the quaternary T →
R transition has been described as involving primarily an approxi-
mately 15° rotation of one “dimer” (α1β1) relative to the other
(α2β2) around a virtual axis (Fig. 1A) (9, 14). Together with a
small relative translation of the αβ-dimers, this reduces the cen-
tral cavity between the dimers (a channel along the C2 axis of
symmetry), where the heterotropic effector 2,3-bisphosphoglyce-
rate is bound in the T state. An important aspect of these struc-
tural changes is that they are accompanied by alterations in the
packing of residues at the interfaces between the subunits. There
is a “switch” in the dovetailing between residues of the β1- and the
α2-subunits (and correspondingly at the α1∕β2-interface) (14);

another contact between the dimers has been referred to as
the “shift” region (14). In addition, the breaking of several salt
bridges that favor the T state has been proposed as playing an
important role in the energetics of the transition (9, 13, 15). Bind-
ing of oxygen to the heme groups results in destabilization of
these salt bridges by a steric mechanism involving undoming of
the hemes, as Perutz suggested in his model for cooperative
oxygen binding (15) (for a recent review, see ref. 9) and was
confirmed by atomic-level energy calculations, which introduced
the concept of an allosteric core (16).

The comparison of two end structures does not provide direct
information on the actual pathway(s) of the conformational
change. Consequently, a number of calculations to simulate the
quaternary transition of Hb have been made. They include a rigid
body model (17), an implementation of targeted molecular
dynamics (18), and a normal mode analysis (19). In this paper,
we have used the conjugate peak refinement (CPR) method (20)
to determine the minimum energy pathway (MEP) involved in
the transition. The CPR method makes no assumptions concern-
ing the reaction coordinate and finds a continuous path between
the end states that follows the valleys and climbs over the con-
necting passes (saddle points) of the energy surface. Every atom
is allowed to move independently and no constraints are intro-
duced to drive the transition. Fig. S1 shows a simple illustration
of the method. Examples of applications include a bacterial pore
(21) and myosin (5), for which the transition mechanism found
by CPR was subsequently verified by experiment (22).

The CPR method leads to the unexpected result that the
pathway from the T to the R structure is more complex than the
standard model based on the relative rotation/translation of
the two αβ-dimers (14). It consists of two quaternary transitions
(Q1 and Q2), each involving a different set of subunits and dif-
ferent rotation axes. Tertiary structural changes precede and
accompany these quaternary transitions. The overall C2 symme-
try of the αβ-dimers is preserved, but the α- and β-subunits behave
very differently. These results provide an unsuspected pathway
of the allosteric transition of hemoglobin and serve to explain
some recent experiments on the R to T transition after photo-
dissociation (23–26). Although the calculations were essentially
completed and most of the manuscript was written by 2000, a cru-
cial experiment (23) validating the results was published only in
2010. In answer to a referee’s comment, we note that one of the
authors (M.K.) inquired of the editors of several journals about
publication and was told that the manuscript would not be
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considered unless there was experimental evidence to support the
“iconoclastic” results.

The findings are also important because they show that caution
is required in evaluating the results of some widely used interpo-
lation methods for analyzing complex conformational transitions
in proteins; see, for example, ref. 27.

Results
Behavior of the Subunits. Fig. 2 shows the progress of structural
change in each of the four subunits along the MEP at the tertiary

and the quaternary levels (in terms of deviations relative to the T
and R conformations, see Methods). The α1- and α2-subunits
change nearly synchronously, particularly at the quaternary level,
even though C2 symmetry was not imposed as a constraint during
the calculations. The same synchrony is observed between the
β-subunits. Local motion, such as side-chain rearrangements,
occurs in one pair of αβ-subunits only slightly before or after the
corresponding change in the other pair, resulting in small differ-
ences in progress at the tertiary level between corresponding sub-
units (for example, α1 relative to α2; see Fig. 2A). Thus, the global
tertiary and quaternary C2 symmetry of hemoglobin is essentially
maintained during the transition.

In contrast to this synchrony between the two α-subunits and
the two β-subunits, the structural progress of the α-subunits is not
synchronous with that of the β-subunits. This uncoupling between
α- and β-subunits occurs at both the tertiary level, as indicated by
the difference in the curves in Fig. 2A, and the quaternary level
(Fig. 2B). Over most of the path, the quaternary progress of the
α-subunits toward the R state precedes that of the β-subunits.

The Quaternary Events. There are two distinct quaternary events,
called here Q1 and Q2 (see Fig. 2B) at reaction coordinate values
λ ¼ 0.18–0.25 and λ ¼ 0.7–0.8. Each of the major quaternary
events involves a different portion of the protein. During event
Q1, the protein behaves as if it was composed of three semirigid
bodies: the α1-subunit, the α2-subunit, and the β1β2-dimer. The
motion is a simultaneous rotation by 3° of each α-subunit relative
to the “stationary” β1β2-dimer (as shown in Fig. 1B), bringing
the two α-subunits closer to each other. The rotation axis of each
α-subunit is close to the axis of its αG helix, which remains essen-
tially stationary and thus functions like a hinge. Two regions
that play an essential role in Q2 are modified as a result of Q1:
(i) The axis of each αH helix moves significantly (see Fig. 1B)
and (ii) the dovetailing at the switch interface is loosened

Fig. 1. The T → R transition of hemoglobin. (A) Comparing the T (i.e., deoxy,
shown in color) and R (tetraoxy, in gray) conformers (superposed by fitting
their α2β2-subunits). The α1β1-dimer as a whole appears rotated by approxi-
mately 15° [the screw axis identified by DynDom (28) is shown in cyan]. The
C2-symmetry axis relating the α1β1- and α2β2-dimers is in magenta. (B) First
quaternary event (Q1): relative to its position in the T state (in color), each
α-subunit rotates by 3° around its G helix (the two α-subunits pivoting
toward each other), resulting in the intermediate halfway along the path
(in gray). The view is down the central channel, along the C2-symmetry axis
(⊗). (C) Second quaternary event (Q2): relative to its position halfway along
the path (in color), each αβ-dimer rotates by 6° (R state shown in gray) around
its αH helix. One of the two switch regions (α2C∕β1FG loop) is circled.
Movies S1 and S2 displaying the two quaternary transitions (Q1 and Q2)
are provided in SI Text.

Fig. 2. Progress along the path. The similarity to either end state (T or R) is
plotted for structures taken along the minimum energy path. The reaction
coordinate λ is the normalized integral (along the path) of all atomic coor-
dinate changes (measured as a rms difference). (A) The tertiary (i.e., intrasu-
bunit) and (B) the quaternary (i.e., intersubunit) similarity are separated for
each of the four subunits, as described in Methods. The first (Q1) and second
(Q2) major quaternary events are indicated. SeeMethods for a description of
the similarity measure.
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(as described below). In the second major quaternary event, Q2,
the protein behaves as if composed of two bodies: the α1β1-dimer
and the α2β2-dimer. Each dimer rotates by 6° in the opposite
sense of the other dimer, around a rotation axis that runs along
the respective αH helix (Fig. 1C).

Summarizing, the conformational difference between the end
states (Fig. 1A) is the result of two successive sets of semirigid
rotations, Q1 and Q2, each involving different regions of the
protein. Four different rotation axes are involved, two in each
quaternary event (Fig. 1 B and C). These axes coincide approxi-
mately with elements of secondary structure, namely the αG and
αH helices. It is noteworthy that the helices that move most
during event Q1 (αH) serve as axes during Q2. The overall C2
symmetry is conserved because, during both Q1 and Q2, each
quaternary motion in the α1β1-dimer is mirrored in the α2β2-
dimer. The small overall translation of α1β1 toward α2β2 noted
by Baldwin and Chothia in their comparison of the Tand R struc-
tures (14) takes place in two steps here: First, α1 moves closer to
α2 during Q1; then β1 moves closer to β2 during Q2.

Subunit Interfaces. An important feature distinguishing the T and
R crystal structures is the switch region, in which the dovetailing
between the β1FG loop and the α2C helix (visible in Fig. 1C) at
the α2∕β1-interface (and respectively at the α1∕β2-interface) is
changed (9, 14, 15). This is an essential contact point between the
α1β1- and α2β2-dimers. In the T state, the side chain of β1His97
is between the side chains of α2Pro44 and α2Thr41 (Fig. 3A); in
the R state, it is between α2Thr41 and α2Thr38 (Fig. 3D). Baldwin
and Chothia suggested that this change might occur as an abrupt
switch between quaternary states (14), β1His97 acting as a prong
that “clicks” from one groove of the α2C helix into the next. This
is indeed what happens along the present minimum energy path,
where the switch occurs simultaneously in both interfaces during
event Q2. The residues of the switch region are closely packed in
the end states (Fig. 3 A and D). Before and mostly during the
quaternary event Q1, this packing loosens, and β1His97 moves
out of the α2C-helix groove by nearly 1 Å (Fig. 3B). This allows
β1His97 to glide past α2Thr41 during Q2 essentially without
rearrangements or distortions (Fig. 3C). Thus, the motion of the
α-subunits during event Q1 prepares for Q2 by loosening the
α1∕β2-(and α2∕β1-) interface to facilitate the switch.

The other contact region between the dimers is between the
β1C helix and the α2FG loop, which has been referred to as
the shift or the “flexible joint” region. Unlike the distinct motion
of the C helix relative to the FG loop that is observed in the switch
region, their counterparts in the shift region move little relative to
each other and without significant rearrangement of their side
chains. This is because the shift region is located radially close
to both theQ1 and theQ2 rotation axes, so that the two quaternary
rotations produce little conformational change in the shift region.

Intermediate Structure. Halfway along the transition between Q1
and Q2 (between λ 0.3 and 0.7 in Fig. 2), the overall structure is
not simply an interpolation between the Tand R conformers. At
the quaternary level, the α-subunits are in a position between that
of the T and R states, whereas the β-subunits are still in a more
T-like state (Fig. 2B). Compared to the Tstate (Fig. 4A), this struc-
ture has the entrance to the central cavity reduced between the
α-subunits (Fig. 4B) by nearly as much as it will be in the R state.
This shrinking is mostly due to the rotation of the α-subunits
toward each other during event Q1, which brings the α1 and α2
H helices closer together (as seen in Fig. 1B). The EF loops and
the N-terminal segments of the α-subunits also contribute to
the shrinking (Fig. 1B). In contrast, the central cavity of the
intermediate structure is still fully open between the β-subunits
(Fig. 4B); it closes during event Q2. Thus, between events Q1 and
Q2, the protein has an intermediate quaternary conformation,
which is maintained approximately during the phases of tertiary
changes described in the next section.

Tertiary Phases. The concerted motions of entire domains during
events Q1 and Q2 are preceded and followed by series of mostly
localized rearrangements of side chains and loops. Thus, Q1 and
Q2divide the transition into three phases of tertiary change.Theam-
plitude of the displacements in each phase is shown in Fig. 5. The
dominant motions are summarized here in the order of occurrence.

Fig. 3. The switch interface. (A) T state, with β1His97 packing into the groove
between α2Pro44 and α2Thr41 of helix α2C. Path intermediates: (B) Just
before event Q2 (at λ ¼ 0.72), the packing has loosened (i.e., β1His97 moved
away from the helix). The distance between His97 (Cβ atom) and the helix
groove (Cα of Tyr42) is indicated. (C) Intermediate halfway along the Q2
event (at λ ¼ 0.75). (D) R state, with β1His97 in the groove between
α2Thr41 and α2Thr38. The backbone of helix α2C is shown in red and of
the β1FG loop in blue.

Fig. 4. Shrinking of the central cavity. (A) In the T state (shown as molecular
surface), the central channel along the C2-symmetry axis is fully open (same
view and coloring as Fig. 1B). (B) In the intermediate structure (λ ¼ 0.5,
viewed from the opposite end of the channel), the channel is nearly closed
between the α-subunits (also shown as licorice in A) but still open between
the β-subunit. When reaching the R state (shown as licorice in B), the channel
closes also between the β-subunits.
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During the first tertiary phase (λ ¼ 0.0–0.18 in Fig. 2), the CD
loops and the C termini of the β-subunits are moving the most
(Fig. 5B). Perutz had identified a set of salt bridges as being
important for stabilizing the T state (15), although there are
additional contributions to stabilizing the T state versus the R
state (10, 16). Six of the salt bridges are at the interfaces between
subunits and two are internal to the β-subunits. All of these salt
bridges are broken before the second quaternary phase Q2. The
breaking of these salt bridges increases the motional freedom at
the subunit interfaces that is required for the quaternary move-
ment of the subunits. In Q1 the β-subunits are essentially station-
ary (as can be seen from the small amplitude of their motion
indicated by the thin backbone trace in Fig. 5C), whereas there
are large displacements in the α-subunits, each of which rotates 3°
around its αG helix as described above (Fig. 1B).

During the second tertiary phase (λ ¼ 0.25–0.7, between
events Q1 and Q2), there are small fluctuations at the quaternary
level (see Fig. 2B), which indicate that the tetramer is somewhat
labile in this intermediate structure. These fluctuations are in-
duced by many small tertiary rearrangements, the largest of which
occur in the N-terminal segments and the EF loops of the β-sub-
units, and in the CD loops and the C termini of the α-chains
(Fig. 5D). The distal histidine in each β-subunit (but not in the
α-subunits) moves out of the heme pocket to form a hydrogen
bond to the mainchain of β-Lys59 and remains in this position
until after event Q2, when it returns to the heme pocket. The
significance of this movement is not clear, but it could facilitate

oxygen access to the β-hemes. This is followed by quaternary
event Q2, in which the amplitude of motion is much larger in
the β-subunits than in the α-subunits (Fig. 5E). This amplitude
increases radially with distance from the αH helices, which are
essentially stationary (as indicated by the thin backbone traces
in Fig. 5E) and serve as rotation axes for each αβ-dimer as de-
scribed above (see Fig. 1C). An effect of this rotation is to shrink
the central cavity between the β-subunits (see Fig. 4B).

In the third tertiary phase (λ ¼ 0.8–1.0), the changes occur
mostly in the β-subunits and are greatest at the entrance of
the central channel (Fig. 5F), including the N-terminal segment,
the EF loop, and the F and H helices. This completes the shrink-
ing of the β-entrance to the central cavity (Fig. 4B).

Discussion
The conjugate peak refinement algorithm (20) has been used to
determine the tertiary and quaternary structural changes along
the allosteric pathway of tetrameric hemoglobin. Using the two
known end structures (that of the unligand T and the liganded R
state), it has been shown that the CPR minimum energy path for
the quaternary transition is fundamentally different from the text-
book description. As originally noted by Baldwin and Chothia (14),
when the end states are superposed by fitting their α2β2-dimers,
the α1β1-dimer is related in the two end states by a 15° rotation.
Although this superposition approach served to highlight the differ-
ences between the X-ray structures, the 15° rotation is shown in
the present analysis to be the product of two quaternary rotations

Fig. 5. Displacements during successive phases. A serves to iden-
tify the main secondary elements: In this orientation (same as in
Fig. 1A), the axes of event Q1 (αG helices, in blue) and the axes of
event Q2 (αH helices, in brown) can be recognized. The βG helices
are shown in yellow, βH in red. The βCD loops are shown in pur-
ple, βE and βF in orange, and βNA, βA, and βEF in gray. B–F use the
same orientation (but subunits are colored as in Fig. 1). The back-
bone thickness is drawn proportional to the amplitude of motion
during each transition phase: (B) first tertiary phase. (C) Event Q1.
D) second tertiary phase. (E) Event Q2. (F) third tertiary phase.
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(Q1 and Q2) that occur in succession. Such complex mechanics are
beyond the scopeof even sophisticatedmultihinge findingprograms
[e.g., DynDom (28)] when one relies on comparing only the transi-
tion end states (see also SI Text).

In spite of the quasisymmetry relating the α-subunits to the
β-subunits in the crystallographic end states, the results show that
the α- and β-subunits behave very differently along the path.
Along the new pathway, it is still valid (9, 14) to consider hemo-
globin as a dimer of αβ-dimers in which the C2 symmetry between
the two αβ-dimers is essentially maintained. This behavior is con-
sistent with a recent NMR study showing that carbon monoxy-
hemoglobin, while undergoing its quaternary transition between
the R and R2 states (R2 is a low-salt form), retains C2 symmetry
in solution (29). It also is consistent with the Monod–Wyman–
Changeux model of cooperativity (12), in which the protein
retains its symmetry at the quaternary level. Conservation of C2
symmetry means here that both quaternary events involve two
equivalent axes of rotation, one in each αβ-dimer; i.e., each α-sub-
unit rotates around its own G helix during event Q1 (Fig. 1B), and
each αβ-dimer rotates around its αH helix during event Q2
(Fig. 1C). Having two successive quaternary rotation events, each
with two axes related by C2 symmetry, results in a total of four
rotation axes. Quaternary event Q1 brings the two αH helices into
a position where they can serve as rotation axes for quaternary
event Q2. If the αβ-dimers were to rotate around their αH helix
before Q1, this would result in a different transformation. The
loosening of the α1β2-switch interface takes place before and dur-
ing event Q1 and prepares for the switch, which occurs concur-
rently with event Q2. This in turn defines the order of the three
tertiary phases, the first two of which facilitate the quaternary
rotations and the third follows the second quaternary rotation
as a function of the CPR parameter λ. Given that tertiary events
are on the nanosecond time scale, whereas quaternary events are
in the microsecond range (see also below), the last tertiary event
is expected to be essentially simultaneous with Q2.

The present results that the transition of hemoglobin from the T
to the R state is composed of a minor (Q1) and a major (Q2) qua-
ternary transition, which are preceded or accompanied by tertiary
transitions, can be compared with several recent experiments.
All of them study what happens to R-state hemoglobin after photo-
dissociation of CO; i.e., the data obtained follow the R to T transi-
tion. The results can be directly compared with the reverse of the
direction described in the CPR path reported here, because the
minimum energy path is independent of the direction. Experimen-
tally, it is known that the complete transition occurs on a time scale
of 20 to 40 μs (30, 31). A recently published paper (23) used time-
resolved wide angle X-ray scattering (TR-WAXS) to determine
the time scale of major structural changes in the R to T transition
after photolysis. Interestingly, the observed time constant is 2 μs,
much faster than the 20 μs of the overall transition. The authors
propose that the slow portion of the quaternary transition thus cor-
responds to subsequent smaller changes in theR to T direction that
are not detectable within the accuracy of their experiment. The
WAXS study complements earlier TR UV magnetic circular di-
chroism measurements (24) associated with Trp residues and
UV resonance Raman (UVRR) measurements (25) associated
with both Trp and Tyr residues. They indicate that the Trp β37-
Asp α94 hydrogen bond in the shift (hinge) region of the α1β2-inter-
face is formed in 2 μs after the photodissociation, whereas the Tyr
α42-Asp β99 hydrogen bond in the switch region of the α1β2-inter-
face is formed in 20 μs. Both of these hydrogen bonds are present
only in the Tstructure, so the authors conclude that the quaternary
transition has both a fast (2 μs) and a slow (20 μs) phase.

Although the present calculations do not provide information
on the time constants of the transitions, the recent experiments
(for an overview, see ref. 26) provide strong support for the
two-step quaternary transition predicted by the calculations
(see Fig. 2); in the R to T direction, the early large quaternary

change Q2 would correspond to the 2-μs step, whereas the smal-
ler late quaternary change Q1 and some tertiary changes would
correspond to the 20-μs step.

As to the H-bond data cited above, the comparison is compli-
cated by the fact that the energy-minimized X-ray structures used
in the CPR calculations change slightly upon minimization and
that the UV data (24, 25) do not provide direct information
on the transition. Specifically, the Tyr α42-Asp β99 hydrogen
bond in the switch region was concluded to occur as part of the
slow step in the UVRR measurement (25). However, the H bond
is lost in the minimized T structure, and the actual switch occurs
in Q2, though the contacts in the switch region loosen during Q1
(see above). This appears to disagree with the conclusion of ref. 25
unless Q2 is associated with the slow step. The other H bond
studied spectroscopically, Trp β37-Asp α94, was determined to
be formed during the early fast (2-μs time constant) transition
phase in the UV measurements (24, 25). Although this H bond
changes very little in the transition to the R structure in the cal-
culations and in the available X-ray structures (32–34), the main
calculated change occurs during Q2. This result, together with the
UV measurements, provides another indication that Q2 happens
during the fast phase.

The use of silica gels to trap unstable intermediates of hemo-
globin (35) also supports the present pathway. These experiments
have shown that liganded hemoglobin blocked by the gel in a
quaternary T state can have R-state kinetic properties, suggesting
an incomplete coupling between the tertiary and quaternary
changes. This uncoupling is exactly what is observed in the pre-
sent CPR pathway: In the intermediate state between Q1 and Q2,
the subunits have a more R-like tertiary structure (Fig. 2A),
whereas the quaternary structure is clearly more T-like (Fig. 2B).
Likewise, in the tertiary phase between λ ¼ 0.8 and 1.0, large
changes occur at the tertiary level (particularly in the β-subunits),
whereas the quaternary structure remains R-like (see Fig. 2). The
separation of tertiary and quaternary changes suggested based
on the silica gel trapping experiments and found in the present
study was presaged in earlier phenomenological models of the al-
losteric transition; see, for example, refs. 36 and 37. Both the Tand
R state have two tertiary structures in equilibrium with one having
a low affinity for O2 and the other having a high affinity for O2.

Thus, the major unsuspected features of the calculated results
(i.e., that the quaternary transition involves two separate steps
rather than the single process of the accepted Baldwin–Chothia
model, and that tertiary changes are not strictly coupled to the
quaternary changes) are supported by recent experimental work:
When the CPR path is analyzed in the R to T direction (to sim-
plify the comparison with the photodissociation experiments), it
is clear that (i) the quaternary transition Q2 comes first and (ii) is
much larger than the subsequent and smaller transition Q1 (both
of which are in accord with the WAXS findings), and (iii) that the
tertiary and quaternary changes can be uncoupled (consistent
with the gel experiments).

Because hemoglobin continues to serve as “the” system for dis-
cussions of quaternary control of biological activity in proteins,
the result that the transition follows an unsuspected pathway ap-
pears to us to be of general interest. Although the experimental
data given above support the proposed transition mechanism, it
would be of interest to have more data concerning the transition.
One possibility is based on trapping the Q1 state with a covalently
linked heterotropic effector (see Fig. S2) and another on single
molecule FRET measurements (38–40); see Figs. S3 and S4.

Methods
The CHARMM program (41, 42) polar hydrogen force field (parameter set 19)
(42) was used (except for the aromatic side chains and the heme, represented
with all hydrogens). Solvent screening of the electrostatic interactions was
approximated by using distance-dependent dielectric screening and by scal-
ing the charges of the ionic groups so as to reproduce intersubunit interac-
tions obtained from solving the Poisson–Boltzman equation, as described
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previously (43). Because the calculations require a one-to-one correspon-
dence of atoms in the reactant and product states, the oxygen molecules
were removed from the oxy structure. However, even though the oxygens
have been removed, the tertiary structure of the subunit changes from that
in the unliganded T state to the liganded R state during the transition.

The MEP obtained by the CPR algorithm (20), which is implemented in the
trajectory refinement and kinematics module of the program CHARMM (41,
42), consists of a series of intermediate structures of the protein, including
the saddle point for every energy barrier crossed. CPR monitors the
energy along every path segment (built by linear interpolation between
adjacent intermediates) and adds enough intermediates until no energy
barriers are hidden within segments (Fig. S1). Starting from the initial path
built by linear interpolation in Cartesian coordinates between the energy-
minimized crystal structures of T (44) and R (32) (which have rms deviations
of 0.87 Å and 1.39 Å from the respective crystal structures), the final MEP is
composed of about 1,700 structures and crosses 80 saddle points. Most of
these saddle points are expected to be smoothed out along the free energy
path due to thermal averaging (5, 45).

Methods such as the finite temperature string method (46) could, in prin-
ciple, be used to determine the free energy, but are too costly to use at the
present time for a system as large as hemoglobin. A recent application of the
string method to a conformational transition in myosin V indicates that the
minimum energy path and the minimum free energy path are very similar,
though themain barrier is lowered significantly by the entropic contributions
along the latter (47).

To assess the structural progress along the path in each monomeric sub-
unit, a “similarity” measure was used in Fig. 2. It estimates whether the pro-

tein atomic coordinates xλ taken at a point λ along the path (see the caption
of Figure 2 for the definition of λ) are more similar to the T state (xT ) or the R
state (xR): ½rmsðxλ;xT Þrmsðxλ;xRÞ�∕rmsðxT ;xRÞ, where rmsðx;yÞ denotes the
root mean square difference between structures x and y over the atoms
of a given subunit. This similarity amounts to a hyperbolic projection onto
the vector between the T and R coordinates. The similarity value varies be-
tween −1 and þ1. For example, a value close to −1 (respectively þ1) indicates
that the structure is very similar to the T state (respectively, the R state); a
value of zero indicates that the structure is equidistant from the two end
states. Before calculating the rmsd, the two structures x and y are superim-
posed by using a least-squares fit. This separates the tertiary from the qua-
ternary changes: For the tertiary change the least-squares fit is done with
respect to the atoms of each subunit, whereas for quaternary change the
least-squares fit involves all atoms of the protein. Contributions from intra-
subunit change were removed from the quaternary similarity by substituting
the internal coordinates of each subunit with those of a constant structure
(chosen here as the average of T and R). Note that while the similarity de-
scribed here is useful to measure the progress along a preexisting path, it
is not appropriate as an order parameter (i.e., as a reaction coordinate)
for free energy evaluations, as discussed previously (5).
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