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NMDA receptors are key regulators of synaptic plasticity, and their
hypofunction is thought to contribute to the pathophysiology of
CNS disorders. Furthermore, NMDA receptors participate in the
formation, maintenance, and elimination of synapses. The conse-
quences of NMDA receptor hypofunction on synapse biology were
explored in a genetic mouse model, in which the levels of NMDA
receptors are reduced to 10% of normal levels (i.e., NR1-knock-
down mice). In these mice, synapse number is reduced in an age-
dependent manner; reductions are observed at the postpubertal
age of 6 wk, but normal at 2 wk of age. Efforts to uncover the
biochemical underpinnings of this phenomenon reveal synapse-
specific reductions in 14–3-3ε protein and in Disrupted in Schizo-
phrenia-1 (DISC1), two schizophrenia susceptibility factors that
have been implicated in the regulation of spine density. Sub-
chronic administration of MK-801, an NMDA receptor antago-
nist, produces similar synaptic reductions in both spine density
and DISC1, indicating that synaptic levels of DISC1 are regulated
by NMDA receptor function. The synaptic reduction of DISC1 and
14–3-3ε is developmentally correlated with the age-dependent
decrease in striatal spine density.
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A defining feature of neurons is their ability to alter the
number and strength of synaptic connections with experi-

ence. At the cellular level, changes in synapse number, or post-
synaptic spine density, occur with learning and memory formation
(1) or exposure to psychoactive drugs (2), and in neuro-
developmental diseases including schizophrenia (3, 4), fragile-X
mental retardation (5), and Rett syndrome (6). At the molecular
level, NMDA-type glutamate receptors have long been appreci-
ated for their role in the formation and maintenance of gluta-
matergic synapses (7), and as mediators of synaptic plasticity (8).
Several studies have shown a positive correlation between
NMDA receptor activity and spine density (9–12), with notable
exceptions (13, 14). However, the molecular mechanisms by
which NMDA receptors regulate spine density remain to be fully
elucidated. In the case of disease states such as schizophrenia, a
fuller understanding of this molecular machinery may point to
new therapeutic strategies.
The striatum represents an ideal brain region in which to fur-

ther explore the biochemical mechanisms by which NMDA
receptors regulate spine density, because the vast majority of
neurons (95%) within this brain structure are medium spiny
neurons (MSNs), which have densely spinous dendrites, upon
which glutamate and dopamine afferents converge (15, 16). This
neuronal homogeneity allows for ex vivo biochemical preparation
of synaptic proteins from a nearly homogenous neuronal sub-
strate. MSNs are thought to be a principal site of action of anti-
psychotic drugs because they express the highest levels of D2

dopamine receptors (17). Furthermore, they participate in many
of the cognitive and limbic behaviors that are altered in schizo-
phrenia (17, 18).
We hypothesized that reduced NMDA receptor function

would alter the biochemical composition of striatal MSN syn-
apses, leading to signaling and structural changes in postsynaptic
spines. By studying a genetic mouse model with a 90% reduction
in NMDA receptors, we found that spine density was decreased
in MSNs of the striatum, and this decrease was age-dependent.
Taking an unbiased, proteomic approach to investigate synapse
biochemistry in these mice, we found developmentally regulated,
synapse-specific decreases in two proteins, 14–3-3ε and DISC1
(Disrupted in Schizophrenia-1). Subchronic treatment of WT
mice with an NMDA receptor antagonist decreased spine density
and also decreased synaptic protein levels of DISC1, suggesting
that DISC1 protein in particular was regulated at the synapse by
NMDA receptor transmission. The developmentally-regulated
decrease in 14–3-3ε, DISC1, and synapse number occurred after
adolescence, mirroring the onset of symptoms for certain CNS
disorders in humans.

Results
NMDA Receptor Deficient Mice Show an Age-Dependent Deficit in
Synaptic Spine Density. To examine the synaptic consequences of
NMDA receptor deficiency, we used genetically engineered mice
with a knockdown in expression of the common subunit of NMDA
receptors, NR1 (NR1-KD mice). These mice, although they do
not recapitulate a human disease-causing mutation, do have a
global reduction in functional NMDA receptors, and display
behaviors similar to those induced by psychotomimetic doses of
NMDA receptor antagonists (19). Furthermore, their abnormal
behaviors (including hyperactivity, reduced sociability, reduced
sensorimotor gating) are considered endophenotypes of schizo-
phrenia and can be normalized to some extent by administration
of antipsychotic agents (19–22).
The integrity of synapses was investigated by measuring the

density of postsynaptic spines from MSNs of the striatum. Spine
density was reduced by 18% in 6-wk-old, postadolescent NR1-
KD mice. This reduction was caused by a selective decrease in
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the number of mushroom-shaped spines, the morphology of
which is thought to reflect mature synapses (Fig. 1).
Reduced spine density could result from impaired synapse

formation or maintenance. To address this question, we mea-
sured synapse number in juvenile mice at 2 wk of age. At this
stage in development, when synaptic connections are forming,
spine density is normal in NR1-KD mice (Fig. 1). Hence, in this
model of NMDA receptor deficiency, reductions in synapse
number are age-dependent and are more evident at a de-
velopmental period associated with synapse elimination (23).

Biochemical Reductions in 14–3-3ε and DISC1 Are Synapse-Specific.
We pursued the molecular deficits underlying synaptic changes in
NR1-KD mice through an unbiased proteomic approach to
identify synaptic proteins that might be selectively changed in
their level of expression. Synaptic fractions from striatal prepa-
rations of WT and NR1-KDmice were isolated by sucrose density
gradient and used for 2D difference in gel electrophoresis
(DIGE) and MS (Fig. S1). By using this approach we found that
14–3-3εwas reduced in synaptic fractions fromNR1-KD striatum,
whereas the total overall levels of this protein were unchanged
(Fig. 2). Because the 2D-DIGE approach lacks the sensitivity to

detect all protein species, we hypothesized that reduction of 14–3-
3ε may point to additional changes in a molecular pathway.
The 14–3-3 proteins bind to phosphorylation sites on their

target proteins and regulate their activity, stability, trafficking,
and interactions (24). The genes encoding the 14–3-3 family of
proteins, including 14–3-3ε (Ywhae), are associated with schizo-
phrenia (25, 26), and message levels of several 14–3-3 genes are
reduced in prefrontal cortex of postmortem schizophrenic brains
(27). Furthermore, 14–3-3 proteins are known to interact with
DISC1, placing them in a molecular pathway of schizophrenia
pathogenesis (28, 29).
DISC1 is a scaffolding protein that is thought to coordinate

other synaptic proteins (30–32), and indeed plays a key role in
synaptic spine maintenance in association with the activation of
NMDA receptors (33). Thus, we hypothesized that the results
from the unbiased approach might reflect a possible defect of a
molecular pathway involving DISC1 in the synapse.
We examined the molecular status of DISC1 in the synapse,

and found that the pool of DISC1 in the synaptic plasma mem-
brane fraction of striatum was also markedly diminished in NR1-
KDmice (Fig. 2), whereas total DISC1 levels were less appreciably
altered. Ultrastructure analysis with postembedding immunogold
EM confirmed the synapse specificity of the reduction (Fig. 2).
DISC1 was selectively reduced at asymmetric synapses in NR1-
KD striatum, whereas the amount of mitochondrial DISC1
assessed from the same dendritic terminals was unchanged.
Reductions in DISC1 were most marked in the striatum,

whereas more subtle reductions were observed in frontal cortex
and hippocampus (Figs. S2 and S3). Within the striatum, synaptic
reductions in protein levels of the DISC1 complex were limited to
DISC1 and 14–3-3ε, and levels of other DISC1 interactors, such
as LIS1, NDEL1, and PDE4B (30, 34), were unchanged or slightly
elevated in synaptic preparations from NR1-KD mice (Fig. 2).

Pharmacological Blockade of NMDA Receptors Decreases Spine Density
and Synaptic DISC1. To confirm that suppression of NMDA re-
ceptor can decrease synapse number and synaptic DISC1, we
pharmacologically treated WT mice subchronically with MK801,
a highly selective, noncompetitive NMDA receptor antagonist. A
dose of 0.2 mg/kg/h was delivered by s.c. osmotic minipump over
a 1- or 2-wk period in adult mice (12 wk of age). This dose regimen
does not induce toxicity (Fig. S4), but was shown to induce hyper-
activity and disrupt social behaviors inWTmice to a similar extent
as observed in untreated NR1-KD mice (Figs. S5 and S6). There
was a dose-dependent reduction in spine density inMK801-treated
mice (Fig. 3). In addition, MK801-treated mice displayed a 40%
reduction in synaptic DISC1, supporting the concept that synaptic
DISC1 is responsive to NMDA receptor-mediated neurotrans-
mission (Fig. 3). Notably 14–3-3ε levels were not affected by
MK801 administration, suggesting that DISC1 levels are more
responsive than 14–3-3ε to transient reductions inNMDAreceptor
transmission, and may involve different regulatory mechanisms.

Alterations in Synapse Biochemistry Are Age-Dependent. Because
the reductions in striatal spine density showed an age-dependent
phenotype, we asked whether the synaptic changes in 14–3-3ε
and DISC1 were similarly age-related. In juvenile NR1-KD mice
(aged 2 wk), there were no synaptic deficits in the levels of 14–3-
3ε. DISC1 levels were only modestly decreased (Fig. 4), and the
levels of PDE4B, LIS1, and NDEL1 were unchanged (Fig. S7).
Although a reduction was seen in extracts from juvenile mice,
the extent was not as substantial as that detected after adoles-
cence (Fig. 2). Hence, both 14–3-3ε and DISC1 showed an age-
dependent reduction in synaptic protein levels that was more
evident in older mice.
The developmental trajectory of these protein and synapse

deficits showed that the decrease in synaptic DISC1 preceded
the reduction in spine density in NR1-KD mice compared with

Fig. 1. NR1-KD mice show an age-dependent reduction in spine density of
MSNs. Representative photomicrographs of dendritic shaft and spines taken
from WT or NR1-KD mice at P14 (A and B) and P40 (C and D). Spine images
were taken from acute slices by using patch-clamp cell labeling with Alexa
Fluor 594 and two-photon laser scanning microscopy. (E) Quantification of
spine density: combined counts of mushroom, thin, and stubby spines per
100 μm of dendrite (n = 6 neurons from three animals for each genotype; P >
0.05, two-tailed t test). (F) Quantification of spine density: combined counts
of mushroom, thin, and stubby spines per 100 μm of dendrite (n = 8 neurons
from three animals for each genotype; *P < 0.05, two-tailed t test). (G)
Quantification of spine density in F for each of the three classes of spine
morphology: mushroom shaped (Mush), stubby (Stub), and thin.
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controls. Spine density was normal in NR1-KD mice at 2 wk of
age; however, at this stage in development, the reduction in
DISC1 protein was already evident, albeit modest (25% re-
duction; Figs. 1 and 4). At later ages, the reduction in DISC1
protein was robust (50%–80% reduction), with an accompanying
decrease in spine density (Figs. 1 and 2). This phenomenon was
not caused by developmental changes in the mutation’s effect on
NR1 protein, because juvenile NR1-KD mice had reductions in
NR1 subunit levels that were 10% to 20% of WT levels (Fig. 4),
which was similar to the reduction observed in adult NR1-KD
striatum (20).

Discussion
By using NR1-KD mice as a model of impaired NMDA receptor
function, we discovered age-dependent changes in synapse
number and in two proteins that are implicated in schizophrenia
and are reported to regulate spine density, 14–3-3ε and DISC1.
NR1-KD mice have global reductions in the levels of NMDA

receptors caused by a hypomorphic mutation of Grin1. The na-
ture of the mutation is particularly valuable for understanding the
role NMDA receptors play in the developing brain, in contrast to
acute pharmacological models of NMDA receptor antagonism.
Furthermore, as they have a cis-acting mutation, the NR1-KD

mice have reductions in NMDA receptors that correlate with the
normal temporal expression of Grin1 through development,
allowing perturbations of NMDA signaling during prenatal and
postnatal development.
Our observation of decreased striatal spine density in NR1-KD

mice is consistent with other studies in hippocampal and cortical
neurons that have shown a positive correlation between NMDA
receptor activity and spine density (9–12). However, there are
studies in which cell-specific genetic deletion of NMDA receptors
does not result in reduced spine density (13, 14). Furthermore,
acute NMDA receptor antagonism with ketamine has recently
been shown to increase spine density, at least transiently, in the
cortex (35). In the reports of cell-specific, genetic deletion of
NMDA receptors, temporal differences in the developmental
stage of Cre expression may explain the variable effects on syn-
apse number (10, 11, 13, 14). With pharmacological studies, it is
conceivable that transient and sustained NMDA receptor block-
ade have opposite effects on synapse function and ultimately on
spine density. As in the genetic models, it is important to note the
developmental stage at which NMDA receptor antagonism is
induced. In the present study, subchronic MK801 was delivered in
adult mice, aged 12 wk; at this stage of development, synapse
number is fairly stable. It is possible that the degree of DISC1

Fig. 2. NR1-KD mice have a synapse-specific depletion of 14–3-3ε and DISC1 proteins. (A) Western blot of total striatal extracts (25 μg) and (B) striatal synaptic
plasma membrane fractions (15 μg protein). Monoclonal antibody to 14–3-3ε and polyclonal antibody to DISC1 (Invitrogen antibody, I) detects a 29-kDa
isoform of 14–3-3ε and 100-kDa and 70-kDa isoforms of DISC1. (C) 14–3-3ε and DISC1 levels normalized to GAPDH demonstrate a synapse-specific decrease in
14–3-3ε, and for DISC1 a modest decrease in total extract, but substantial depletion of DISC1 in synaptic extracts (n = 6 for each genotype; *P < 0.05, two-
tailed t test). (D) Representative photomicrographs of DISC1 labeling by postembedding immunogold transmission EM. DISC1 immunoreactivity is detected in
pre- and postsynaptic membranes of asymmetric synapses of the striatum (circled synapse with arrows), and in mitochondria (uncircled arrows). (E) Quan-
tification of DISC1 immunogold labeling on asymmetric synapses or within mitochondria (n = 3 animals for each genotype; *P < 0.05, two-tailed t test). (F)
Western blot of total (25 μg) and synaptic (15 μg) striatal protein extracts to detect relative levels of PDE4B, LIS1, and NDEL1 from WT and NR1KD mice. (G)
Levels normalized to GAPDH indicate no change in PDE4B or NDEL1, a modest decrease in total LIS1 levels, and an increase in synaptic LIS1 (n = 6 for each
genotype; *P < 0.05, two-tailed t test).
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reduction, or reduction in spine density, might have been greater
if NMDA receptor signaling were perturbed during early post-
natal development, as was the case in the NR1-KD model.
In examining the molecular underpinnings of reduced synaptic

number, our study provides the initial evidence for a role for
NMDA receptors in regulating synaptic levels of DISC1 and its
interactor 14–3-3ε. The molecular interactions of both DISC1
and 14–3-3ε are numerous, yet both proteins have been re-
producibly implicated in the processes regulating neurite out-
growth and spine density (26, 31, 33, 36, 37). 14–3-3ε binds
phosphorylated NDEL1 and serves as a positive regulator of
NDEL1 function (37), and active NDEL1 is required for neurite
outgrowth (38). Furthermore, DISC1 itself is reported to regulate
Rac1-mediated spine remodeling through its synaptic interaction
with kalirin, and this pathway is sensitive to NMDA receptor
activation (33), suggesting that DISC1 functional activity is
downstream of NMDA receptor signaling. In the present study,
we demonstrate that protein levels of DISC1 and synapse num-
bers are also regulated by NMDA receptor signaling. This was
supported not only in NR1-KDmice, but also by pharmacological
blockade of NMDA receptors with MK801 in WT mice, at a dose
that induces schizophrenia-like endophenotypes. Importantly,
these findings form a link between those schizophrenia suscepti-
bility factors that reduce NMDA receptor activity or function and
synaptic DISC1 biology.
In schizophrenia, changes in dendritic complexity and spine

density have been detected in the cerebral cortex (3, 4). In the
NR1-KD mice, our cursory assessment of cortical synaptic bio-

chemistry did not reveal substantial changes in these two proteins.
The striatum-selective reduction in synaptic DISC1 in NR1-KD
mice suggests that (i) MSNs may be particularly responsive to
alterations in NMDA receptor signaling or (ii) our experimental
conditions were not sensitive enough to detect cell-specific changes
in the cerebral cortex. For example, heterogeneous subsets of
cortical cells may mask pyramidal neuron-specific changes in syn-
aptic DISC1. Nonetheless, our findings are in line with the pro-
posed differential cellular roles of DISC1 in various brain regions
and cell types (39).
The delayed emergence of synaptic and biochemical deficits in

postadolescent and adult NR1-KD mice may point to a differen-
tial reliance on NMDA receptors during synapse formation,
synapse elimination, and synapse maintenance (12). The deficit in
NMDA receptor levels did not prevent synapse formation in the
developing brain of NR1-KD mice, but was sufficient to reduce
spine density after adolescence, suggesting a greater necessity for
intact NMDA receptor levels during synapse elimination or
maintenance. Several recent studies illustrate how the cellular
and behavioral consequences of developmental perturbations in
neuron function may not become evident until adulthood (40–
43). Collectively, these studies and the present one demonstrate
how genetic factors may act in an age-dependent fashion to
produce adult-onset symptoms of CNS conditions associated with
aberrant synaptic function. Furthermore, they highlight the rel-
evance of multiple neuron types and brain regions, including the
striatum, in the expression of cellular and behavioral endophe-
notypes associated with these conditions.

Materials and Methods
Animals. The hypomorphic mutation in Grin1 to generate NR1 knockdown in
NR1-KD mice was achieved by targeted insertion of a neomycin cassette into
intron 17 as described (19). Experimental mice were generated from inter-
cross of congenic C57BL/6J NR1-KD heterozygotes with congenic 129X1Sv/J
NR1-KD heterozygotes. This breeding strategy was required to generate
NR1-KD mice at Mendelian ratios on a defined genetic background, as
C57BL/6J congenics had a high mortality rate. Mice were housed with a 12-h
light/dark cycle (0700 hours to 1900 hours). Animal husbandry and experi-
mentation was in accordance with Duke University Medical Center In-
stitutional Animal Care and Use Committee approval and National Institutes
of Health Guidelines for Care and Use of Animals.

Fig. 3. Subchronic treatment with MK-801 reduces synapse number and
DISC1 protein in adult striatum. (A) Representative photomicrographs of
dendritic shaft and spines from MNs of saline solution- and MK801-treated
mice (0.2 mg/kg/h, 7 d). (Scale bar: 10 μm.) (B) Quantification of spine density
per 100 μm of dendrite from mice treated with saline solution or 0.1 or 0.2
mg/kg/h MK801 (n = 6 neurons from three animals for each treatment; P =
0.051 two-tailed t test). (C) Total striatal protein extracts (25 μg) and synaptic
plasma membrane extracts (15 μg) taken from mice treated with saline so-
lution or a 14-d infusion of MK-801 delivered by osmotic minipump (0.2 mg/
kg/h); Western blot detects 14–3-3ε and DISC1 (Santa Cruz, S). (D) Relative
levels of DISC1 and 14–3-3ε normalized to GAPDH levels (n = 6 for each
treatment group; *P < 0.05 and **P < 0.01, two-tailed t test).

Fig. 4. Synaptic decreases in DISC1 are less substantial in juvenile NR1-KD
mice. (A) Western blot of total protein extracts (25 μg) from WT and NR1-KD
mice at P14, blotted for NR1 C-terminus, DISC1 (Santa Cruz, S), and 14–3-3ε.
(B) Western blot of synaptic plasma membrane striatal extracts (15 μg) from
the same experimental groups. (C) Relative levels of proteins normalized to
GAPDH levels (n = 6 for each genotype; *P < 0.05, two-tailed t test).
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Subcellular Fractionation of Protein Extracts. Preparation of synaptic plasma
membrane extracts was performed according to the method described
previously (44, 45), and all steps were performed at 4 °C in the presence of
protease inhibitors (Complete tablets with EDTA; Roche). Mice were killed by
cervical dislocation, and striatum was rapidly dissected on ice. Pooled tissues
from three to four mice were homogenized in 0.32M sucrose, 4 mM Hepes,
pH 7.4, with a motor-driven Teflon/glass homogenizer. Total protein extract
was reserved, and the remaining sample was centrifuged at 900 × g to
remove nuclei. The supernatant was washed twice by centrifugation at
10,000 × g and resuspension in 0.32 M sucrose, and membranes in the
resulting pellet were lysed by osmotic shock in water. These membranes
were separated on a discontinuous sucrose gradient (1.2 M, 1.0 M, 0.8 M;
4 mM Hepes) by ultracentrifugation at 200,000 × g, and membranes at the
1.2-M interphase were collected as synaptic plasma membranes.

Western Blot. Protein extracts were resolved on 10% polyacrylamide gels and
transferred to nitrocellulose membranes. Primary antibody incubations were
performed overnight at 4 °C, and the following antibodies were used: rabbit
anti-DISC1 (Mid; 1:250; Invitrogen), goat anti-DISC1 (1:500; Santa Cruz),
sheep anti-PDE4B (1:3,000; gift from Miles Houslay, University of Glasgow,
Glasgow, Scotland), rabbit anti-LIS1 (1:500; Abcam), rat anti-NDEL1 (1:100;
gift from A. Kamiya, Johns Hopkins University, Baltimore, MD), mouse anti–
NR1-CT (1:1,000; Upstate), mouse anti-GAPDH (1:3,000; Abcam). See Fig. S8
for validation of DISC1 antibodies in F1 genetic background. For all anti-
bodies, 5% milk/Tris-buffered saline–Tween-20 (TBST) was used for blocking
and antibody steps, with the exception of anti-GAPDH, which required 5%
BSA/TBST. Species-appropriate secondary antibodies were conjugated to
HRP (Pierce) or infrared dye (Rockland Immunochemicals), and detected by
enhanced chemiluminescence (Pierce) or Li-Cor Odyssey infrared imaging.
Quantification of immunoblot labeling was performed with ImageJ64 (Na-
tional Institutes of Health). Protein levels were normalized to GAPDH and
expressed as relative optical density, and two-tailed t test was used to de-
termine statistical significance using Excel software.

Dendritic Spine Imaging and Measurement. Acute striatal slices (350 μm thick)
were prepared from postnatal day (P) 14 and P40 mutant and WT littermate
mice by using an ice-cold cutting solution containing (in mM):110 choline
chloride, 25 NaHCO3, 25 D-glucose, 11.6 sodium ascorbate, 7 MgSO4, 3.1
sodium pyruvate, 2.5 KCl, 1.25 NaH2PO4, and 0.5 CaCl2. Slices were incubated
in gassed (95% O2/5% CO2) artificial CSF [containing (in mM): 127 NaCl, 25
NaHCO3, 25 D-glucose, 2.5 KCl, 1.0 MgCl2, 2.0 CaCl2, and 1.25 NaH2PO4] at
34 °C for 45 to 60 min and then at room temperature until used. Experi-
ments were performed at room temperature (25 °C) in artificial CSF (flowing
at 4–6 mL/min). Whole-cell patch electrodes (4–5 MΩ) contained (in mM) 130
KMeSO3, 10 Hepes, 10 sodium phosphocreatine, 3 ascorbate, 4 MgCl2, 4 Na2-
ATP, 0.4 Na-GTP, 0.2 EGTA, and 0.04 Alexa 594. MSNs were first identified by

cell soma shape using a 60× phase-contrast objective, and by membrane
resting potential (−80 mV) once patched.

Imaging of patched MSNs was achieved with a custom-built two-photon
laser scanning microscope. Fluorescence was detected in epifluorescence
mode by using photomultiplier tubes (R3896; Hamamatsu Photonics). Image
acquisition and data analysis was controlled by custom software (Matlab;
Mathworks) (46).

Alternately, spine density was determined by diolistic labeling of perfusion
fixed tissue. Mice were anesthetized with isoflurane and perfusion-fixedwith
4% paraformaldehyde, pH 7.4. Coronal sections (100 μm) of striatum were
obtained by vibratome and neurons were randomly labeled using DiI-
coated, 1-μm gold particles delivered with a BioRad Gene Gun (47). One hour
after labeling, sections were mounted on a glass slide and imaged by con-
focal microscopy. MSNs were identified by location and morphology within
the striatum. Spine density was determined using Nikon Elements software.

Subchronic MK-801 Infusion. Microosmotic pumps (model 1002; Alzet) were
prepared to deliver a constant infusion of saline solution or 0.1 or 0.2mg/kg/h
of MK801 (Sigma) dissolved in saline solution. WT male animals aged 12 wk
were used for the study, and were derived from the same breeding stock as
described earlier (F1 hybrid mice). Animals were anesthetized with isoflurane
and minipumps were implanted s.c. at the dorsal scruff of the neck. Seven to
14 d after implantation, animals were tested for locomotor and social be-
havior (SI Materials and Methods), and euthanized for biochemistry or spine
density measurement.

Methods for 2D gel electrophoresis and in-gel analysis, DISC1 immuno-
fluorescence, GFAP immunofluorescence, immunogold EM, and locomotor
and social behavior studies are described in SI Materials and Methods.
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