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Abstract.—The phylogenetic comparative method uses estimates of evolutionary relationships to explicitly model the co-
variance structure of interspecific data. By accounting for common ancestry, the coevolution between 2 or more traits, as a
response to one another or to environmental variables, can be studied without confounding similarities due to identity by
descent. Because the true phylogeny is unknowable, an estimate must be used, introducing a source of error into phylo-
genetic comparative analysis that can be difficult to quantify. This manuscript aims to elucidate how tree misspecification
is propagated through a comparative analysis. I focus on the phylogenetic regression under a Brownian motion model
of evolution and consider the effect of local phylogenetic perturbations on the regression fit. Motivated by Felsenstein’s
method of independent contrasts, I derive a matrix square root of the phylogenetic covariance matrix that has an obvious
phylogenetic interpretation. I use this result to transform the perturbed phylogenetic regression model into an ordinary
linear regression in which one interpretable point has been affected. The simplicity of this formulation allows the contribu-
tions of data and phylogeny to be disentangled when studying the effect of tree misspecification. Consequentially, I find
that branch length misspecification can be easily explained in terms of the reweighting of contrast scores between subtrees.
An analytical consideration of this and other perturbations helps to explain why the phylogenetic regression appears gen-
erally to be robust to tree misspecification, and I am able to identify conditions under which the regression may not yield
robust results. I discuss why soft polytomies do not meet these problematic conditions, leading to the conclusion that un-
resolved bifurcations should have only modest effects on the regression fit. [Comparative method; independent contrasts;
phylogenetic regression; robustness.]

Comparative studies, dating back to Aristotle, have
identified organismal trends by comparing the values of
certain variables across a range of species (Sanford et al.
2002). Two thousand years later, the same technique of
interspecific comparison helped inspire Charles Darwin
to propose the theory of natural selection, thereby estab-
lishing the evolutionary basis of modern comparative,
functional, and adaptive morphology and anatomy
(Mayr 1982). Today, the evolutionary process itself is
studied in detail, and comparative studies remain the
primary means of investigation (Ridley 1983; Harvey
and Pagel 1991). Contemporary analyses of compara-
tive data are explicitly statistical (e.g., Felsenstein 1985),
and the methods developed for evolutionary biology
have diffused into conservation biology (Fisher and
Owens 2004), anthropology (Nunn and Barton 2001),
linguistics (Lass 1997), and more recently into human
genetics and genomics (Oakley et al. 2005; Guo et al.
2007). These methods share the common goal of con-
trolling for similarity due to identity by descent.

Species usually descend from common ancestors in a
hierarchical fashion, leading to inherited similarities be-
tween closely related species. Similarity may also arise
from selective pressures, which a comparative analysis
aims to reveal; however, adaptation and heredity must
first be disentangled (Felsenstein 1985; Harvey and
Pagel 1991; Miles and Dunham 1992). This confounding
is the subject of the phylogenetic comparative method
in which evolutionary relationships are used to model
the covariance structure of interspecific data (Hansen

and Martins 1996). By explicitly accounting for the hier-
archy of descent, these techniques can uncover residual
similarity that may be evidence of historical coevolution
or adaptation (Grafen 1992).

Evolutionary relationships are idealized by a phy-
logeny, typically a bifurcating tree representing the
patterns of lineage branching over time produced by
the true evolutionary history of the species under study.
Quantitative variables observed across a range of re-
lated species can thus be considered as dependent
realizations of a stochastic process defined on the phy-
logeny that relates them. In particular, for variables
measured on a continuous scale, phylogenetic Brown-
ian motion predominates as a model of realized sim-
ilarity by descent (Cavalli-Sforza and Edwards 1967;
Felsenstein 1973, 1985). Linear models built upon this
Brownian motion framework retain a Gaussian error
structure that incorporates as covariance the dependen-
cies exerted by phylogenetic relationships (Martins and
Hansen 1997).

The implementation of any phylogenetic compar-
ative method is predicated on the acquisition of a
phylogeny, which by definition is historical and unob-
servable (Felsenstein 1985). Because the true phylogeny
is unknowable, an estimate must be used and vari-
ous methods have been developed for tree reconstruc-
tion (reviewed in Felsenstein 2004). Crucially, analyses
downstream of the reconstruction often treat the phy-
logeny as known rather than as an estimate. Doing so
introduces a source of error that is difficult to quantify,
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underscoring the need for robust methodology. This
manuscript seeks to explain why the prevailing method-
ology is indeed robust.

THE PHYLOGENETIC REGRESSION

The phylogenetic comparative method encompasses
a growing suite of procedures designed to draw in-
ferences about evolution from interspecific data while
accounting for the unusual statistical problem posed
by phylogenetic history. Nevertheless, the minimal ex-
ample of Figure 1 is sufficient to provide a conceptual
understanding. The figure, adapted from Lynch (1991),
illustrates a comparative data set in which measure-
ments of 2 variables (mean species weight and maxi-
mum species longevity) are given for 5 species related
by a presumptive phylogeny. A univariate regression
model can be used to assess the relationship between
mean weight and maximum longevity, but ordinary
least squares (OLS) ignores the dependencies in the
data imposed by the phylogeny. The role of the phy-
logenetic comparative method is simply to supply the
dependence structure, with the goal of discounting the
similarity by descent that is expected in data obtained
from closely related species. In particular, phylogenetic
Brownian motion assumes that the similarity by descent
on each branch can be modeled by a shared additive
component whose expected variance scales linearly
with time. Consequently, the expected covariance for
a pair of species is proportional to amount of evolu-
tion they share, calculated as the elapsed time (in total
branch length) differentiating their common ancestor
from the ultimate ancestor at the root of the phyloge-
netic tree.

Returning to Figure 1, the Brownian motion covari-
ance structure can be used in an interspecific regression
of maximum longevity on mean weight (Felsenstein

FIGURE 1. Phylogeny and data from 5 primate species. The 5
species (from left to right: Homo sapiens, Pongo pygmaeus, Macaca mu-
latta, Ateles geoffroyi, Galago senegalensis) are presumed to share a com-
mon ancestor 58 Ma. Branch lengths are reported as fractions of 58
million years. Below each species, its mean weight (in kilograms) and
maximum longevity (in years) are shown. Example taken from Lynch
(1991).

1985, 1988). For such measurements, it is customary to
log-transform both independent and dependent vari-
ables, leading to the model

Y= βββ01 + βββ1X + εεε, (1)

where X and Y are the log-transformed variables, 1 is
a vector of ones, 0 is a vector of zeros, εεε ∼ N(0,σ2ΣΣΣ),
and the error covariance matrix ΣΣΣ (sometimes called a
phylogenetic covariance matrix or PCM) is defined by
the phylogeny as

ΣΣΣ=








1 0.79 0.51 0.38 0
0.79 1 0.51 0.38 0
0.51 0.51 1 0.38 0
0.38 0.38 0.38 1 0
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The intercept in Equation (1) is typically viewed as
a nuisance parameter; conversely, βββ1 is considered to
be the “evolutionary regression coefficient” and quanti-
fies the degree to which maximum longevity and mean
weight have coevolved among the species in the study
(Pagel 1993). As is true in all such applications of the
phylogenetic comparative method, the parameter of in-
terest βββ1 in this example depends on the error covari-
ance matrix ΣΣΣ. ΣΣΣ, in turn, depends on the phylogeny of
Figure 1, which itself is often an estimate based on data
external to the current analysis. Understanding how un-
certainty and inaccuracy in phylogenetic reconstruction
propagates into linear model estimation has been the
subject of intense numerical study (Martins and Garland
1991; Purvis et al. 1994; Diaz-Uriarte and Garland 1996,
1998; Martins 2000; Martins et al. 2002; Symonds 2002).
Here, I develop a complementary theory that formalizes
how the phylogenetic regression is impacted by a mis-
specified tree.

PHYLOGENY AND THE PHYLOGENETIC REGRESSION

This study begins in consideration of the Model (1).
In particular, I focus on the error covariance structure
because it is ΣΣΣ that translates phylogeny into the statis-
tical model. It is worth emphasizing here that although
ΣΣΣ is often introduced as a covariance matrix between
the observations Y, it is correctly the covariance ma-
trix between the error terms εεε. With respect to the
observed data, ΣΣΣ can be seen as the covariance ma-
trix between the observations Y after conditioning
upon both X and the unobserved value of the depen-
dent variable (Y) at the root of the tree. The theory
of generalized least squares (GLS) regression provides
a means of expressing of the GLS estimate of βββ1 in
Equation (1) in terms of the error covariance matrix ΣΣΣ.
Specifically,

β̂ββ1 =
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and here I focus on how β̂ββ1 varies with ΣΣΣ. Rohlf gives
an excellent discussion of the broad consequences of
incorrectly specifying ΣΣΣ. In particular, he notes that
while the estimate β̂ββ1 will vary with ΣΣΣ for any sample
data set, in expectation it remains unbiased (see also
Pagel 1993; Rohlf 2001). Indeed, Equation (2) speci-
fies exactly how β̂ββ1 will vary with ΣΣΣ for fixed X and
Y (Rohlf 2006), but it does not lend insight into how
prescribed changes to ΣΣΣ translate into changes in β̂ββ1.
That is the goal of this manuscript: obtaining a mean-
ingful and intuitive understanding of how prescribed
changes to ΣΣΣ translate into changes in β̂ββ1 for fixed
X and Y.

To begin, rewrite the Model (1) as

Y= X̃βββ + εεε, (3)

by collecting the intercept βββ0 and slope βββ1 in a vec-
tor βββ and by appending 1 to X to create the predictor
matrix X̃. Having done this, for any invertible matrix
square root B of ΣΣΣ that satisfies BBT = ΣΣΣ, multiplication
through Equation (3) by B−1 yields the transformed
model

B−1Y= B−1X̃βββ + B−1εεε. (4)

Crucially, B−1εεε ∼ N(0,σ2I), so that transformation
by B−1 removes the error covariance structure and re-
duces the model to a less complicated OLS regression.
The simplicity gained in the OLS reformulation does,
however, come at a cost: unlike ΣΣΣ, the structures of
B and B−1 need not be interpretable in terms of the
phylogeny. Several such B are implicit in the litera-
ture as means of reformulating the GLS Model (1) as
an OLS Model (4), including those obtained from ΣΣΣ
through Cholesky decomposition (Butler et al. 2000),
singular value decomposition (Garland and Ives 2000),
and eigendecomposition (Rohlf 2001). Here, I focus on
the eigendecomposition ΣΣΣ = USUT both to illustrate
what it means for B and B−1 (in this case, analogous to
US1/2 and S−1/2UT, respectively) to be interpretable in
terms of the phylogeny and to motivate the subsequent
derivation of just such matrices. In addition to being il-
lustrative, the choice of eigendecomposition is a histori-
cal one, as Cavalli-Sforza and Piazza (1975) established
deep relationships between the branching pattern of a
phylogeny and the eigenvectors of its corresponding
covariance matrix (i.e., the columns of U). Indeed, these
relationships have already found use in the phyloge-
netic comparative method, for example, in the study of
phylogenetic shape by Martins and Housworth (2002).
However, because the eigenvectors of ΣΣΣ do not consis-
tently mirror the phylogenetic branching pattern, the
matrix square root B = US1/2 is not well suited to my
purposes here. To see this, consider the phylogeny of
Figure 1, which is simple in every respect, being small,
regularly shaped, and ultrametric. The matrix ΣΣΣ admits

the eigendecomposition ΣΣΣ=USUT, where

U =








−0.55 +0.34 +0.28 +0.71 0
−0.55 +0.34 +0.28 −0.71 0
−0.48 −0.06 −0.88 0 0
−0.40 −0.87 +0.28 0 0

0 0 0 0 1








and

S =








2.50 0 0 0 0
0 0.73 0 0 0
0 0 0.56 0 0
0 0 0 0.21 0
0 0 0 0 1








.

Previous studies relating ΣΣΣ to the branching structure
of its corresponding phylogeny have relied upon clus-
tering the signs of the entries in each but the last column
of U (Martins and Housworth 2002). The fourth column
of U, for example, clearly represents the Homo/Pongo
clade (i.e., subtree), with the opposite signs of Homo
(+0.71) and Pongo (−0.71) indicating their placement on
opposing sides of the clade’s common ancestor. The re-
maining columns, however, are less interpretable; by the
same logic, the third column of U suggests that Homo
(+0.28), Pongo (+0.28), and Ateles (+0.28) form a clade
that shares a common ancestor with Macaca (−0.88), but
this does not recapitulate the phylogeny (see Fig. 1).
As a result, the transformed variables S−1/2UTX and
S−1/2UTY that would be obtained in Equation (4) lack a
direct phylogenetic interpretation.

Fortunately, a suitable alternative to eigendecompo-
sition was given implicitly by Felsenstein in his sem-
inal work on the phylogenetic comparative method
(Felsenstein 1973, 1985). Figure 2 depicts 2 algorithms
for the matrix decomposition of ΣΣΣ that operate in lin-
ear time. The first, Felsenstein’s method of independent
contrasts, has been modified to yield a nonsingular ma-
trix D that satisfies DTΣΣΣD = I; the second, which I call
the inverse algorithm, is so named because it produces
a matrix B that is the transpose of D−1. Note that the
matrix B satisfies BBT = ΣΣΣ and thus B is analogous to
the U (or scaled to US1/2) obtained by eigendecomposi-
tion (Rohlf 2001). The brief description of Felsenstein’s
algorithm that follows helps to explain why the de-
composition of Figure 2 succeeds, where eigendecom-
position fails. For a more complete description that
motivates the algorithm, please see Felsenstein (1985) or
Rohlf (2001).

Felsenstein’s algorithm is an iterative procedure that
operates on a rooted phylogeny. Each step begins with
the identification of 2 leaves sharing an immediate com-
mon ancestor (e.g., Homo and Pongo in Fig. 2a) and ends
with those leaves having been replaced by a single new
leaf (see Fig. 2b). Suppose that the branch lengths from
Leaf 1 (e.g., Homo) and Leaf 2 (e.g., Pongo) to the com-
mon ancestor are t1 and t2, respectively. Then the new
leaf extends the branch that led to the common ancestor
by a distance of t1×t2

t1+t2
. The data assigned to this leaf are a

weighted average of the data at Leaf 1 and Leaf 2; specif-
ically, if the data are Y1 and Y2 for Leaf 1 and Leaf 2,
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FIGURE 2. Two algorithmic decompositions of a phylogenetic covariance matrix. a) The phylogeny of Figure 1 and its associated covariance
matrix ΣΣΣ. Each leaf of the tree identifies with a vector chosen from the columns of the identity matrix. b) Matrix representation of Felsenstein’s
algorithm (Felsenstein 1973, 1985). In each of n − 1 iterations, 2 leaves sharing an immediate common ancestor (e.g., Homo and Pongo) are
combined. The consequences of doing so are 3-fold: 1) a contrast is constructed as a weighted difference of the 2 leaf-associated vectors (see the
first column of C in panel (d)); 2) a new leaf replaces the combined pair and is identified by a weighted sum of the 2 leaf-associated vectors;
and 3) the branch adjacent to the new leaf is lengthened. c) The inverse algorithm. As in b, pruning occurs, resulting in a new leaf whose
adjacent branch is lengthened; however, the weighted sums and differences of the 2 vectors comprising the cherry are different and constructed
as shown. d) Square roots of C and of its inverse. The contrast vectors from Felsenstein’s algorithm form an n × (n− 1) matrix C that satisfies

CTΣΣΣC= In−1; addition of a final column (ΣΣΣ−11/
√

1TΣΣΣ−11, dark gray) yields a nonsingular matrix D that satisfies DTΣΣΣD= In. The vectors from
the inverse algorithm form an n× n matrix B that is in fact the transposed inverse of D.

respectively, then the value t1Y2×t2Y1
t1+t2

is attached to the
new leaf (see Fig. 2b). Finally, a contrast is formed from
the data at the leaves that were replaced. This contrast
is just the difference Y1 − Y2 or Y1−Y2√

t1+t2
after scaling. Let

Y be the data vector whose entries are the Yi. Then the

contrast vector created in this step is the vector c such
that cTY equals the scaled contrast Y1−Y2√

t1+t2
(see Fig. 2b).

In sum, one step of Felsenstein’s algorithm creates a
contrast between leaf pairs and returns a phylogeny
with one fewer leaf. Note that what constitutes a leaf
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changes as the algorithm proceeds, so that (as above) a
leaf may combine the data from multiple leaves in pre-
ceding steps. In this way, contrasts between leaf pairs
become contrasts between clades, leading to the incor-
poration of more species in the later steps of the algo-
rithm. The algorithm terminates when the final 2 leaves
are used to create a contrast, and so the number of con-
trasts created is one less than the original number of
leaves.

The nature of Felsenstein’s algorithm and the inverse
algorithm that mirrors it (see Fig. 2c,d) is such that the
structures of B and B−1 are unequivocally faithful to the
phylogeny, and as is clear from Figure 2, the signs of
the entries in all but the last columns of B and (B−1)T

cluster to describe genuine splits in the tree. Thus, the
matrix B is an intuitive link between a phylogeny and
its covariance matrix, and it also serves as a link be-
tween interspecific data (e.g., X and Y in Model (1) and
parameter estimation. The key lies in finding the right
transformation: using B to form interpretable linear com-
binations of the data, the dependence structure in a
phylogenetic linear model can be removed without
hopelessly conflating the data and the phylogeny. Re-
turning to Model (1), expressing the data in a basis of
the columns of B yields the vectors B−1X and B−1Y in
the transformed model

B−1Y= βββ0B−11 + βββ1B−1X + B−1εεε. (5)

Recall from Figure 2 that BT = D−1 so that DT = B−1

as well. The Model (5), in terms of D, is

DTY= βββ0DT1 + βββ1DTX + DTεεε, (6)

and DTεεε ∼ N(0,σ2In). Note that multiplying Equation
(1) through by CT, where C from Figure 2d is the con-
trast matrix formed of all but the last column of D, elim-
inates the intercept, yielding the regression through the
origin

CTY= βββ1 CTX + e, (7)

where e ∼ N(0,σ2In−1) (Rohlf 2001). These transformed
variables are exactly the phylogenetically independent
contrasts (Felsenstein 1973, 1985) that are commonly
used to estimate the evolutionary regression coeffi-
cient βββ1 instead of equivalently appealing to Model
(1) through GLS (Garland and Ives 2000; Rohlf 2001).
Thus, in what follows, my conclusions about how tree
misspecification affects the phylogenetic regression of
Equation (1) equally pertain to the use of independent
contrasts in Equation (7).

USING CONTRASTS TO UNDERSTAND THE
PHYLOGENETIC REGRESSION

The previous section emphasized that the indepen-
dent contrasts approach can be used to fully decompose

phylogenetic covariance matrices in a manner consis-
tent with branching structure. Here, I exploit the same
contrast decomposition to study the effects of the tree
misspecification on the phylogenetic regression. In what
follows, I consider the impact of local misspecification
by introducing small perturbations to a known phy-
logeny. These perturbations, which I call Equation (1)
rerooting, Equation (2) branch scaling, and Equation (3)
local regrafting, are illustrated in the 6 panels of Fig-
ure 3. Panels (a) and (b) show an example of rerooting, a
perturbation that preserves both the branch lengths and
the topology of the unrooted tree. In the figure, the root
of the phylogeny from Figure 1 has been repositioned
elsewhere on the tree. Panels (c) and (d) illustrate branch
scaling, a perturbation that distorts the branch lengths
but leaves the topology of the unrooted tree intact. Here,
I have multiplied the length of one branch by a factor
of α = 3, meaning that the length of the affected branch
has been overestimated by a factor of 3 (estimated to be
0.39 instead of 0.13) Last, panels (e) and (f) depict local
regrafting, a procedure that in effect chains together 2
particular branch scaling perturbations. The effect of
local regrafting is to slide one subtree along a branch; in
the figure, it is the Ateles/Galago subtree (i.e., the slid-
ing subtree) that is free to slide along the branch con-
necting Macaca to the Homo/Pongo clade (i.e., the rigid
subtrees).

In the context of phylogenetic linear models, the con-
sequences of perturbing a tree as prescribed in Figure 3
are unclear, though simulation studies have consid-
ered the serial manipulation of specific phylogenies
(Purvis et al. 1994; Diaz-Uriarte and Garland 1996,
1998; Abouheif 1999; Martins et al. 2002; Symonds
2002). Other studies interested in the effect of mis-
specification have addressed the consequences of us-
ing a randomly chosen tree (Martins 1996; Abouheif
1998) or simply ignoring the tree altogether (Rohlf
2006). In what follows, I apply the contrast decom-
position to quantify the effects of small phylogenetic
perturbations completely. Going forward, it should be
noted that a series of local perturbations can be used
to make global rearrangements, and that the changes
described in Figure 3 can be used to deform any one
tree into another. Thus, the insight gained from ana-
lyzing small perturbations extends to perturbations of
any scale.

REROOTING AND THE PHYLOGENETIC REGRESSION

To understand how tree misspecification in the form
of a small perturbation influences the phylogenetic re-
gression, I first consider how the perturbation affects
the construction of independent contrasts. In particu-
lar, it is clear from Equation (7) that if the contrasts do
not change then the regression equations do not change
either. It is intuitive that repositioning the root on its
branch has no effect on the construction of indepen-
dent contrasts, as the following argument shows (see
also Appendix 2). The rooted branch is the last to be
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FIGURE 3. Illustration of local perturbations, using the phylogeny introduced in Figure 1. Pairs of successive panels show the process (left)
and the product (right) of the perturbation. a, b) The root is being repositioned elsewhere on the tree. c, d) The length of one branch is being
scaled by a factor of α ∈ [0,∞]. As drawn in panel (d), α= 3. e, f) The subtree defined by Ateles and Galago is being regrafted elsewhere on the
branch (shadowed in gray) connecting Macaca to the Homo/Pongo clade. The new graft site is parameterized byλ ∈ [0, 1] in terms of distance
from the Homo/Pongo clade as a fraction of total branch length (here 0.77). As drawn in panel (f), λ= 55/77.

considered in the contrast decomposition, and the influ-
ence of that branch is felt only through its length (i.e.,
κ in the appendix is a function of t1 + t2); repositioning
the root on its branch maintains both the branch length

and the order in which the contrasts are constructed,
and as a consequence, the matrix C in Equation (7) is
unchanged. More generally, it turns out that the root can
be repositioned anywhere on the unrooted tree without
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affecting the phylogenetic regression. To see this, it
suffices to consider the consequences of repositioning
the root at either endpoint of its branch. Doing so cre-
ates a multifurcation and, as is widely appreciated,
creates a choice of order in which the final contrasts
are constructed. That is to say, when the root has been
repositioned to an endpoint of its branch, Felsenstein’s
algorithm will generate a different contrast matrix C
depending on the order in which the contrasts are re-
solved. Superficially, this appears to affect the phyloge-
netic regression through Equation (7), however, because
these distinct contrast decompositions arise from a com-
mon tree, the underlying PCM ΣΣΣ is the same. Thus,
Equation (1) remains the same, making it clear that
the choice of ordering will not affect the phylogenetic
regression (see e.g., Garland and Diaz-Uriarte 1999).
Collecting these observations, repositioning the root
on its branch will not affect the regression slope, and
by repositioning the root to an endpoint of its branch
I can modify the order in which the contrasts are con-
structed. The effect of the latter is to “move” the root
to an adjacent branch, and it has already been estab-
lished that the root can be repositioned on its new
branch without affecting the regression slope. It fol-
lows that rerooting the phylogeny leaves the regression

slope unaffected, a feature that I will exploit in what
follows.

BRANCH SCALING AND THE PHYLOGENETIC
REGRESSION

When a phylogeny has been misspecified, some com-
bination of the branch lengths and the branching pattern
are incorrect. In this section, I create misspecification by
considering a local perturbation of branch length. To
illustrate the approach, consider perturbing the phy-
logeny from Figure 1 as shown in Figure 3c,d. Here,
a factor α is scaling the length of the branch (origi-
nally 0.13) that connects the Homo/Pongo/Macaca clade
to the rest of the tree. Motivated by the previous sec-
tion, my strategy is to place the root of the tree at the
midpoint of the branch that is being perturbed. Upon
doing so, the perturbed branch partitions the taxa into
2 descendant subtrees that have been labeled 1 and 2
in Figure 4a. The progressive decomposition of ΣΣΣ as
shown in Figure 2 defers consideration of the perturbed
branch until the end (see also Appendix 2), and as a
result, the contrast matrix C from Figure 2d and Equa-
tion (7) isolates the perturbed branch in its final column.

FIGURE 4. Scaling the length of one branch by a factor of α. a) The split at the affected branch partitions the taxa into subtrees by separating
the Homo/Pongo/Macaca clade (labeled 1) from Ateles and Galago (labeled 2). b) Each subtree is conceptually rooted at the proximal endpoint
of the affected branch (indicated by black stars). Ancestral trait estimates are inferred at the root of each subtree, and the uniquely affected
contrast is a scaled comparison of the 2 ancestral values. c) After rooting the tree on the affected branch, Felsenstein’s algorithm yields 4
independent contrast scores (CT

i X,CT
i Y), i = 1, 2, 3, 4 (shown as squares): Homo versus Pongo, Homo/Pongo versus Macaca, Ateles versus Galago,

and Homo/Pongo/Macaca versus Ateles/Galago. Only the last of these is a function of α (filled); the remaining 3 are invariant to the scale factor
(hollow). The position of the affected contrast score in transformed coordinate space is constrained to be collinear with the origin (along the
dotted line). Larger values of α decrease the importance of the affected contrast score in the linear regression by shifting its position toward the
origin. d) The regression slope estimate β̂ββ1 is shown as α ranges from zero toward infinity on a logarithmic scale. Confidence bounds are given
by the upper and lower curves that plot β̂ββ1 + 2SE andβ̂ββ1 − 2SE, respectively (SE, standard error).
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Thus, the perturbed branch defines exactly one affected
contrast, and it is this contrast that is emphasized in
Figure 4b.

The affected contrast can be seen as a comparison
of the 2 ancestral trait values estimated from the data
private to each subtree. Note that because each subtree
is rooted at the endpoint of the perturbed branch that
lies closest to it, neither estimate is dependent on α. In-
stead, in scaling the distance in branch length between
the 2 subtrees, α modifies the variance of the contrast
between the ancestral traits imputed at either end of the
affected branch. Figure 4c plots as squares the contrast
scores (CT

i X,CT
i Y), i = 1, 2, 3, 4 to illustrate how α influ-

ences the data entering the phylogenetic regression. The
coordinates of the affected contrast score (CT

4 X,CT
4 Y)

are shown both prior to perturbation (α = 1, shown as
a filled square) and after introduction of the factor α
(indicated by the dotted line). As α ranges from zero
to infinity, the coordinates of the affected contrast score
are drawn toward the origin along the dotted line. This
is because the contrast between Homo/Pongo/Macaca
and Ateles/Galago is maximally informative when their
respective subtrees are drawn nearest to one another
on the tree (i.e., scaling to zero, resulting in minimal
variance) and minimally informative when their evolu-
tionary histories are effectively independent (i.e., scaling
to infinity, resulting in infinite variance).

As highlighted in Figure 4c, for the right set of con-
trasts, local branch length perturbation has a simple
and interpretable effect. Moreover, what was a phy-
logenetic regression of Y on X with error covariance
ΣΣΣ can be seen through Equation (7) as an ordinary
linear regression of CTY on CTX. Because this latter
model lacks an intercept, the fitted regression line has
slope β̂ββ1 and passes through the origin (Grafen 1992;
Legendre and Desdevises 2009). Thus, the effect of the
scale factor α depends primarily on the angle between
the fitted regression line y = β̂ββ1x and the dotted line
y = (CT

4 Y/CT
4 X)x traversed by the affected contrast.

When that angle is small, as is the case in Figure 4c,
the scale factor has almost no impact on the regression.
Figure 4d confirms this, revealing that neither β̂ββ1 nor its
standard error is particularly sensitive to the choice of
α. In general, for the perturbation of a single branch to
strongly affect the phylogenetic regression, the affected
contrast score must be able to exert substantial leverage
and influence on the OLS regression fit.

BRANCH LENGTH ERROR IN GENERAL

As the previous section demonstrates, incorrectly
specifying the length of one branch (equivalent to choos-
ing an α=/ 1) has a limited effect on the phylogenetic re-
gression. Moreover, the consequences of branch length
overestimation (α > 1) and underestimation (α < 1)
are not the same. Overestimation devalues the con-
trast across the affected branch (henceforth, the affected
contrast) by shifting its coordinates toward the origin.
Underestimation does the opposite, inflating the worth

of the affected contrast in the regression by shifting its
coordinates away from the origin. Importantly, the ef-
fect of branch length misspecification on the affected
contrast is always linear, as the following technical pre-
sentation shows.

Building on the example of the previous section,
I consider scaling the length of one branch in an ar-
bitrary, possibly multifurcating phylogeny by a factor
of α, where α is permitted to be either zero or infinity.
Without loss of generality, the root can be repositioned
anywhere on the branch that is being perturbed. I will
suppose that the length of this branch prior to per-
turbation is t and that the root has been placed at its
midpoint. By indexing the taxa appropriately, the co-
variance matrix of this rerooted phylogeny, ΣΣΣ, can be
written as

ΣΣΣ=

[
ΣΣΣ1 + t

2 1 0

0 ΣΣΣ2 + t
2 1

]

, (8)

where each of ΣΣΣ1 and ΣΣΣ2 is a covariance matrix of the
subtree(s) adjacent to one end of the rooted branch. In-
troducing the scale factor α gives us the perturbed co-
variance matrix

ΣΣΣ
∗ =

[
ΣΣΣ1 + αt

2 1 0

0 ΣΣΣ2 + αt
2 1

]

, (9)

and the contrast vector that distinguishes the 2 has the
form (see Appendix 2)





κ
ΣΣΣ
−1
1 1

1TΣΣΣ
−1
1 1

−κ Σ
ΣΣ
−1
2 1

1TΣΣΣ
−1
2 1




 , (10)

where

κ=

(
1

1TΣΣΣ
−1
1 1

+
1

1TΣΣΣ
−1
2 1

+ αt

)−1/2

. (11)

In the regression Model (7), the transformation of the
(X,Y) data by this contrast vector yields the contrast
score

(

κ

[
1TΣΣΣ

−1
1 X1

1TΣΣΣ
−1
1 1

−
1TΣΣΣ

−1
2 X2

1TΣΣΣ
−1
2 1

]

,

κ

[
1TΣΣΣ

−1
1 Y1

1TΣΣΣ
−1
1 1

−
1TΣΣΣ

−1
2 Y2

1TΣΣΣ
−1
2 1

])

, (12)

where I use Xk and Yk to denote vectors derived from
X and Y that contain the data private to subtree k. It is
this coordinate alone that is affected by the branch scal-
ing perturbation through the scale factor κ (e.g., Fig. 4c).
This point represents a contrast between the subtrees
flanking the perturbed branch, and when α=0, this con-
trast attains its maximum weight and influence on the
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regression. At the other extreme, as α tends to infinity, κ
tends to zero, and the influence of this point on the slope
of the regression line vanishes. Thus, the general effect
of branch length errors can be understood in terms of
the reweighting of contrast scores between subtrees. To
the extent that the set of contrast scores computed across
any branch of the tree is homogenous, the phylogenetic
regression is expected to be robust.

LOCAL REGRAFTING AND THE PHYLOGENETIC
REGRESSION

In this section, I consider the effect of removing a
subtree and locally regrafting it onto the phylogeny.
Operationally, the idea is to 1) choose a node on the tree,
2) choose a subtree adjacent to the node, and 3) slide
the subtree along the branch that connects the remain-
der of the tree (see Fig. 3e,f). The version of local re-
grafting that I describe gently perturbs the tree by
modifying the relative branch lengths at a junction of
subtrees; the effect is to change the length of 2 adja-
cent branches while keeping the sum of their branch
lengths constant. At the extreme, local regrafting in-
duces a multifurcation, and through further sliding the
branching pattern of the phylogeny can be arbitrarily
deformed.

Recall from the discussion of branch scaling that af-
ter suitable rerooting the progressive decomposition of
ΣΣΣ deferred consideration of the perturbed branch until
the end. The same holds true for the perturbation con-
sidered here; progressive decomposition can once again
be used to isolate the effect of subtree sliding in one con-
trast vector. This time the root is placed at an internal
node, so that the covariance matrix of this rerooted phy-
logeny can be written as

ΣΣΣ=






ΣΣΣ1 + t11 0 0

0 ΣΣΣ2 + t21 0

0 0 ΣΣΣ3 + t31




 , (13)

where ΣΣΣ3 + t31 represents the subtree that is to be lo-
cally regrafted and ΣΣΣ1 + t11 and ΣΣΣ2 + t21 represent the
remaining subtrees at the newly positioned root. To cap-
ture the effect of sliding the subtree along its branch, I
introduce the parameter λ and write the perturbed co-
variance matrix as

ΣΣΣ
∗ =






ΣΣΣ1 + λ(t1 + t2)1 0 0

0 ΣΣΣ2 + (1− λ)(t1 + t2)1 0

0 0 ΣΣΣ3 + t31




 .

(14)
In other words, λ ∈ [0, 1] indexes the relative posi-

tion of the sliding subtree along the branch on which it
resides, and the position prior to perturbation is given
by λ = t1

t1+t2
(see Fig. 5a). As was the case in the pre-

vious section, only one contrast vector distinguishes

ΣΣΣ from ΣΣΣ∗, and from Appendix 2 this contrast can be
written as 







ωξ
ΣΣΣ
−1
1 1

1TΣΣΣ
−1
1 1

(1−ω)ξ Σ
ΣΣ
−1
2 1

1TΣΣΣ
−1
2 1

−ξ Σ
ΣΣ
−1
3 1

1TΣΣΣ
−1
3 1








, (15)

whereω is a function of λ given by

ω=



1 +

1
1TΣΣΣ

−1
1 1

+ λ(t1 + t2)

1
1TΣΣΣ

−1
2 1

+ (1− λ)(t1 + t2)





−1

, (16)

and ξ is a function of λ given by

ξ =








1
(

1
1TΣΣΣ

−1
1 1

+ λ(t1 + t2)

)−1

+

(
1

1TΣΣΣ
−1
2 1

+ (1− λ)(t1 + t2)

)−1

+

(
1

1TΣΣΣ−1
3 1

+ t3

)







− 1
2

. (17)

Thus, whereas the proximal effect of branch scaling
was linear in the scale factor, the consequences of locally
regrafting a subtree are evidently more complicated.
This time, in the regression Model (7), the transforma-
tion of the (X,Y) data by the affected contrast vector
yields the point
(

ξ

[

ω
1TΣΣΣ

−1
1 X1

1TΣΣΣ
−1
1 1

+ (1−ω)
1TΣΣΣ

−1
2 X2

1TΣΣΣ
−1
2 1

−
1TΣΣΣ

−1
3 X3

1TΣΣΣ
−1
3 1

]

,

ξ

[

ω
1TΣΣΣ

−1
1 Y1

1TΣΣΣ
−1
1 1

+ (1−ω)
1TΣΣΣ

−1
2 Y2

1TΣΣΣ
−1
2 1

−
1TΣΣΣ

−1
3 Y3

1TΣΣΣ
−1
3 1

])

(18)

that includes ξ as a overall scale factor and ω as a
weight on the relative contributions of Subtrees 1 and 2.

Notice that for k = 1, 2, 3, the values
1TΣΣΣ

−1
k Xk

1TΣΣΣ
−1
k 1

and
1TΣΣΣ

−1
k Yk

1TΣΣΣ
−1
k 1

can be interpreted as estimates of the ancestral trait
values using only the data from subtree k (see Fig. 5b).
From this perspective, ω determines the relative contri-
butions of the estimates from the 2 rigid subtrees in a
contrast against the estimate obtained from the subtree
that has been locally regrafted. This is one consequence
of local regrafting; the relative position λ determines this
relative contribution through its effect on ω. To clarify
that effect, notice that the part of ω in Equation (16) that
appears complicated, namely,

1
1TΣΣΣ

−1
1 1

+ λ(t1 + t2)

1
1TΣΣΣ

−1
2 1

+ (1− λ)(t1 + t2)
(19)

is really just a ratio of variances; the numerator and
denominator are the variances in estimating trait values
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FIGURE 5. Locally regrafting a subtree. a) The sliding subtree (Ateles/Galago, labeled 3) meets the 2 rigid subtrees (Homo/Pongo, labeled 1;
Macaca, labeled 2) at an internal node (hollow circle). Subtrees 1 and 2 are connected by a branch of total length 0.77; regrafting subtree 3 to this
branch places it at a point 0.77λ and 0.77(1−λ) units away from subtrees 1 and 2, respectively. b) Ancestral trait estimates are inferred at the root
of each subtree as indicated by black stars. The value imputed at the hollow circle is a ω-weighted average of the estimates from subtrees 1 and
2 (see Equation (18)). The uniquely affected contrast is a scaled comparison of this weighted average to the ancestral trait estimate from subtree
3. c) After rooting the tree on the affected branch, Felsenstein’s algorithm yields 4 independent contrast scores, only one of that is affected by
λ (filled square; see Fig. 4c). The position of the affected contrast score in transformed coordinate space is determined by ξ and ω, both of that
are functions of λ. ξ acts as a scale factor akin to α from branch scaling, whereas ω contributes a degree of nonlinearity to the trajectory of the
affected contrast score (dotted line). d) The regression slope estimate β̂ββ1 is shown as λ ranges from zero to one. Confidence bounds are given by
the upper and lower curves that plot β̂ββ1 + 2SE and β̂ββ1 − 2SE, respectively.

at the root using data private to Subtrees 1 and 2 (see
Fig. 5b). Finally, recall that λ also appears in the scale
factor ξ. This leads to a nonlinear dependence on λ
because changing λ changes both how the affected
contrast is computed and the weight that the contrast
receives in the regression. Figure 5c indicates how the
affected contrast score varies as λ ranges from zero
to one. Because ω is close to one for all values of λ,
the unstandardized value of the contrast (i.e., before
multiplication by ξ) changes very little. By compari-
son, ξ is more sensitive to the choice of λ, leading to
the nearly linear trajectory shown in the figure. This
is similar to what was observed for branch scaling,
and once again neither the slope estimate β̂ββ ‘1 nor its
standard error is greatly affected by the perturbation
(Fig. 5d).

The formulas above extend beyond the example of
Figure 5 to explain the general effects of local regrafting
on the phylogenetic regression. For example, Equation
(17) shows that the effect of λ on ξ is evidently negligi-
ble when 1

1TΣΣΣ
−1
3 1

+ t3 is large, in other words, when there

is substantial variance in estimating trait values from
the sliding subtree. In that case, irrespective of λ, the
affected contrast will not be very informative toward
the estimation of βββ1. Similarly, when t1 + t2, the length
of the branch upon which the subtree slides, is small,
ξ will also remain relatively unchanged. More interest-
ingly, the formulas also reveal scenarios in which λ will
have a major effect. Recall from the discussion of branch
scaling that the effect of the scale factor α depends pri-
marily on the angle between the fitted regression line
and the line traversed by the affected contrast. Here,
ξ plays a similar role, with ω contributing nonlin-
earity to the trajectory. This nonlinearity is exacer-
bated as ω deviates from unity, and it is clear from
Equation (16) that large deviations are possible when

1
1TΣΣΣ

−1
1 1

and 1
1TΣΣΣ

−1
2 1

are both small. Broadly speaking, this

scenario is most likely to occur when the affected branch
lies deep in the phylogeny, for example, with branches
near the root of an ultrametric tree. This may help ex-
plain why the simulations by Martins and Housworth
(2002) and by Symonds (2002) revealed the phylogenetic
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regression to be particularly sensitive to topological
changes near the root of the tree.

TOPOLOGICAL ERROR IN GENERAL

Because local regrafting, as depicted in Figure 5, acts
only on one branch, a single regrafting step can cre-
ate multifurcations but is insufficient to change the
branching pattern of the phylogeny. In Figure 5b, for ex-
ample, multifurcations occur when the sliding subtree
reaches either extreme (λ = 0 or λ = 1), but to change
the branching pattern of the tree requires further slid-
ing beyond a multifurcation point. Figure 6 illustrates
this further sliding, beginning from the multifurcation
indexed by λ = 0 in Figure 5. This multifurcating tree,
shown as unrooted in Figure 6a, can be resolved into
an unrooted bifurcating tree by sliding theAteles/Galago
subtree through the multifurcation point either upward
(Fig. 6b), downward (Fig. 6c), or to the left (Fig. 6d).
In each case, the distance that the sliding subtree has
traversed beyond the multifurcation point is parame-
terized by ε. Significantly, the 3 bifurcating trees in Fig
6b–d have different branching patterns and thus unique
sets of contrasts; viewed collectively, their correspond-
ing regressions help to elucidate the consequences of
topological error.

The effects of changing the branching pattern are
shown in Figure 7a, which like Figures 4c and 5c plots
contrast scores for a collection of phylogenetic regres-
sions. Unlike the previous figures, however, 3 distinct
branching patterns are being depicted at once. To ac-
complish this, each of the trees from Figure 6 has been
rooted on the branch of length 0.13 that connects Ate-
les and Galago to the remainder of the tree. The rooted
trees that result share 2 contrasts, the contrast between

Ateles and Galago and the contrast between Ateles/Galago
and Homo/Pongo/Macaca. The remaining 2 contrasts are
unique for each tree and depend on the branching or-
der or Homo, Pongo, and Macaca. Among those shared,
the contrast between Ateles and Galago does not de-
pend on ε and so the position of that contrast in Figure
7a is static. The remaining shared contrast depends
strongly on ε; at the multifurcation point (ε = 0 in all
3 trees) the position of contrast between Ateles/Galago
and Homo/Pongo/Macaca is the same (shown as a filled
square), but as ε increases the positions for each tree
diverge as illustrated by labeled arrows. Finally, the 2
contrasts private to each tree are invariant to ε, meaning
that their positions are unique for each tree but remain
static in the plot (points labeled b,c, and d according to
the panels in Figure 6).

It is clear that when there is a multifurcation, the set of
independent contrasts from Felsenstein’s algorithm will
not be unique (Felsenstein 1978; Purvis and Garland
1993). At the multifurcation parameterized by ε= 0, the
trees in Figure 6b–d coincide even though as depicted in
Figure 7 their contrast sets are different. Their common
regression fit is shown in Figure 7a as a dashed line, and
as ε increases the estimated regression slopes diverge
(Fig. 7b). The manner of this divergence is intuitive from
Figure 7a: the trajectory of the contrast that depends on
ε indicates how the regression line will be torqued. An
upward trajectory relative to the line, as occurs for the
tree in Figure 6b, increases the estimated regression
slope, whereas a downward trajectory (e.g., Fig. 6c)
causes the slope to decrease. For the tree in Figure 6d,
the trajectory is roughly parallel to the regression line,
and as such the estimated slope changes little. Figure 7b
illustrates the consequences of topological error as the
branching pattern subtly varies. Transitions between
topologies occur between ε > 0 on one line (e.g., the

FIGURE 6. Changing the tree topology by sliding a subtree through an internal node. a) The unrooted tree from Figure 5b is shown for λ= 0,
at which point a multifurcation is present. Further sliding of the Ateles/Galago subtree either toward Homo (upward as in b) or toward Pongo
(downward as in c), alters the topology of the tree. Sliding the subtree toward Macaca (left as in d) restores the topology of Figure 5. The branch
leading to Macaca is shaded gray in panel (a) for consistency with Figure 5.
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FIGURE 7. The effect of changing the tree topology on the phylogenetic regression. a) After rooting the trees of Figure 6 arbitrarily on the
branch of length 0.13, Felsenstein’s algorithm yields 4 independent contrast scores for each of the trees in panels (b–d). The hollow square
indicates the Ateles versus Galago contrast that is shared by the 3 topologies and invariant to choice of ε. The filled square indicates the
Homo/Pongo/Macaca versus Ateles/Galago contrast that is shared by the 3 topologies but depends on ε. For ε = 0, the contrast scores coincide
in transformed coordinate space; as ε increases, the position changes as indicated in by the labeled arrows and curves originating from the filled
square (at ε= 0). Each of the trees in panels (b–d) additionally has 2 contrasts that are private to its topology and invariant to ε; the positions of
the contrast scores are labeled by their respective panels. The dotted line indicates the phylogenetic regression line (y = 0.4377x) shared by all
3 trees at the multifurcation parameterized by ε = 0. b) The regression fits corresponding to the 3 trees in Figures 6b–d diverge as ε increases.
Because the contrast score unique to Figure 6b has an upward trajectory relative to the ε= 0 regression line (see panel (a)), the estimated slope
corresponding to that tree is increasing with increasing ε. Likewise, the estimated slope corresponding to the tree in Figure 6c decreases with
increasing ε. Panel (a) shows that the trajectory of the contrast score unique to Figure 6d runs nearly parallel to the ε= 0 regression line; because
of this, the slope does not change much as ε varies.

line labeled d) and ε > 0 on another line (e.g., the line
labeled b). For the line labeled d, ε is proportional to λ
from Figure 6, and the line itself is the slope estimate
line from Figure 5d. Transitioning from ε > 0 on the
line labeled d to ε > 0 on the line labeled b is equiv-
alent to moving the sliding subtree from Figure 5 and
Figure 6a past the multifurcation at λ = 0 and onto the
branch leading to Homo. This underscores the point
that 2 local regrafting steps are required to change the
branching pattern of the tree, and it is through these
steps that topological misspecification affects the phy-
logenetic regression. For any one such step, the factors
that influence robustness were detailed above.

SOFT POLYTOMIES

The preceding discussions of errors in branch length
and topology included cases when a truly bifurcating
tree was misspecified as multifurcating. This type of
error, known as soft polytomy, typically arises when
there is insufficient data to resolve the local branching
pattern at an internal node of the phylogeny (Maddison
1989). There has been significant interest in the effects of
soft polytomy on comparative analyses (Grafen 1989,
1992; Pagel and Harvey 1992; Purvis and Garland
1993; Losos 1994; Diaz-Uriarte and Garland 1996, 1998;
Martins 1996; Garland and Diaz-Uriarte 1999), and it
is clear that these multifurcations occur at the extremes
of both branch scaling (when α = 0) and local regraft-
ing (when λ = 0, 1). Thus, as a complement to simula-
tion studies, the consequences of soft polytomy on the
phylogenetic regression can be investigated using the
machinery already introduced.

It is easiest to consider soft polytomy as the product
of a branch scaling perturbation in which the length
of a branch has been reduced to zero. As illustrated

in Figure 4c, the effect of underestimating the length
of one branch is to overvalue the contrast across the
branch whose length is underestimated. If it is assumed
that the branching pattern at the soft polytomy went
unresolved because of insufficient data, it may be rea-
sonable to assume that the unresolved branch length is
small. Under that assumption, the degree to which the
affected contrast is overvalued should be minor. This is
clear from Equation (11): when the length of the unre-
solved branch, call it t, is small, the 1

1TΣΣΣ
−1
1 1

+ 1
1TΣΣΣ

−1
2 1

term

in κ dominates αt for any α ∈ [0, 1]. It follows that the
affected contrast score will not change much, and thus
the estimated regression slope will be only modestly
affected.

DISCUSSION AND CONCLUSIONS

The widespread use of phylogenetic comparative
methods, coupled with the dependence of these meth-
ods on an estimated phylogeny, has motivated the study
of what can occur when the presumptive phylogeny is
incorrect (Martins and Garland 1991; Purvis et al. 1994;
Diaz-Uriarte and Garland 1996, 1998; Martins 2000; Mar-
tins et al. 2002; Symonds 2002). A number of simulation
studies have demonstrated the phylogenetic regression
to be generally robust to tree misspecification, but simu-
lations alone cannot explain why this appears to be the
case. Moreover, simulations rely on observations that
may be specific to the data, to the phylogeny, to how
the phylogeny is perturbed, or to some combination of
the 3. As a complement to simulation, I have presented
a theoretical approach that allows the data and the phy-
logeny to be disentangled. The results are general and
help to explain why the phylogenetic regression ap-
pears to be robust to tree misspecification. I began this
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study by identifying the PCM ΣΣΣ as a key intermediary
between tree misspecification and its effect on the phy-
logenetic regression. Motivated by Felsenstein’s method
of independent contrasts (Felsenstein 1985), I derived
a matrix square root of ΣΣΣ that has an obvious phylo-
genetic interpretation and is minimally perturbed by
small perturbations to a phylogeny. I used this result to
transform the perturbed phylogenetic regression model
into an ordinary linear regression in which one inter-
pretable point has been perturbed. The simplicity of this
formulation allowed us to disentangle the contributions
of data and phylogeny when studying the effect of tree
misspecification.

I considered the impact of local misspecification on
the phylogenetic regression by introducing small per-
turbations to a known phylogeny. These perturbations,
1) rerooting, 2) branch scaling, and 3) local regrafting,
were shown to have bounded influence on the regres-
sion fit. I discussed why rerooting has no effect on the
slope estimate in a phylogenetic regression, and I used
this result to reposition the root of the tree on the branch
affected by the perturbation. In doing so, I was able to
isolate and interpret the effects of branch scaling and
local regrafting in terms of one affected contrast. The
contrast affected by branch scaling represents a com-
parison between the subtrees flanking the perturbed
branch. Overestimating the length of a branch decreases
the influence of the contrast across that branch in the lin-
ear regression; conversely, underestimating the length
of a branch gives its contrast undue influence. At the
extreme, underestimating a branch length to be zero
creates a soft polytomy in the estimated phylogeny.
I have discussed why the effects of soft polytomy will
be modest under the reasonable assumption that the
length of the underestimated branch was actually small.
Local regrafting targets a subtree of the unrooted phy-
logeny and causes it to slide along the branch to which
it connects. This can be seen as a pair of branch scaling
perturbations, and I have shown that the consequences
of local regrafting and branch scaling are quantitatively
similar. A multifurcation occurs through local regraft-
ing when the targeted subtree slides to either end of the
branch to which it connects. Further sliding through the
multifurcation causes the branching pattern to change,
and thus a pair of local regrafting perturbations is suffi-
cient to deform the tree topology.

Throughout the manuscript, the discussion has been
framed in terms of how an incorrect phylogenetic point
estimate affects the slope of the phylogenetic regression.
Bayesian phylogenetic analyses circumvent this depen-
dence on a single, possibly incorrect tree by sampling
phylogenies from a posterior distribution. It is becom-
ing increasingly common to couple Bayesian phylo-
genetic analyses with inference through comparative
method (e.g., Collar et al. 2009), and in the context of
the phylogenetic regression, doing so replaces a single
estimated regression slope with a distribution of slopes
induced by the aforementioned posterior (Huelsen-
beck and Rannala 2003). Having shown here why lo-
cal perturbations to a phylogeny cause small changes

in the phylogenetic regression slope, it is clear that a
concentrated Bayesian posterior distribution of phylo-
genies will lead to a concentrated distribution of regres-
sion slopes. Moreover, in such cases, the consequences
of working with a single phylogenetic point estimate
should not be too severe. A more diffuse posterior, by
contrast, suggests that any single phylogenetic point
estimate may be grossly misspecified. In these cases es-
pecially, a phylogenetic comparative analysis that does
not respect sampling variation in the phylogeny should
be interpreted with caution.

All the preceding results have served to emphasize
that the appearance of robustness is data dependent.
My contribution has been to describe this dependence
with theory. Though I have focused on the effect of local
perturbations, the conclusions are largely independent
of scale. Any degree of tree misspecification can be at-
tained through a series of local perturbations of the type
that I describe, and the effects of deforming of one tree
into another can be interpreted one affected contrast
at a time. Taken together, these analytical results have
helped to explain why the phylogenetic regression ap-
pears generally to be robust. Moreover, and perhaps
more importantly, this work has helped to identify
conditions under which phylogenetic errors are prob-
lematic.
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APPENDIX 1

THE CLASS OF PHYLOGENETIC COVARIANCE
MATRICES

In this section, I give a formal definition of the class
of nonsingular covariance matrices attainable under the
phylogenetic Brownian motion model. The definition
that follows is not completely general in that it requires
branches incident to a leaf to have a positive length.
This can be relaxed, though I have not done so here, to
require only that no leaf be superimposed with another
leaf or with the phylogenetic root.

The smallest trees worthy of consideration are built
from 2 leaves (L = 2) joined by a branch; their PCMs
have the form

ΣΣΣ=

[
t1 0

0 t2

]

.

One can formally define the class of 2 × 2 phylogenetic
covariance matrices as

PCM(2) =

{[
t1 0

0 t2

]

: t1, t2 > 0

}

.

Introducing the trivial case PCM(1)= {t : t > 0}, this can
be rewritten as

PCM(2) =

{[
A + t1 0

0 B + t2

]

: A ∈ PCM(1),

B ∈ PCM(1), t1, t2 > 0}

that inspires the general case

PCM(L) =

{

PT
[

A + t111T 0
0 B + t211T

]

P : 0 < n < L,

A ∈ PCM(n),B ∈ PCM(L− n), t1, t2 > 0} ,

where 1 is a conformal vector of ones and P is any con-
formal permutation matrix. The product 11T is just an
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appropriately sized matrix of ones. The role of the per-
mutation matrix is to reorder the indices of the terminal
nodes, if necessary, so that they are linearly ordered for
a specific representation of the tree. That the matrices of
PCM(L) are nonsingular can be seen as a corollary of the
work in Appendix 2.

APPENDIX 2

INDEPENDENT CONTRAST DECOMPOSITION
THEOREM

In this section, I sketch a constructive proof that each
ΣΣΣ ∈ PCM(L) admits an independent contrasts decom-
position. I have included this section as mathematical
support for the conclusions in the manuscript. As a
by-product, I show that the Felsenstein’s independent
contrasts are indeed independent contrasts under the
Brownian motion assumptions. Though this result was
never in doubt, the need for a proof was recognized by
Rohlf (2001).

Theorem Let ΣΣΣ ∈ PCM(L) be an L × L PCM. Then
there exists an L × L matrix C such that CTΣΣΣC= IL,CL=
ΣΣΣ−11√
1TΣΣΣ−11

, and1TC= [ 0
√

1TΣΣΣ
−11 ].

Note that in the statement of the theorem, 0 is a vec-
tor of zeros, cL is the Lth and last column of the matrix
C, and the last condition implies the contrast constraint
that all columns of C except the last one sum to zero.
Note also that CTΣΣΣC = IL guarantees ΣΣΣ to be nonsingu-
lar because C is a square matrix and the determinant of
the identity matrix is one.

The proof of the theorem proceeds by strong induc-
tion on the number of leaves L. The base of the induc-
tion, L = 2, is illustrative. Suppose ΣΣΣ ∈ PCM(2). In this
case, the matrix ΣΣΣmust be of the form

[
t1 0

0 t2

]

: t1, t2 > 0.

Define C =

[
κ νκ
−κ ν−1κ

]

with κ = 1√
t1+t2

and ν =
√

t2√
t1

.

Then it is easy to verify that C satisfies the conditions of
the statement of the theorem.

For the induction step, suppose it is true that for any
k < L and any ΣΣΣ ∈ PCM(L), there exists a matrix C such

that CTΣΣΣC= IL, cL =
ΣΣΣ−11√
1TΣΣΣ−11

, and1T C= [0
√

1TΣΣΣ
−11].

To complete the proof, I must show that the result
holds for ΣΣΣ ∈ PCM(L). To that end, write

ΣΣΣ= PT
[
ΣΣΣ1 + t11 0

0 ΣΣΣ2 + t21

]

P,

where 0 < n < L,ΣΣΣ1 ∈ PCM(n),ΣΣΣ2 ∈ PCM(L− n), t1, t2 >
0, and P is an L × L permutation matrix.

By assumption, there exist C and D such that

CTΣ1C= In, cn =
ΣΣΣ
−1
1 1

√
1TΣΣΣ

−1
1 1
, 1TC=

[
0
√

1TΣΣΣ
−1
1 1

]

DTΣΣΣ2D= IL−n,DL−n =
ΣΣΣ
−1
2 1

√
1TΣΣΣ

−1
2 1
,

1TD=
[

0
√

1TΣΣΣ
−1
2 1

]
.

I now show how C and D can be combined to yield a
contrast decomposition of ΣΣΣ. Let

G=




C−n ΣΣΣ

−1
1 1

1TΣΣΣ
−1
1 1

0 0

0 0 D−(L−n) ΣΣΣ
−1
2 1

1TΣΣΣ
−1
2 1





where C−n and D−(L−n) denote the matrices C and D re-
spectively after their final columns have been removed.
In other words, the columns of C−n and D−(L−n) are the
usual vectors of independent contrasts. Additionally,

let

H=








In−1 0 0 0

0 κ 0 νκ

0 0 IL−n−1 0

0 −κ 0 ν−1κ







,

where

κ=

(
1

1TΣΣΣ
−1
1 1

+ t1 +
1

1TΣΣΣ
−1
2 1

+ t2

)−1/2

and

ν =




1

1TΣΣΣ
−1
2 1

+ t2

1
1TΣΣΣ

−1
1 1

+ t1





1/2

are defined to be consistent with their introduction in
the base case.

I suppress the algebra showing that M = PTGH
satisifies
MTΣM= IL, mL =

ΣΣΣ−11√
1TΣΣΣ−11

, and1TM=
[

0
√

1TΣΣΣ
−11

]

That is to say, M is a contrast decomposition of ΣΣΣ that
has been constructed from the decompositions of the
subtrees ΣΣΣ1 and ΣΣΣ2. This observation both completes the
proof of the theorem and reveals a useful fact that is
exploited throughout the manuscript. Disregarding the
permutation matrix, the product GH has the block struc-
ture shown below:

GH=







C−n κ
ΣΣΣ
−1
1 1

1TΣΣΣ
−1
1 1

0 νκ
ΣΣΣ
−1
1 1

1TΣΣΣ
−1
1 1

0 −κ Σ
ΣΣ
−1
2 1

1TΣΣΣ
−1
2 1

D−(L−n) ν−1κ
ΣΣΣ
−1
2 1

1TΣΣΣ
−1
2 1





 .

The first n − 1 columns of GH, and hence n − 1 of
the contrast vectors of ΣΣΣ, are simply contrast vectors
of ΣΣΣ1 with zeros appended to them. Moreover, another
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L−n−1 columns of GH are simply contrast vectors of ΣΣΣ2
with zeros appended to them. This is completely intu-
itive; Felsenstein’s independent contrasts are built from
the bottom up, and here I am considering a tree (with
PCM ΣΣΣ) in terms of 2 subtrees (with PCMs ΣΣΣ1 and ΣΣΣ2)
that are its immediate descendants. Only the final con-

trast constructed by Felsenstein’s algorithm spans these
2 subtrees, and it is this contrast that is represented by
the second column of the block representation of GH
above. The phylogenetic perturbation results presented
in the main text are achieved by isolating the effect of
the change to this one vector.


