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Abstract.—Although most of the important evolutionary events in the history of biology can only be studied via interspecific
comparisons, it is challenging to apply the rich body of population genetic theory to the study of interspecific genetic
variation. Probabilistic modeling of the substitution process would ideally be derived from first principles of population
genetics, allowing a quantitative connection to be made between the parameters describing mutation, selection, drift, and
the patterns of interspecific variation. There has been progress in reconciling population genetics and interspecific evolution
for the case where mutation rates are sufficiently low, but when mutation rates are higher, reconciliation has been hampered
due to complications from how the loss or fixation of new mutations can be influenced by linked nonneutral polymorphisms
(i.e., the Hill–Robertson effect). To investigate the generation of interspecific genetic variation when concurrent fitness-
affecting polymorphisms are common and the Hill–Robertson effect is thereby potentially strong, we used the Wright–
Fisher model of population genetics to simulate very many generations of mutation, natural selection, and genetic drift.
This was done so that the chronological history of advantageous, deleterious, and neutral substitutions could be traced over
time along the ancestral lineage. Our simulations show that the process by which a nonrecombining sequence changes over
time can markedly deviate from the Markov assumption that is ubiquitous in molecular phylogenetics. In particular, we
find tendencies for advantageous substitutions to be followed by deleterious ones and for deleterious substitutions to be
followed by advantageous ones. Such non-Markovian patterns reflect the fact that the fate of the ancestral lineage depends
not only on its current allelic state but also on gene copies not belonging to the ancestral lineage. Although our simulations
describe nonrecombining sequences, we conclude by discussing how non-Markovian behavior of the ancestral lineage is
plausible even when recombination rates are not low. As a result, we believe that increased attention needs to be devoted
to the robustness of evolutionary inference procedures that rely upon the Markov assumption. [Ancestral lineage; ancestral
process; Hill-Robertson effect; population genetics.]

Statistician George Box famously wrote “all mod-
els are wrong but some models are useful” (e.g., Box
and Draper 2007, p. 414), which has become a com-
mon mantra for scientists who advocate the elegance
of simpler models. But one must also remember bio-
chemist and author Isaac Asimov (1989), who wrote “if
you think that thinking the earth is spherical is just as
wrong as thinking the earth is flat, then your view is
wronger than both of them put together.” So although
simple models may be easier to use, they run the risk
of being less accurate. Thus, it is imperative to identify
possible limitations of existing models and explore al-
ternatives that may be more complex but offer increased
accuracy.

Here, we explore some properties that should be
possessed by phylogenetic models of sequence change
if they are to be reconciled with the population-genetic
origin of interspecific sequence variation. Unfortunately,
a population-genetic basis for the elaborate probabilis-
tic models of phylogenetics is often absent or unclear.
This disconnect hampers population genetics as well as
phylogenetics because population genetics seeks to un-
derstand how mutation, natural selection, and genetic
drift have interacted during evolutionary history, and
interspecific comparisons are the only way to study all
but the most recent evolutionary history. It is undeni-
ably more difficult to make accurate population-genetic

inferences from interspecific data than from intraspe-
cific data. However, it is also undeniably important
to reconcile interspecific data and phylogenetics with
population-genetic theory.

Substantial progress has been made for the case where
all genetic variation is neutral so that the neutral coa-
lescent process of population genetics can be employed
to disentangle gene trees and species trees (Takahata
1989; Rosenberg 2002; Yang 2002; Rannala and Yang
2003; Hobolth et al. 2007; Dutheil et al. 2009; Liu et al.
2009; see also Ané et al. 2007). All this work relies on the
assumption of essentially neutral mutation to conve-
niently uncouple the branching process from the muta-
tion/substitution process. Accordingly, the main focus
of the aforementioned work is the consequences of in-
complete lineage sorting, for example, the potential dis-
crepancy between gene and species trees and between
coalescence times and species divergence dates.

Extending these ideas to account for natural selection
appears to be extremely complex, as selection intro-
duces a nontrivial coupling between the coalescence
process and the substitution process. The ancestral se-
lection graph (Krone and Neuhauser 1997; Wakeley
2008) and its extension further into the past, the an-
cestral lineage (Fearnhead 2002; Baake and Bialowons
2008), appear to be the theoretically most satisfying ap-
proaches. However, this direction poses computational
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challenges because the complexity of ancestral selection
graphs grows with the strength of natural selection. To
lessen computational demands, much of the work on
ancestral selection graphs has relied upon the biologi-
cally implausible assumption that a new mutant allele
is independent of the type of allele from which it was
derived.

Our interest here is to explore the consequences of
natural selection on the substitution process while
avoiding the assumption of parent-independent mu-
tation. We also ignore the potential additional issue of
incomplete lineage sorting. Our focus is therefore most
relevant to situations where species are not closely re-
lated and where there is only one sequence sampled per
locus per species; such situations are probably not that
uncommon in phylogenetic analyses. In this context,
we would like to better understand how the observed
substitution process can be understood in terms of the
underlying population genetic mechanisms, for exam-
ple, in terms of mutation, selection, and drift.

In this direction, a further limiting case can be de-
rived. With a sufficiently low mutation rate, the pos-
sibility of interactions between simultaneous genetic
polymorphisms is negligible, so that each new muta-
tion appearing in the population will either get lost or
fixed before the next one occurs. In this context, the
substitution rate is simply equal to the product of the
mutation rate and the fixation probability. Given a fit-
ness function and a mutation model, it is then possible
to derive a substitution process that will be Markovian
(Halpern and Bruno 1998). When fitted with empirical
(interspecific) data, such models allow one to estimate
mutation parameters as well as the product of effective
population size and relative fitness difference between
sequences. Later studies followed similar approaches
for interpreting phylogenetic parameters in terms of
population-genetic parameters (Nielsen and Yang 2003;
Berg et al. 2004; Mustonen and Lässig 2005; Sella and
Hirsh 2005; Thorne et al. 2007; Choi et al. 2008; Yang and
Nielsen 2008; Rodrigue et al. 2010).

One shortcoming of the Halpern–Bruno strategy is
that it requires a population to be mutation limited
such that the new mutant allele is either fixed or lost
prior to the occurrence of additional mutations that
affect fitness. This low mutation rate condition is im-
portant for the fixation probability formula of Kimura
(1962) or the modification suggested by Sella and Hirsh
(2005) to be applicable, as these fixation probabilities
assume only two alleles (ancestral and mutant) in the
population. The Kimura and Sella–Hirsh approxima-
tions thus ignore the possibility of interference between
multiple fitness-affecting polymorphisms. Another im-
portant parameter here is the recombination rate, which
determines the typical number of loci that are linked
during a fixation event. Due to the possibility of inter-
ference between linked nonneutral polymorphisms, the
Kimura and Sella–Hirsh fixation probability approx-
imations are likely to break down under low recom-
bination, high per locus mutation, or both. The way
that linkage disequilibrium dissipates the effectiveness

of natural selection is known as the Hill–Robertson
effect (Hill and Robertson 1966; Felsenstein 1974; Li
and Tanimura 1987; Comeron et al. 2008). Although
Hill–Robertson complexities can be neglected when
mutation rates are sufficiently low, it is unclear how
low the mutation rate should be in order for the fixation
approximations to be valid and it is unclear how often
mutation rates in real biological systems are in the valid
range. A variety of previous studies have already in-
vestigated how the Hill–Robertson effect influences in-
traspecific polymorphism. Of particular relevance is the
work of McVean and Charlesworth (2000), who demon-
strated both that genotypes become less adapted due
to the Hill–Robertson effect and that the impact of the
Hill–Robertson effect is not solely attributable to a re-
duction in effective population size (see also Comeron
and Kreitman 2002).

The consequences of interference between fitness-
affecting polymorphisms on interspecific genetic vari-
ation remain undercharacterized. Our aim is to make
progress in this direction. Due to the absence of a gen-
eral analytical theory for the influences on interspecific
genetic variation of mutation, natural selection, and
genetic drift, we elected to do simulations. One goal
was to reveal features that should be incorporated into
the phylogenetic models for the substitution process.
Another was to contrast low mutation analytical results
about interspecific genetic variation with simulation
results for higher mutation rates.

We were particularly motivated to evaluate the as-
sumption that the substitution process is Markovian
with respect to time. This assumption pervades the sub-
stitution models that are employed in phylogenetics.
Halpern and Bruno (1998) examined one scenario where
the Markov property is reasonable but, given its ubiq-
uity in phylogenetics, we think a closer examination is
warranted.

SIMULATIONS

We simulated the ancestral lineage, which we define
as the historical series of fixed sequences in a popu-
lation. To describe the ancestral lineage, it is perhaps
easiest to think about moving backward through time
(i.e., from present to past). For simplicity, we consider
a particular gene and ignore recombination as well as
insertion and deletion. In the present, a haploid species
has N copies of the gene. If we trace the ancestry of
these N copies backward in time, they will eventually
have a most recent common ancestor. We can then take
this most recent common ancestor’s allele and follow
it back even further in time. The evolutionary lineage
that results is referred to as the ancestral lineage. For
each generation, the gene copy that is in the ancestral
lineage is the one from which all gene copies starting at
some future generation will be descended (see Fig. 1).
This means that every gene copy in the ancestral lineage
is eventually fixed. Sequence changes in the ancestral
lineage are therefore exclusively fixed.
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FIGURE 1. Representations of ancestral lineages. a) An ancestral
lineage. A haploid population of constant size N = 7 is represented.
Each column corresponds to a specific generation. The most recent
generation is the rightmost column. Each circle represents a specific
gene copy in a specific generation. Line segments connect gene copies
and their parents. Red segments connect the gene copies that are
in the ancestral lineage. Black segments are not in the ancestral lin-
eage because they relate gene copies that eventually have no descen-
dants. Green segments may or may not be in the ancestral lineage,
depending on what happens to their descendants in future genera-
tions. b) Ancestral lineages relating three species. The phylogeny re-
lating three species is depicted in blue and the ancestral lineage of (a)
predates the most recent common ancestor of the three species. One
gene copy is sampled from each species and the histories of these three
sampled copies are colored as above according to ancestral lineage
membership.

By fixation, we mean that all gene copies in some fu-
ture generation will be descended from that gene copy.
We do not imply that all gene copies in some future gen-
eration will necessarily be identical in sequence to the
allele of the ancestral lineage. Our definition of ances-
tral lineage is similar to the “common ancestor process”
of Fearnhead (2002) and Baake and Bialowons (2008),
except that our process excludes the lineage from a sam-
pled allele to the most recent common ancestor of the
population. In practice, this means that the final genera-
tions of each of our simulations are discarded.

When we compare sequences from species that are
not closely related, we expect that the evolutionary
history separating them consists almost exclusively of
events that occurred on ancestral lineages. Study of
the ancestral lineage is clearly in the realm of phylo-
genetics. Ideally, it should even be at the core of its
underlying conceptual framework—the substitution
process along the lineages of a phylogenetic tree being
nothing else than a branched ancestral lineage. Yet only
now, with some of the most innovative recent work in
population genetics (e.g., Fearnhead 2002; Baake and
Bialowons 2008) are researchers beginning to investi-
gate how population genetic parameters influence the
ancestral lineage. Unfortunately, much of this impres-
sive and quickly developing population-genetic theory
rests on the assumption that the result of a mutation
does not depend on the allele that is mutated. This
parent-independent mutation assumption is usually
not well advised, in particular, when following the his-
tory of DNA sequences rather than individual DNA
sites.

We considered simulating via the ancestral selection
graph technique (Krone and Neuhauser 1997; Baake and
Bialowons 2008; Wakeley 2008). However, we chose less
sophisticated simulations that are easier to implement.
Specifically, we performed brute-force simulation of the
Wright–Fisher model with mutation and selection for
very many generations. From our simulations, we could
determine which allele in each generation is in the an-
cestral lineage. This permits investigation of how the
ancestral lineage changes over time.

Our Wright–Fisher simulations employ discrete gen-
erations and describe a haploid population with N in-
dividuals. Each individual has a nonrecombining gene
sequence with L positions. At each sequence position,
one of the four possible nucleotide types is optimal.
The remaining three types are equally suboptimal. All
sites are equally likely to experience mutations, and the
mutation rate per site per generation will be denoted
as μ. If a mutation occurs at a site, the nucleotide type
is equally likely to change to any of the three others.
The model therefore permits advantageous mutations
(a mutation from suboptimal to optimal type), deleteri-
ous mutations (a change from the optimal type to one of
the three suboptimal ones), and selectively neutral mu-
tations (a change from a suboptimal type to another).
With our mutation process, the possibility of multiple si-
multaneous substitutions affecting the ancestral lineage
allele in some generation is negligible. To avoid such
very rare but complicating cases, mutant sequences in
our simulations can only differ by one site from their
parents.

Our multiplicative fitness scheme sets the relative fit-
ness of a sequence to wk = (1 − s)k, where k is the num-
ber of deleterious sites. The selection coefficient, s, is
kept constant throughout the simulation. By perform-
ing the Wright–Fisher simulations for a very large num-
ber of generations and by tracking the parent–offspring
relationships in successive generations, we can identify
the ancestral lineage and examine how it changes over
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time. By ignoring a large number of generations that
constitute the beginning of the simulation, we can lessen
sensitivity to initial simulation conditions. We also dis-
card the generations at the very end of the simulation
for which the ancestral lineage is undetermined. For ex-
ample, we would not know which gene copy in the fi-
nal generation of the Wright–Fisher simulation would
be in the ancestral lineage because the ancestral lineage
in a generation is determined by what happens in future
generations.

Our primary goal with these simulations was to iden-
tify patterns in ancestral lineage evolution when there
is a high probability of multiple nonneutral polymor-
phisms in a population at the same time. Accordingly,
we chose parameter values—a high per sequence mu-
tation rate, long sequences not subject to recombination,
and a moderate selection coefficient—so as to obtain and
investigate such phenomena. These parameter values in
themselves are not meant to precisely describe any ac-
tual genetic locus, although they bear some qualitative
resemblance to animal mitochondrial genomes. In addi-
tion to animal mitochondria, our simulations have po-
tential relevance to taxa that reproduce asexually. Other
situations for which our simulations seem relevant in-
clude the fourth chromosome of Drosophila melanogaster
and nonrecombining sex chromosomes.

We focused on simulations using N = 50,000, L =
10,000, s = 10−4, and μ = 10−8. We will refer to this set
of parameter values as our “core” set. These core values
were not selected arbitrarily nor were they the result of
an extensive search. Instead, we did preliminary sim-
ulations with a few different sets of parameter values
that seem biologically plausible and that we anticipated
might lead to numerous concurrent nonneutral poly-
morphisms. We then did substantially more simulations
with the parameters listed above because of the interest-
ing behavior of the ancestral lineage that they generated.
These parameters (θ= 2NLμ= 10 and σ = 2Ns= 10) are
consistent with a region identified by Wakeley (2008)
that produces complex ancestral selection graphs be-
cause nonneutral polymorphisms are maintained in the
population. The choice of μ = 10−8 was motivated by
recent estimates that include 1.3×10−8 (Lynch 2010) and
1.1× 10−8 (Roach et al. 2010) for humans, 0.7× 10−8 for
Arabidopsis thaliana (Ossowski et al. 2010), and 6.2×10−8

for D. melanogaster (Haag-Liautard et al. 2008).
For the core set of parameter values and also for other

sets explored below, we did a series of pilot simulations
prior to the ones summarized here. For each parameter
set, the pilot simulations were used to obtain a prelim-
inary approximation of the stationary distribution for
the number of deleterious sites in the ancestral lineage.
We sampled from the approximate stationary distribu-
tion and then had the initial state of the simulations be
a population that was monomorphic for the sampled
number of deleterious sites. For the core parameter set,
we ran 10 independent simulations of 5 billion gener-
ations each. We performed multiple runs because the
ancestral lineage status in different generations within

a run are not independent observations. The variabil-
ity among runs sheds light on how accurately our sim-
ulations describes ancestral lineage behavior. To lessen
the dependence on the initial simulation conditions, we
paralleled the conventional treatment of Markov chain
Monte Carlo output by discarding the earliest of the sim-
ulated generations from each run. By applying a variety
of diagnostic procedures, we concluded that a “burn-in”
of 500 million generations (i.e., 10%) was sufficient to ne-
glect dependence of the latter 4.5 billion generations on
the initial simulation conditions. The average number of
generations at the end of a simulation run for which the
ancestral lineage could not be determined was less than
50,000. As a result, the 10 simulation runs for the core
parameter set yielded a total of almost 45 billion gener-
ations of ancestral lineage.

Simulation data associated with study can be found
at http://scit.us/∼reed/noindex/anclin-data.tar.bz2.
Code for producing and interpreting the simulation
output can be checked out from a subversion repository
at svn://scit.us/klineage/current/.

RESULTS

Failure of Low Mutation Approximation

When mutation rates are sufficiently low, the
population-genetic scheme studied here is a special
case of one used by Sella (2009). At stationarity, the low
mutation approximation of Sella shows that the number
of deleterious sites per sequence in the ancestral lineage
has a binomial distribution

P(k) =

(
L
k

)(
q

1 + q

)k( 1
1 + q

)L−k

, (1)

where k is the number of deleterious sites and q =
3(1 − s)2(N−1). The mutation rate, μ, does not appear
in Equation 1 because our mutation process makes all
point mutations equally likely and because Equation 1
is derived for the case where each mutation is fixed or
lost before the next appears. When mutation rates are
sufficiently low for this to almost always be the case,
populations will be monomorphic during most of their
history. This means that the fixation probabilities of new
mutations, and therefore the stationary distribution of
the ancestral lineage, will not be functions of μ.

Applying our core parameter values of N = 50,000
and L = 10,000 and s = 10−4 to the binomial distribu-
tion of Equation 1, the expected value and standard
deviation of k are, respectively, about 1.36 and 1.17
deleterious sites. In contrast, we find from our simu-
lations that setting μ to its core value of 10−8 yields a
stationary distribution for the ancestral lineage with a
mean that is more than two orders of magnitude higher
than predicted by Equation 1. The simulations suggest
that the stationary distribution of the ancestral lineage
has a mean of about 449.6 deleterious sites and a stan-
dard deviation of about 18.6 deleterious sites. Likewise,
the most probable state according to the low mutation

http://scit.us/~reed/noindex/anclin-data.tar.bz2
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approximation is one deleterious site per sequence,
whereas the mode for our simulations was 455 delete-
rious sites. If we separately estimate the mean number
of deleterious sites per sequence for each of the 10 runs,
we find that our estimates have a sample standard de-
viation of about 3.38 deleterious sites. By adding and
subtracting 2 × 3.38/

√
10, a crude 95% confidence in-

terval of (447.4, 451.8) is obtained for the mean of the
stationary distribution.

We believe that the disparity between the simulations
and Equation 1 can be attributed to μ = 10−8 being
higher than can accurately be handled by the low muta-
tion assumption. Our simulations with values of μ that
are lower than 10−8 yield results that are closer to Equa-
tion 1. Figure 2 displays simulations results when μ is
10−9, 10−10, and 10−11, as well as 10−8. Simulations for
these lower values of μ were done in the same fashion
as for μ = 10−8 except that lengths of simulation runs
and burn-in periods were inversely proportional to the
value of μ. For example, each of the 10 simulations for
μ=10−11 continued for 5 trillion generations rather than
for the 5 billion generations of μ = 10−8. Although val-
ues of μ that are 10−9 and 10−10 gave results somewhat
closer to the low mutation approximation, Equation 1
is not accurate for these mutation rates either. Our sim-
ulations had a mean of about 7.06 deleterious sites and
a standard deviation of about 2.65 with μ = 10−9 and
a mean of 1.63 and a standard deviation of 1.31 with
μ = 10−10. For μ = 10−11, the mean and standard devi-
ation of the number of deleterious sites in the ancestral
lineage were about 1.39 and 1.15. These are not too
far from the values of 1.36 and 1.17 that are predicted
by Equation 1. The approximate 95% confidence inter-
vals for the means of the stationary distributions are
(6.85, 7.27) for μ = 10−9, (1.51, 1.75) for μ = 10−10, and
(1.34, 1.44) for μ= 10−11.

The low mutation approximation also leads to an un-
derestimation of the rate of substitution. From Equation
1, the stationary probability that a site in the ancestral

lineage is deleterious is π0 = q/(1 + q) and that a site is
advantageous is π1=1/(1 + q). The total rate of ancestral
lineage change, Q, will depend on the values of π0 and
π1 as well as on the neutral substitution rate Q00, the
advantageous rate Q01, and the deleterious rate Q10.
Thus, we have

Q= π0Q00 + π0Q01 + π1Q10

=
q

1 + q
Q00 +

q
1 + q

Q01 +
1

1 + q
Q10.

Because substitution rates are the products of mutation
rates and fixation probabilities,

Q=
q

1 + q
NμL

2
3

1
N

+
q

1 + q
NμL

1
3

P01 +
1

1 + q
NμLP10, (2)

where P01 is the fixation probability of a new advan-
tageous mutations and P10 is the fixation probability
of a new deleterious mutation. The fixation proba-
bility approximation of Sella and Hirsh (2005) gives

P01 =
1−(1−s)2

1−(1−s)2N and P10 =
q
3 P01. Substituting these into

Equation 2 and simplifying, we get

Q=
2
3
μL

q
1 + q

(1 + NP01). (3)

For μ = 10−8, Equation 3 gives a rate of about 9.98 ×
10−8 changes per ancestral lineage sequence per gener-
ation. In contrast, our simulations with μ= 10−8 yield a
rate estimate of 1.84× 10−5, which is more than 2 orders
of magnitude higher than the predicted rate. Likewise,
the low mutation approximation is too low by a factor
of about 5 for μ= 10−9 (4.75× 10−8 vs. 9.98× 10−9) and
about 1.2 for μ = 10−10 (1.21 × 10−9 vs. 9.98 × 10−10).
As in the case of the mean number of deleterious mu-
tations at stationarity, the approximation and the simu-
lated values are very close for μ= 10−11(9.95× 10−11 vs.
9.98× 10−11).

FIGURE 2. Stationary distributions of simulated ancestral lineages. Each panel contains the stationary distribution of simulated ancestral
lineages (solid lines) under a specific mutation rate. The dashed lines are low mutation expectations derived in Sella (2009). To emphasize
differences, discrete distributions are plotted as continuous lines.
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One can often equate the behavior of a population of
some census size in terms of the behavior of an ide-
alized population with some different effective size. In
particular, the Hill–Robertson effect of interference due
to linkage, which is at the core of the present observa-
tion, is usually accounted for by reducing the effective
size (but see McVean and Charlesworth 2000; Comeron
and Kreitman 2002). One possibility is that our simula-
tion results with μ = 10−8 and census population size
N = 50, 000 would be consistent with the low mutation
approximation of Equation 1 for some other value of N
(i.e., for some effective population size). Because Equa-
tion 1 is a binomial distribution, we compared the dis-
tribution that we simulated for μ = 10−8 to a binomial
with the same mean. A binomial distribution with L =
10, 000 and a mean of 449.6 would correspond accord-
ing to Equation 1 to an effective population size of about
20, 773. However, the binomial distribution should then
have a variance of about 429.4. In contrast, the variance
of our simulated distribution was about 344.1 with an
approximate 95% confidence interval of (311.6, 376.6).
The difference in variances implies that it is not suffi-
cient to attribute the disparity between the low mutation
approximation and our μ= 10−8 simulations solely to a
difference between census and effective population size,
as the binomial distribution and thus the independence
of sites also no longer hold. Interestingly, the lower vari-
ance of the simulation is reminiscent of a sequence with
fewer sites than those simulated. Table 1 includes ef-
fective population size estimates for the mutation rates
lower than 10−8. For these lower mutation rates, dispar-
ity between simulation results and Equation 1 could be
explained relatively well simply by differences between
census and effective population sizes.

Another way to obtain effective population size esti-
mates relies upon equating the rate of ancestral lineage
change per generation as estimated from the simula-
tions to the rate expected from the low mutation as-
sumption. The true values of μ, L, and s along with
value of Q that is inferred from simulations can be em-
ployed to numerically solve for the value of N that
satisfies Equation 3. Effective population size estimates
derived in this way are not too different from those ob-

TABLE 1. Effective population size estimates from simulation data

μ Deleterious sitesa Ne(Δ)b Qc Ne(Q)d

10−8 449.6 20,772 1.84× 10−5 19,731
10−9 7.06 41,768 4.75× 10−8 41,343
10−10 1.63 49,100 1.21× 10−9 48,946
10−11 1.39 49,896 9.95× 10−11 50,019

aThe mean number of deleterious sites per ancestral lineage sequence
estimated from the simulations.
bEffective population size estimates obtained by equating the mean
of the binomial distribution in Equation 1 to the mean number of
deleterious sites per ancestral lineage sequence inferred from the
simulations.
cEstimated rates of ancestral lineage change per sequence per genera-
tion.
dEffective population size estimates obtained by using Equation 3 and
the values of Q estimated from the simulations.

tained by equating the mean of the binomial distribution
of Equation 1 to the means inferred from simulations
(Table 1).

Failure of Markov Assumption

The simulations produced intriguing results that have
relevance to phylogenetics and to other tasks of evo-
lutionary inference from interspecific sequence data.
Virtually all probabilistic models for molecular evo-
lution assume a Markovian substitution process: the
rate at which a sequence changes depends only on the
current sequence and not on the specific evolutionary
path that led to it. When mutation rates are sufficiently
low, fixation of a new sequence variant vt+1 nearly al-
ways takes place in a population otherwise monomor-
phic for the sequence vt. This implies that any memory
about previous allelic states along the ancestral lineage
(vt−1, vt−2, . . .) has then been lost and therefore that the
Markov assumption holds. Our simulations can be used
to explore how close to a Markov process is evolution of
the ancestral lineage under higher mutation rates.

With a Markov process, the time from which a se-
quence changes until it changes again (waiting time)
should have a geometric distribution if time is measured
in discrete generations or an exponential distribution if
time is treated as continuous. With the mutation and
relative fitness scheme of our simulations, a Markov
process would have the waiting time until the next an-
cestral lineage change be a function of the number of
deleterious sites in the ancestral lineage. Because 455
deleterious sites was the most frequent ancestral lineage
state visited by our simulations for μ = 10−8, we as-
sessed the distribution of waiting times in state k = 455
deleterious sites. This situation occurred 18, 083 times in
our simulations; they started when the 455-creating mu-
tations originated and stopped at the occurrence of the
following substitution in the ancestral lineage, whether
it was neutral, advantageous, or deleterious.

The mean of the 18,083 times was about 54, 286.12
generations. We then compared our simulated distribu-
tion of times to a geometric distribution with mean set
equal to the mean from the simulations. We find that the
simulated distribution has a higher variance than the
geometric distribution (Fig. 3) with a noticeable excess
of short times and with a surplus of long times.

Motivated by this departure between the geometric
distribution and our simulations, we reasoned that one
strategy for modeling molecular evolution might be to
describe the waiting times as a mixture of geometric dis-
tributions. Via the expectation maximization algorithm,
we fitted the waiting times in Figure 3 to a mixture of
geometric distributions. We found that a mixture of two
geometric distributions provided a substantially better
fit than a single distribution and that a mixture of three
geometric distributions provided little improvement be-
yond the mixture of two geometric distributions. Our
mixture of two geometrics had 94.2% of the probability
associated with a geometric of mean 57, 162 generations
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FIGURE 3. A comparison between the simulated distribution of
interevent times and a geometric distribution with the same mean.
When μ = 10−8, our simulations had 18,083 cases of entering and
then exiting the ancestral lineage state of 455 deleterious sites. These
interevent times were compared with a geometric distribution with
an identical mean. Quantiles were determined to specify 25 bins
that are equiprobable according to the geometric distribution. The
histogram depicts the proportion of the 18,083 simulated times that
fall into each of these 25 bins. The solid line is the expected proportion
in each bin according to the geometric distribution. The dashed lines
indicate the 95% confidence interval for the proportion falling into a
bin if the 18,083 times had actually been sampled from the geometric
distribution.

and the other 5.8% of the probability with a geometric
of mean 7594 generations.

When investigating the time series of the ancestral
lineage, we noticed the tendency for consecutive fitness-
affecting substitutions to alternate sign (Table 2). For
example, if the ancestral lineage has 455 deleterious
sites in some generation, then it must have entered that
state in a previous generation from either 454 or 456
deleterious sites. Likewise, if the ancestral lineage has
455 deleterious sites, it will exit that state in a future gen-
eration to either 454 or 456 deleterious sites. If the state
of the ancestral lineage changes according to a Markov
chain, then the state prior to 455 (i.e., 454 or 456) should
be independent of the state following 455. The entries
in Table 2 emphatically demonstrate that this is not the
case for μ= 10−8 (Fisher’s exact test, P < 3.15× 10−65).

We concentrate upon the non-Markovian behavior for
the ancestral lineage state of 455 deleterious sites simply
because this state occurs more often in the simulated an-
cestral lineages than any other state. Other states also ex-
hibit non-Markovian behavior. We repeated the Fisher’s
exact test for all other ancestral lineage states visited by
the core parameter simulations. In Figure 4a, we plot the
P values of these tests. Except for the infrequently ob-
served states at the tails of the stationary distribution of
the ancestral lineage, there is strong evidence through-

TABLE 2. Behavior of ancestral lineage when k= 455a

455→ 454 455→ 456

454→ 455 4346 3238
456→ 455 3235 4217

aRows specify whether the ancestral lineage has 454 or 456 deleterious
sites immediately prior to it having 455. Columns show whether the
ancestral lineage had 454 or 456 deleterious sites immediately after
having 455. Entries are the total number of times that each case was
observed over 10 separate simulations.

FIGURE 4. Non-Markovian nature of the ancestral lineage. Results
derive from simulations with core parameter values as described in
the text. Neutral changes to the ancestral lineage are disregarded for
the jump chain analyses presented here. a) The P values of Fisher’s
exact tests for independence between consecutive substitutions that
enter and exit each ancestral lineage state are plotted on the y-axis. The
ancestral lineage state is plotted on the x-axis. b) The absolute values
of partial autocorrelations φi for i ∈ {1, . . . , 10} estimated from the
jump chain of the ancestral lineage. The dotted line at 0.00216 shows
one critical value for testing the null hypothesis that φi = 0 at signif-
icance level α = 0.05. The other critical value would be at −0.00216.
The triangles mark the 95th percentile of φi estimates obtained from
parametric bootstrapping with a first-order Markov model. (See text
for details.)

out the distribution of nonindependence of consecutive
fitness-affecting substitutions.

Partial Autocorrelation in the Ancestral Lineage

Partial autocorrelations (Wei 1994) are an alternative
summary of the dependence between successive non-
neutral substitutions. Autocorrelation measures the cor-
relation between samples in a time series separated by
specific lag, whereas partial autocorrelation measures
the correlation at specific lags that is not explained by
autocorrelations at lower lags. We calculated the par-
tial autocorrelation function of the jump chain of the
μ= 10−8 simulations for lags 1–10 (denoted here by φ1–
φ10). The absolute values of the partial autocorrelation
functions (|φi|) are plotted in Figure 4b on the log scale;
note that φ9 is originally negative.

For white-noise processes, the true value of φi is 0
for all lags. Furthermore, the approximate sampling
distribution for estimates of φi has a simple form when
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data are generated by a white-noise process. Specifically,
the sampling distribution is approximately normal with
mean 0 and variance that is approximately the inverse of
the sample size (Wei 1994). If our ancestral lineage data
had actually been generated by a white-noise process,
the standard deviation would be approximately 0.0011.
White-noise processes therefore serve as useful null
models for testing whether a given φi from a time series
of interest is 0. For each φi estimate from our data, we
calculated a P value for the null hypothesis that φi = 0.
Even when correcting for multiple tests via the method
of Holm (1979), lags 1–5 had significant nonzero partial
autocorrelations at α= 0.05 (Figure 4b).

Beyond testing for significantly nonzero partial au-
tocorrelation values, we also compared our sampled
values against a best-fitting Markov model. We fit a
first-order Markov model to the 825,973 jumps in our
simulated jump chains and used parametric bootstrap-
ping to generate 1000 series of equal length from this
model. We calculated the φi estimates for each of these
replicates. For each lag from 1 through 10, the 95th
percentile of the absolute values of our φi estimates is
plotted as a triangle in Figure 4b. Because the paramet-
ric bootstrap replicates were generated according to a
Markov model of order 1, the triangle for lag 1 is well
within the rejection region for testing the null hypoth-
esis that φ1 = 0 at a significance level of 0.05, whereas
the triangles for the other lags are (as expected) very
close to the critical values for the φi = 0 hypothesis test
(Fig. 4b). In agreement with the white-noise tests, the
φi estimates from the ancestral lineage jump chains for
lags 2–5 are well within the rejection region established
by parametric bootstrapping. This suggests that a fifth-
order Markov model might be an effective statistical
description of the simulated jump chains.

Correlation between Ancestral Excess and
Evolutionary Rates

The higher order dependencies in the ancestral lin-
eage that were demonstrated in the last section could
stem from the dynamics of the ancestral lineage depend-
ing on how its fitness compares with the mean fitness of
the rest of the population. However, because the rest of
the population also stems from earlier ancestors along
the ancestral lineage, the population has an allelic com-
position and therefore an average fitness that reflects
prior events in the ancestral lineage. Taken together, this
suggests that the behavior of the ancestral lineage is not
solely a function of its current state.

To illustrate this phenomenon, we consider the num-
ber of deleterious sites in the ancestral lineage allele and
subtract from this the average number of deleterious
sites among all alleles in the population. We refer to this
difference as the “ancestral excess.” In keeping with the
conjecture by Donnelly and Kurtz (1999) that was con-
firmed for special cases by Slade (2000) and Fearnhead
(2002), we expect ancestral excess to be negative because
the allele that eventually gets fixed should tend to be
comparatively fit.

As expected, the allelic state of the ancestral lineage
is nearly always more fit than the population average.
The ancestral excess bin of −1 is the one most often
visited during our simulations. In Figure 5a, we depict
the proportions of time that the ancestral lineage oc-
cupied each bin, and we compare these proportions to
those for generations that immediately preceded neu-
tral, advantageous, or deleterious bins. In Figure 5b,
we show neutral, advantageous, and deleterious rates
that are separately estimated for each bin. These rates
are measured in terms of expected number of changes
per sequence per generation. In keeping with intuition,
we see that the neutral rate is independent of ancestral
excess. In contrast, rates of deleterious substitutions are
positively correlated with ancestral excess and rates of
advantageous substitutions are negatively correlated
with ancestral excess.

The results in Figure 5a,b group all counts of delete-
rious sites together. Conceivably, the strong correlations
between bin membership and nonneutral rates could be
a by-product of other correlations. Specifically, this sce-
nario would have the number of deleterious sites per se-
quence be correlated with bin membership and it would
also have the number of deleterious sites per sequence
be correlated with the advantageous and deleterious
transition rates. To exclude this possibility, an analysis
was done that does not group all counts of deleterious
sites together. Figure 5c,d replicate Figure 5a,b but are
exclusively based on generations when the ancestral
lineage had 455 deleterious sites.

Comparison of Simple Statistical Models for Ancestral
Lineage Change

Rodrigue (2007) has made the illuminating distinction
between mechanistic and phenomenological models of
sequence evolution (see also Rodrigue and Philippe
2010). The parameters of a mechanistic model are at-
tached to clear biological interpretations. The meanings
might pertain to the mapping of genotype to pheno-
type, the mapping of phenotype to fitness, mutation,
or population structure. There is often a tension be-
tween models that provide good statistical fits to data
and models with clear biological interpretations. When
phenomenological models are constructed, the highest
priority is statistical fit. Phenomenological models have
diverse applications and have been very influential as a
basis for phylogeny inference.

Although much of our interest in the ancestral lineage
is motivated by the goal of studying evolution via in-
ference with mechanistic models, we recognize that the
phenomenological perspective also has value. Regard-
ing the task of constructing a phenomenological model
to describe change in ancestral lineages, we envision
inference proceeding by Markov chain Monte Carlo
sampling among ancestral histories that are consistent
with observed data. To deal with the non-Markovian
behavior of the ancestral lineages, we describe below
what we term “tagged” models. Another approach
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FIGURE 5. Ancestral excess and substitution rates. For each generation, ancestral excess measures the difference between number of delete-
rious sites in the ancestral lineage allele and the population average. Negative values indicate that the ancestral lineage was more fit than the
population average, and positive values indicate that it was less fit. For these plots, ancestral excess values are categorized according to bins of
width 1/2. For example, the bin centered at −1.5 represents generations in which the ancestral excess is between −1.75 and −1.25. a) Propor-
tion of ancestral excess bin occupancy overall and for generations that immediately preceded neutral, advantageous, and deleterious changes.
b) Neutral, advantageous, and deleterious substitution rates calculated for each ancestral excess bin. The dashed line shows the expected rate
of neutral mutations per sequence per generation for the average ancestral lineage allele. This is obtained by multiplying the average number
of deleterious sites in the ancestral lineage (449.6) by the mutation rate per site per generation (10−8) and by the proportion of mutations to a
deleterious site that are expected to yield another deleterious nucleotide (2/3). (c) and (d) are similar to (a) and (b) but are limited to results for
generations when there are 455 deleterious sites in the ancestral lineage.

builds upon the modeling idea of Tuffley and Steel
(1998) by having rates depend on the value of a hid-
den state as well as on the number of deleterious sites
per sequence. When the number of deleterious sites
changes, the initial value of the hidden state would
be determined by whether the change was advanta-
geous or deleterious. Subsequent events would let only
the hidden state change or would let both the hidden
state and the number of deleterious sites change. We
have not yet carefully assessed the performance of this
Tuffley–Steel approach. Careful parameterization with
the Tuffley–Steel idea could capture the pattern seen
in Figure 3 so that the model has times between sub-
stitution events being a mixture of a distribution with
short average waiting times and a distribution with long
average waiting times.

We have studied tagged models in more detail. These
models classify alleles in the ancestral lineage based
on the previous history of the ancestral lineage. For
instance, in a second-order tagged model, the same
allele can be considered either “hot” or “cold” based
on whether it originated through an advantageous or
a deleterious mutation, and distinct transition proba-

bilities can be calculated for the hot and cold variants.
Additionally, tagging is straightforward to extend to
higher orders; a fifth-order tagged model has only 16
different hot–cold patterns. A first-order tagged model
is no different than a first-order Markov model, whereas
a zeroth-order tagged model completely ignores the
state of the ancestral lineage.

We estimated several tagged models from our simu-
lated ancestral lineages and then calculated the likeli-
hood of our ancestral lineage from the models. For the
results presented here, neutral changes were ignored so
that the kth-order tagged models only describe change
in time of the number of deleterious sites per ancestral
lineage sequence. Two variants of tagged models were
considered. With one, the assumption is that for each
possible tag, there is a rate per generation per site of
deleterious states changing to advantageous ones and
a rate of advantageous states changing to deleterious
ones. This means two free parameters are estimated for
each tag. The other variant has more parameters because
the rates per site per generation for a tag are also al-
lowed to be a function of the total number of deleterious
positions per sequence. With this variant, there are two
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free parameters for each combination of tag and number
of deleterious sites per sequence. We refer to this variant
as heterogeneously tagged (HeT) models, whereas the
other variant is referred to as homogeneously tagged
(HoT) models. For the HeT models, a minimum and
maximum number of deleterious sites per sequence are
incorporated as additional parameters in order to lessen
the total number of parameters to be inferred. We note
that homogeneous and heterogeneous are employed to
refer to whether the rates of change at individual se-
quence sites are or are not a function of the states at
other sequence positions. Both HeT and HoT model
variants can be classified as homogeneous Markov pro-
cesses because the rates among states do not vary over
time.

We fit models of each variant from our simulated
ancestral lineages for the core parameter set (μ = 10−8)
and also for the case where the core parameter set is
altered by having μ=10−11. We considered tags ranging
from first order to fifth order for each of these muta-
tion rates. The log likelihood of a simulated ancestral
lineage is calculated from the stationary distribution
and transition probabilities for both the HeT and the
HoT models. For HeT, the transition probabilities and
the joint stationary distribution of tags and number of
deleterious sites (including its minimum and maximum
values) are estimated directly from the simulated data.
For HoT, the probabilities per generation of a delete-
rious site changing into an advantageous site and an
advantageous changing into a deleterious site are es-
timated directly from the simulated data and are then
used to calculate the joint stationary distribution and
transition probabilities.

We separately compared Akaike information criterion
(AIC) values for the HeT and HoT models. The AIC val-
ues are a function of the number of free parameters in
a model (Akaike 1973). For the HeT models, the total
number of free parameters depends on the range in-
duced by the parameters specifying the minimum and
maximum number of deleterious sites per sequence.
The AIC scores can be employed to find the range for
a specific HeT model order and can then be employed
again to compare model orders.

For μ = 10−8, the AIC selects fourth order as the
best HoT model among those considered and third
order among HeT orders (Table 3). In contrast, first-
order models are selected for both the HoT and HeT
variants when μ = 10−11. We believe that these par-
ticular model selection results need to be interpreted
very cautiously. Our main point is that the ancestral
lineage is well approximated by a first-order Markov
process when μ = 10−11 but not when μ = 10−8. Phy-
logenetic techniques that incorporate higher order in-
formation via tags or other approaches may improve
model fit and thereby benefit phylogeny inference,
but we suggest that directly incorporating population
genetics into interspecific evolutionary models may
be a more promising research direction for the long
term.

TABLE 3. Model comparisons

μ= 10−8 μ= 10−11

Order Log La AICb Log La AICb

H
om

og
en

eo
u

s First 0.00 0.00 0.00 0.00
Second 7712.57 −15,421.13 0.14 3.72

Third 8147.27 −16,282.52 2.83 6.34
Fourth 8174.98 −16,321.96 7.08 13.83

Fifth 8187.50 −16,315.00 16.02 27.96

H
et

er
og

en
eo

u
s First 201.77 172.47 7.25 13.50

Second 8051.86 −14,947.71 12.19 35.63
Third 8791.76 −15,267.52 21.76 80.49

Fourth 9426.31 −14,216.61 44.06 163.88
Fifth 10,606.36 −11,936.70 73.33 361.34

aEntries are the log likelihood for the model corresponding to the row
minus the log likelihood of the first-order HoT model. The first-order
HoT model yielded a log likelihood of −8826047.17 for μ = 10−8 and
−98579.30 for μ= 10−11.
bEntries are the AIC for the model corresponding to the row minus
the AIC for the HoT first-order model. The AIC of the HoT first-order
model was 17652098.33 for μ= 10−8 and 197162.60 for μ= 10−11. The
shading indicates the models with the lowest AIC value among the
HoT cases and separately among the HeT cases.

DISCUSSION

The simulation results that we find most notewor-
thy are 1) The non-Markovian behavior of the ancestral
lineage and especially the tendency for successive non-
neutral substitutions to alternate between advantageous
and disadvantageous; 2) The underestimation by low
mutation approximations of the expected number of
deleterious sites in the ancestral lineage; and 3) The
strong correlation between ancestral excess and rates
of nonneutral change. Although aspects of these three
phenomena are previously described in the literature,
we think that they are undercharacterized. We discuss
their relevance below.

Non-Markovian Behavior of the Ancestral Lineage due to the
Hill–Robertson Effect

One reason that change in the ancestral lineage may
be non-Markovian is that fixation probabilities of new
mutations depend on more than the fitnesses and
frequencies of the new and mutated allele types. Fix-
ation probabilities also depend on the fitnesses and fre-
quencies of other alleles in the population. The history
of the ancestral lineage provides some of this additional
information upon which fixation probabilities depend.
Theoretical population geneticists appreciate the lack
of Markovian behavior of ancestral lineages. This has
motivated some promising recent work (e.g., Fearnhead
2002; Taylor 2007; Baake and Bialowons 2008). However,
we are unaware of previous attention to the tendency
for fitness-affecting substitutions to alternate between
advantageous and disadvantageous.

The non-Markovian behavior is potentially highly
relevant to phylogenetics. The model-based phylogeny
literature is huge, and the assumption that sequence
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change is Markovian with respect to time is ubiquitous
within this literature. Although phylogenetic methods
might turn out to be robust to violations of the Markov
property, it will nevertheless be important to inves-
tigate in more detail how general are the deviations
from Markovian behavior and what impact these de-
viations may have on the accuracy of phylogenetic
reconstructions.

We suspect that non-Markovian behavior of the an-
cestral lineage might sometimes impact divergence
time estimation. For Bayesian inference of divergence
times from molecular sequence data and fossil evi-
dence, it is important to have good estimates of the
uncertainty associated with branch length estimates.
As pointed out by Cutler (2000), underestimates of
branch length uncertainty can lead to overestimates of
the amount of evolutionary rate variation over time. If
the amount of rate variation over time is overestimated,
this could mean that the amount of rate autocorrela-
tion over time is underestimated. This possibility could
explain findings that rate autocorrelation over time is
small (e.g., Drummond et al. 2006; but see Lepage et al.
2007).

The tendency for alternation between advantageous
and deleterious changes can be intuitively explained. If
one notes that the ancestral excess statistic is likely to be
an indicator of recent nonneutral changes to the ances-
tral lineage, the same intuitive reasoning would explain
the pattern in Figure 5 of strong correlations between
ancestral excess and nonneutral rates but lack of corre-
lation between ancestral excess and neutral rates. The
explanation relies upon the fact that to belong to an an-
cestral lineage, an allele must eventually get fixed. Fix-
ation of a deleterious mutation is more probable if the
mutation changes an allele that happens to be particu-
larly fit relative to the rest of the population. These com-
paratively fit alleles are likely to be the result of a recent
advantageous mutation. This is because advantageous
mutations that were introduced long ago and that were
not lost are likely to have risen to a high frequency so
that the average gene copy with the advantageous mu-
tation might not be much more fit than the average gene
in the population.

A similar explanation can be given if it is the dele-
terious mutation that happens first. If a deleterious
mutation creates a new allele, the resulting allele will
tend to have a fitness deficit relative to the rest of
the population and will therefore tend to be elimi-
nated from the population. However, membership of
a new mutant in the ancestral lineage means condi-
tioning upon survival of descendants of the delete-
rious mutant. Deleterious mutations that do persist
will be enriched for those that occurred on an other-
wise highly fit allele or those that were not eliminated
prior to the occurrence of advantageous mutations on
descendant sequences. Therefore, the deleterious and
advantageous changes that get incorporated into the
ancestral lineage are likely to be clustered in time with
respect to each other—advantageous mutations fol-
lowed by tolerable deleterious mutations and deleteri-

ous mutations followed by compensatory advantageous
mutations.

This alternation between advantageous and delete-
rious mutations is associated with dependent change
among sequence positions. For example, the alternating
fitness pattern means that different codons may evolve
in a dependent fashion even if they have independent
effects on phenotype and if the amino acids they encode
have no physical interaction. Instead, the dependence
is induced by linkage and fitness. We see from our sim-
ulations that the tendency can be strong for changes to
the ancestral lineage to alternate their fitness effects, but
we do not know whether this tendency is strong for a
wide range of biologically plausible population genetic
scenarios.

Low Mutation Approximation and the Hill–Robertson
Effect

The most interesting patterns in our simulations
would all be lessened or eliminated with recombina-
tion. Most obviously, recombination would hinder the
formation of linkage disequilibrium, and it is linkage
disequilibrium that reduces the effectiveness of natu-
ral selection and causes the number of deleterious sites
in our simulated ancestral lineages to greatly exceed
what would be expected from the low mutation
approximation.

We found that the stationary distribution of the an-
cestral lineage had a smaller variance of the number of
deleterious sites than can be explained by simply adjust-
ing population size in the low mutation approximation
of Equation 1. This is consistent with previous findings
that the Hill–Robertson effect does not simply make
effective population sizes smaller than census popula-
tion sizes (McVean and Charlesworth 2000). Comeron
and Kreitman (2002) have done thorough simulation
studies on the impact of the Hill–Robertson effect on
intraspecific genetic variation. Although not nearly as
thorough as the work by Comeron and Kreitman (2002),
this study is somewhat complementary in that our
focus can largely be summarized as the consequence
of the Hill–Robertson effect on interspecific genetic
variation.

Our overall impression is that two phenomena are
responsible for the departure between our simulations
and the low mutation approximation of Equation 1.
For μ = 10−9 and μ = 10−10, the reason that the cen-
sus population size of 50,000 exceeds the estimates in
Table 1 is likely to be mainly due to background selec-
tion (Charlesworth et al. 1993). Specifically, deleterious
mutations may linger in a population for a long time
while still being unlikely to fix. This means that the
number of gene copies with a higher chance to be incor-
porated into the ancestral lineage might be substantially
smaller than the census population size. For μ = 10−8,
the behavior of the ancestral lineage cannot simply
be explained by a difference between the census and
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effective population size. Instead, the Hill–Robertson
effect needs to be invoked.

Low Mutation Approximation and Scaled Selection
Coefficients

Building upon the Halpern–Bruno idea, a variety of
studies have employed interspecific sequence data and
the low mutation assumption to estimate the product
of effective population size and the difference in rela-
tive fitnesses of the two sequences (Nielsen and Yang
2003; Mustonen and Lässig 2005; Thorne et al. 2007;
Choi et al. 2008; Yang and Nielsen 2008). Following
Nielsen and Yang (2003), we refer to this product as the
scaled selection coefficient. We use the convention that
deleterious mutations correspond to negative values
for the scaled selection coefficients and advantageous
mutations correspond to positive values. Selectively
neutral mutations yield a scaled selection coefficient
near zero.

We can consider all possible mutations that can alter a
gene belonging to an ancestral lineage. The distribution
of scaled selection coefficients that results from these
mutations is of interest. Previous studies (e.g., Nielsen
and Yang 2003; Thorne et al. 2007; Choi et al. 2008; Yang
and Nielsen 2008) have inferred these distributions and
investigated their nature except that the inferred dis-
tributions represented possible mutations to observed
sequences rather than possible mutations to ancestral
lineage sequences. The distinction between observed
sequences and ancestral lineage sequences is important,
but determination of the ancestral lineage status of a
sequence is typically impractical. We assume that both
observed and ancestral lineage sequences would yield
qualitatively similar inferred distributions of scaled se-
lection coefficients.

Although the details differ between the studies that
have leveraged the Halpern–Bruno idea to estimate the
distribution of scaled selection coefficients among possi-
ble changes to an observed sequence, a common thread
that unites the inferred distributions is that all are bio-
logically implausible. Specifically, the inferred probabil-
ity distributions are missing lower tails that represent
extremely deleterious mutations. These tails should be
present for functionally important genes because some
mutations to these genes should be highly deleterious
or even lethal. The absence of highly deleterious scaled
selection coefficients probably has multiple causes. One
cause may stem from the inability to accurately pre-
dict phenotype from genotype because this results in
an inability to accurately predict relative fitness from
genotype.

Another explanation for the lack of highly deleterious
scaled selection coefficients is inadequacy of the low
mutation approximation. Our simulations with the core
parameter set showed that the ancestral lineage had
many more deleterious sites than would be predicted
with the low mutation approximation. If the number
of deleterious sites was used to estimate the scaled

selection coefficient Ns, the low mutation approxima-
tion would produce underestimates of Ns. Representing
the mean of the binomial distribution of Equation 1 by
E[k] and then solving for Ns in terms of E[k], we get

Ns
.
=

1
2
log

(
3L

E[k]
− 3

)

(4)

after approximating q as 3 e−2Ns. By substituting the core
parameter value L = 10, 000 and replacing E[k] with the
mean of 449.6 from our simulations, Equation 4 yields
about 2.1 for Ns and this is about 40% of the true value
of 5.

Underestimation of s or Ns produces inferred distri-
butions of scaled selection coefficients that are too con-
centrated around zero. This underestimation could be
partially responsible for why previously inferred distri-
butions of scaled selection coefficients have lacked the
lower tail that corresponds to extremely deleterious mu-
tations. However, we still believe that the primary rea-
son for the missing lower tail is inability to accurately
predict phenotype from genotype.

Recombination and non-Markovian Behavior of the
Ancestral Lineage

Although recombination will reduce or eliminate the
strong Hill–Robertson effects that are responsible for
the non-Markovian patterns of our simulations, non-
Markovian behavior of the ancestral lineage can also
occur via mechanisms that do not rely on extremely low
recombination rates. Recombination means that the an-
cestral lineage of one sequence site will not always pass
through the same gene copies as other sequence sites
(Fig. 6).

The possibility of the ancestral lineage passing
through different gene copies for different sequence
sites is especially relevant to ancestral lineage change
when the fitness of a sequence is influenced by interac-
tions between the residues at other sites. For example,
the rate of compensatory substitution in helices of RNA
secondary structure is negatively correlated with the
separation of the interacting sites along the sequence
(Piskol and Stephan 2008). If paired sites in a helix
always evolved by having mutations at one site get
fixed before the occurrence and eventual fixation of a
complementarity-restoring mutation at the other site,
substitution rates at paired sites should be uncorrelated
with sequence separation (i.e., recombination opportu-
nity). The Piskol and Stephan (2008) finding suggests
that the sites involved in compensatory substitution are
simultaneously polymorphic prior to fixation (see also
Meer et al. 2010). Beyond the residue type that occupies
one of the two-paired sites in some ancestral lineage
generation, the history preceding that generation pro-
vides information about the population frequencies of
additional residue types at that site. This additional in-
formation is pertinent to the linkage disequilibrium that
might be generated by a new mutation at the other of
the paired helix sites. In contrast to the actual process
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FIGURE 6. Recombination can cause the ancestral lineage to pass
through different gene copies in different sites. Three gene copies are
sampled from a population and their history is indicated. The red,
green, and blue colors indicate sequence regions that have different
histories. Tracing backward through time, the history of the blue re-
gion becomes distinct from the histories of the red and green regions
at the recombination event indicated on the right side of the figure.
The histories of the different regions are again shared at the time
marked GMRCA (grand most recent common ancestor, see Griffiths
and Marjoram 1996). The recombination event indicated on the left
side of the figure delineates where the history of the red region sepa-
rates from the histories of the green and blue regions.

of ancestral lineage change where haplotype propor-
tions presumably affect the probability of fixation by
a new mutation, first-order Markov models consider
only the state of the ancestral lineage and neglect allele
frequencies.

Even for the extreme case where two interacting sites
segregate independently, the recent history of the an-
cestral lineage provides information about the joint dis-
tribution of these sites within the population. This joint
information goes beyond the state in some generation
of the ancestral lineage at the two sites. It is relevant to
fixation probabilities and therefore violates the assump-
tion that ancestral lineage change over time is Marko-
vian. The general problem of including recombination
in an ancestral lineage framework appears to represent
a formidable challenge, as differing loci should have
differing, albeit mutually correlated, ancestral histories.
On the other hand, a nonrecombining model may be
an acceptable approximation for describing the local
behavior of recombining sequences.

Future Directions

In reality, genotype and environment combine to de-
termine phenotype, and phenotype is the intermediary
between genotype and fitness. For simplicity, our sim-
ulations ignore phenotype and environment and have

fitness directly determined by genotype. Our ultimate
goal is to make accurate population genetic inferences
from interspecific data. Although parameter-rich de-
scriptions are accompanied by a suite of inferential chal-
lenges, we believe that the most promising strategy for
achieving this goal is to explicitly incorporate genotype–
phenotype relationships into evolutionary inference and
to additionally model phenotype-fitness links. Previous
work has explicitly incorporated genotype–phenotype
relationships into interspecific models of sequence
change (e.g., Robinson et al. 2003; Rodrigue et al. 2005,
2006, 2009; Yu and Thorne 2006), but these previous
studies have assumed that the ancestral lineage evolves
in a Markovian fashion and have employed Markov
chain Monte Carlo techniques to sample ancestral lin-
eage histories according to their probabilities.

The Wright–Fisher model is a Markov process that
determines the counts of offspring genotypes and the
parentage of these genotypes by the counts of parental
genotypes and parameters like mutation rates and geno-
typic fitnesses. The ancestral lineage can be viewed as
an incomplete summary of a particular Wright–Fisher
realization, but the ancestral lineage is not sufficient to
reconstruct all details of a particular Wright–Fisher real-
ization. Therefore, there is no guarantee that change in
the ancestral lineage is Markovian even though the an-
cestral lineage represents one way to summarize the
outcome of a Markovian inheritance system such as
the Wright–Fisher model. Halpern and Bruno (1998) de-
scribed one important situation for which change in the
ancestral lineage is approximately Markovian, but the
extent to which the Markov assumption is violated by
actual biological systems is unresolved.

For situations where population-genetic parame-
ters cause the ancestral lineage to be poorly described
by a Markov model, one possibility will be to adopt
the ancestral selection graph approach of Krone and
Neuhauser (1997) or some hybrid of ancestral selection
graphs and ancestral recombination graphs (see Hein
et al. 2005). Work by O’Fallon et al. (2010) on the coa-
lescent with natural selection also appears promising.
A slightly different possibility would be to augment
the ancestral lineage with summary statistics such as
the combination in each generation of ancestral excess
and frequency of the ancestral lineage allele. The idea
would be that the ancestral lineage and summary statis-
tics together would jointly change in fashion that is well
approximated by a Markovian process. Ideally, suffi-
cient statistics rather than summary statistics would be
employed, but well-chosen summary statistics can po-
tentially be used to accurately describe the dynamics
of fixation in a population without the complications
that sufficient statistics might entail (e.g., Rouzine et al.
2003).

Evolutionary biology is faced with a variety of in-
terconnected challenges that need to be addressed. The
onslaught of automated techniques for collection of phe-
notypic and genetic data suggests that mapping geno-
type and environment to phenotype should become
increasingly accurate. The conversion of phenotype into
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relative fitness is not straightforward but will become
much more amenable to study as the relationship be-
tween genotype and phenotype is elucidated. As we
emphasized here, even if relative fitness can be per-
fectly predicted from genotype and even if mutation
rates and population characteristics are known, pat-
terns of change along the ancestral lineage are not nec-
essarily simple. This potentially complicates inference
of phylogeny and population-genetic parameters from
interspecific data. The extent of such complication re-
mains unclear. This should be a focus of future research
efforts as should be the exploration of the robustness of
evolutionary inference techniques to violations of the
Markov assumption.
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ACKNOWLEDGMENTS

We thank Hirohisa Kishino, Jack Sullivan, and two
anonymous reviewers for their help.

REFERENCES

Akaike H. 1973. Information theory and an extension of the maximum
likelihood principle. In: Petrov B.N., Csaki F., editors. Second Inter-
national Symposium on Information Theory. Budapest, Hungary:
Akademiai Kiado. p. 267–281.
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